• Nem Talált Eredményt

Ion-exchange chromatography for the characterization ofbiopharmaceuticals Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Ion-exchange chromatography for the characterization ofbiopharmaceuticals Journal of Pharmaceutical and Biomedical Analysis"

Copied!
13
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Review

Ion-exchange chromatography for the characterization of biopharmaceuticals

Szabolcs Fekete

a,∗

, Alain Beck

b

, Jean-Luc Veuthey

a

, Davy Guillarme

a

aSchoolofPharmaceuticalSciences,UniversityofGeneva,UniversityofLausanne,Boulevardd’Yvoy20,1211Geneva4,Switzerland

bCenterofImmunologyPierreFabre,5AvenueNapoléonIII,BP60497,74160Saint-Julien-en-Genevois,France1

a r t i c l e i n f o

Articlehistory:

Received3December2014

Receivedinrevisedform18February2015 Accepted19February2015

Availableonline26February2015

Keywords:

Ion-exchange Salt-gradient pH-gradient Monoclonalantibody Methoddevelopment

a b s t r a c t

Ion-exchangechromatography(IEX)isahistoricaltechniquewidelyusedforthedetailedcharacter- izationoftherapeuticproteinsandcanbeconsideredasareferenceandpowerfultechniqueforthe qualitativeandquantitativeevaluationofchargeheterogeneity.Thegoalofthisreviewistoprovidean overviewoftheoreticalandpracticalaspectsofmodernIEXappliedforthecharacterizationoftherapeutic proteinsincludingmonoclonalantibodies(Mabs)andantibodydrugconjugates(ADCs).Thesectionon methoddevelopmentdescribeshowtoselectasuitablestationaryphasechemistryanddimensions, themobilephaseconditions(pH,natureandconcentrationofsalt),aswellasthetemperatureand flowrate,consideringproteinsisoelectricpoint(pI).Inaddition,bothsalt-gradientandpH-gradient approacheswerecriticallyreviewedandbenefitsaswellaslimitationsofthesetwostrategieswerepro- vided.Finally,severalapplications,mostlyfrompharmaceuticalindustries,illustratethepotentialofIEX forthecharacterizationofchargevariantsofvarioustypesofbiopharmaceuticalproducts.

©2015ElsevierB.V.Allrightsreserved.

Contents

1. Introduction... 44

2. TheoreticalaspectsofIEX... 44

2.1. Salt-gradientbasedseparations... 44

2.2. pH-gradientbasedseparations... 45

3. MethoddevelopmentinIEXchromatography... 46

3.1. Theimpactofstationaryphase... 46

3.2. Theimpactofmobilephasecomposition... 46

3.3. TheimpactofsamplepI... 47

3.4. Theimpactoftemperature... 48

3.5. Optimizationprocedure... 48

4. ApplicationofIEXforproteinseparations... 49

4.1. Characterizationofchargevariantsoftherapeuticproteins... 49

4.2. SeparationofmAbvariants... 49

4.3. Analysisofantibody–drugconjugates... 51

5. PerspectivesinIEX ... 51

5.1. Decreasingtheparticlesize... 51

5.2. CapillaryIEX ... 52

5.3. Monolithiccolumns... 52

5.4. Twodimensionalseparations... 53

6. Conclusion... 53

References... 53

Correspondingauthor.Tel.:+41223796334;fax:+41223796808.

E-mailaddress:szabolcs.fekete@unige.ch(S.Fekete).

1 www.cipf.com.

http://dx.doi.org/10.1016/j.jpba.2015.02.037 0731-7085/©2015ElsevierB.V.Allrightsreserved.

(2)

1. Introduction

Proteins and monoclonal antibodies (mAbs) are an emerg- ing class of therapeutic agents currently being developed by manypharmaceuticalcompanies[1].Duetotheincreasingnum- berofapprovedtherapeuticproteinsinthepharmaceuticalarea and the number of biosimilars (or follow-on-biologics) poten- tiallyenteringthemarket,theneedforanalyticaltechniquesfor theirdetailedcharacterizationhasincreased.Severalcharacteris- ticsofprotein-basedtherapycontributetoitssuccessbyimproving therisk–benefitratio.Thesecharacteristicsincludeimprovedtol- erance, good efficacy, highspecificity, and limited side effects.

However,theintrinsic micro-heterogeneity isof majorconcern withbiomoleculesandshouldbecriticallyevaluatedbecausedif- ferencesinimpuritiesand/ordegradationproductscouldleadto healthimplications[2].Furthermore,producingbiosimilarsismore challenging than manufacturing generic small molecule based pharmaceuticals[3].

In general, the identity, heterogeneity, impurity content, and activity of each new batch of therapeutic proteins has tobe thoroughly investigated before release. This examination is achieved using a wide range of analytical methods, includ- ing ion-exchange chromatography (IEX), reversed-phase liquid chromatography(RPLC),hydrophobicinteractionchromatography (HIC),sizeexclusionchromatography(SEC),sodiumdodecylsulfate polyacrylamidegelelectrophoresis(SDS-PAGE),capillaryisoelec- tricfocusing(cIEF),capillary zoneelectrophoresis(CZE),circular dichroism(CD),Fouriertransforminfraredspectroscopy(FT-IR), fluorescencespectrophotometry(FL),andmassspectrometry(MS).

Thegoalofthismulti-methodstrategyistodemonstratethesim- ilaritybetweenproductionbatchesbypreciselycharacterizingthe primary,secondary,andtertiarystructureoftheproteins[4,5].

IEXisahistoricalandnon-denaturingtechniquewidelyused forthecharacterizationofchargevariantsoftherapeuticproteins andisconsideredasareferencetechniqueforthequalitativeand quantitativeevaluationofchargeheterogeneityoftherapeuticpro- teins[1].ThehistoryandcontinuousevolutionofIEXwasreviewed byLucy[6].AmongthedifferentIEXmodes,cation-exchangechro- matography(CEX)isthemostwidelyusedforproteinpurification andcharacterization[7].CEXisconsideredasthegoldstandard forchargesensitiveanalysis,butmethodparameters,suchascol- umntype,mobilephasepH,andsaltconcentrationgradient,often needtobeoptimizedforeachindividualprotein[8].IEXseparates chargevariantsbydifferentialinteractionsonachargedsupport.

Thenumberofpossiblechargevariantsincreaseswiththemolec- ularweightoftheanalyzedsample.Inaddition,changesincharge maybeadditiveorsubtractive,dependingonanymodifications.

Thus,IEXprofilesbecomemorecomplex,andtheoverallresolution ofindividualvariantsmaybelost[1].Thispropertyisparticularly apparentforlargebiomolecules.Therefore,notonlytheintactbut alsothereducedordigestedforms(limitedproteolysisorpeptide mapping)oftherapeuticproteinsarecommonlycharacterizedby IEX.

Inthisreview,wefocusonthepossibilitiesofIEXchromatog- raphyforthecharacterizationoftherapeuticproteins.Moreover, theaimof this reviewis todetail thetheoretical and practical aspectsofmodernIEX.Last,methoddevelopmentapproachesand applicationsarealsoreviewedandexplained.

2. TheoreticalaspectsofIEX 2.1. Salt-gradientbasedseparations

IEXseparatesproteinsbasedondifferencesinthesurfacecharge ofthemolecules,withseparationbeingdictatedbytheprotein

interactionswiththestationaryphase[9].Asaclassicalmodeof IEX,alinearsalt-gradientisregularlyappliedfortheelution.Several modelsforchromatographicretentionofion-exchangeadsorbents havebeenproposedinthepastyears[10].Theretentionmodels canbedividedintostoichiometricand non-stoichiometricmod- els.Stoichiometricmodelsdescribethemulti-facetedbindingof theproteinmoleculestothestationaryphaseasastoichiometric exchangeofmobilephaseproteinandboundcounter-ions[11].

Thisstoichiometricdisplacementmodel(SDM)predictsthatthe retentionofaproteinunderisocratic,linearconditionsisrelatedto counter-ionconcentration.Thismodelwasextendedtodescribe protein retentionunder linear gradient elutionconditions (LGE model)[12],aswellasundernon-linearproteinadsorptioncon- ditions(stericmassaction(SMA)model)[13,14]forisocraticand gradientelutionmode. Anotherextension ofthestoichiometric modelfortheion-exchangeadsorptionwhichaccountsforcharge regulationwasdevelopedrecently[15,16].

Even if stoichiometricmodels are capable of describing the behaviorofion-exchangechromatographicsystems,theyassume thattheindividualchargesontheproteinmoleculesinteractwith discrete charges onthe ion-exchangesurface. In reality, reten- tion throughion-exchange is more complexand primarily due totheinteractionoftheelectricalfieldsoftheproteinmolecules and the chromatographic surface [11]. Therefore, several non- stoichiometricmodelsfordescribingproteinretentionasafunction of the salt concentration in the mobile phase have also been proposed [17–20]. Quantitative structure–property relationship (QSPR)modelshavebeenderivedforproteinretentionmodeling inIEXbymeansofdifferentnumericalapproachesthatattempt tocorrelateretentiontofunctionsofdescriptorsderivedfromthe three-dimensionalstructureoftheproteins[21–23].Morerecently, theoriesusedincolloidandsurfacechemistrytodescribeelectro- staticandotherinteractions havealsobeenappliedtodescribe retentionpropertiesofproteinsinIEX[24–28].

TheworkofSnyderandco-workersshowedthatIEXsystems follow non-linear solvent strength (LSS) type retention mecha- nism[29,30].Consequently,solute-specificcorrectionfactorsare requiredtouseLSSmodelforretentionpredictions,therebylim- itingtheapplicabilityoftheLSSmodel.Thenon-linearityofLSS modelwasassessed bycomparingtheelutiondatatothestoi- chiometricdisplacementmodel(SDM)commonlyusedinIEX.The retentionfactor(k)canbewritteninthefollowingwayaccording totheSDMmodel:

log k=logK−zlogC (1)

whereKisthedistributionconstant,zisassociatedwiththepro- teinnetchargeornumberofbindingsites(effectivecharge)andC isthesaltconcentration(thatdeterminestheionicstrength).This modelisprobablythemostacceptedoneandisusefulfromaprac- ticalpointofview.Thenon-linearityofEq.(1)ismostpronounced forsmallvaluesofz[30].Ifz>6(whichisveryoftenthecaseof therapeuticproteins),anLSStypemodelmayprovidereliabledata forretentionfactor(retentiontime)[31].Fig.1Ashowsexperimen- tallyobservedlogkversusCplotforz=1,whileFig.1Bshowssome calculatedlogk–Cplotsforvariouszvalues.

Proteinsareelutedinorderofincreasingbindingcharge(corre- latesmoreorlesswiththeisoelectricpoint(pI))andequilibrium constant.Theretentionoflargeproteinsinsalt-gradientmodeis stronglydependentonthesaltconcentration(gradientsteepness orgradienttime)–duetotherelativelyhighzvalue–andasmall changecouldleadtosignificantshiftinretention.Therefore,iso- craticconditionsareimpractical,andgradientelutionispreferred inreal-lifeproteinsseparations.Forlinearsalt-gradientinIEX,the

(3)

Fig.1. logk–Cplots:isocraticnon-LSSion-exchangeretentioncomparedwithLSSmodelwithz=1and1k10(A)andsometheoreticallogk–Cplotsassumingseveralz values(B).

Fig.1AwasadaptedfromRef[30],withpermission.

saltconcentrationvarieswithtimeduringthegradient,therefore Eq.(1)canberewrittenas:

log k=logK−zlog

C0+C tg

(2) whereC0isthesaltconcentrationatthebeginningofthegradient (initialmobilephasecomposition)andCisthechangeinthesalt concentrationduringthegradient.

InanalogywithRPLC,thefollowinggeneralequationcanbe writtenforsalt-gradientbasedIEXseparationsinthegradientelu- tionmode[31]:

k∗= tg

1.15[t0|z|log(Cf/C0)] (3)

wherek*isthemedianvalueofkduringgradientelutionwhenthe bandhasreachedthecolumnmid-point,t0isthecolumndeadtime andCfistheconcentrationofthecounter-ionattheendofthegradi- entprogram.PleasenotethatbothRPLCandIEXseparationsvary withgradientconditions inasimilarfashion.However,because of thedifferencesin thedependence of k onthemobile phase compositionCinIEX(log–logrelationship)versusRPLC(log–linear relationship),theLSSmodelistheoreticallynotapplicableforIEX.

Nevertheless,asshowninFig.1,thehigherthez,thelowerthe deviationfromnon-linearityis.Itwascurrentlyshown,thatLSS approachcanbeappliedforlargeproteins(mAbs)possessingan importantnumberofcharges[32].

2.2. pH-gradientbasedseparations

Ion-exchange chromatofocusing represents a useful alterna- tivetolinearsalt-gradientelutionIEX,inparticularforseparating proteinisoformswithminordifferences intheisoelectric point (pI).Chromatofocusingisperformedonanion-exchangecolumn employingapHgradientthatcanbegeneratedinternallywithin thecolumn[33,34]orbyexternalmixingofahigh-pHandalow-pH bufferusingagradientpumpsystem[35–37].Highlylinear,con- trollable,andwide-rangepHgradientscanbegenerated[37–40].

Thenumberofapplicationsreportedattheanalyticalscaleis large,butthenumberofpublicationsdealingwiththemathemat- icalmodelingoflinearpHgradientelutioninIEXisratherlimited [9].TodescribetheelutionbehaviorofproteinsinlinearpHgra- dientIEX,apHdependenceparameterhastobeincorporatedinto theion-exchangemodel.

InpH-gradientmode,theproteinsnetchargeismodifiedduring thepHgradient,due toprotonation–deprotonationofthefunc- tionalgroups.InCEX,theproteinisexpectedtoeluteat,orclose toitspI.Accordingtotheory,whenapplyingpH-gradientelution

modeandlowionicstrengthmobilephase,thechromatographic bandsshouldbefocusedinnarrowerpeaksenablinghigherreso- lutioncomparedtoapH-gradientperformedathighionicstrength.

ThewidthofaproteinpeakalongalinearpH-gradientexpressed inpHunitscanbewrittenasfollows[33,34,40]:

(pH)2≈D(dpH/dV)

ϕ(dZ/dpH) (4)

whereDisthediffusioncoefficientoftheanalyte,dpH/dVisthegra- dientslope,ϕistheDonnanpotentialanddZ/dpHisthechangein proteinnetchargealongthepHgradient.SincetheDonnanpoten- tialdependsontheionicstrength,apeakfocusingeffectisexpected atlowerionic strength.Inagreementwiththisexpectation, pH gradientsatlowionicstrengthshowedbetterresolutionformAb variantscomparedtopHgradientsperformedathighionicstrength [40].

TheappliedpHrangeclearlydeterminestheproteinsthatcan possiblybeeluted.Retentiontimesandpeakwidthsdependonthe gradientsteepness,asbotharefunctionofdZ/dpH.

Theeffectofgradientsteepness(gradienttime)ontheretention oflargeproteins(intactmAbsandtheirvariants)wasrecentlystud- iedandshowedanLSS-likelinearbehavior[41].Thedependence ofapparentretentionfactor(kapp)ongradientsteepness(time)in pH-gradientbasedIEXseparationisshowninFig.2.

InpH-gradientIEXmode,theuseofamixtureofaminebuffer- ingspeciesinthehigh-pHrangeandamixtureofweakacidsin thelow-pHrangeisquitecommon[38,39,42].Insuchasystem,

Fig.2.Thedependenceofapparentretentionfactor(kapp)ongradientsteepness (time)inpHgradientbasedIEXseparation.TheappliedpHrangewasfrompH=5.6 topH=10.2at0.6mL/minflow-rateona100mm×4.6mmCEXcolumn.

AdaptedfromRef[40],withpermission.

(4)

maintaininglinearityofthepHgradientslopemaybesomewhat difficult.It wasshownthatanappropriatemixtureofTrisbase, piperazineandimidazoleprovidesalinearpHgradientfrompH 6–9.5[8].Triethylamineanddiethylaminebasedbuffersystems alsoofferedlinearpHgradientinthepHrangeof7.5–10.0[40].

Formassspectrometric(MS)detection,5mMammoniumhydrox- idein20%methanolyieldedareasonablepHgradientinalimited pHrange(between9.5and10.5)[40].Zhangetal.[43]applieda salt-mediatedimprovedpHgradientthatwasusedinawidepH range(between5and10.5).Intheirstudy,a0.25mM/minsodium- chloridegradientwasperformedtogetherwiththepHgradient.

OneofthebenefitsofpH-gradientbasedIEXisthatthesaltcon- centrationcanbekeptlow,yieldinglessbufferinterferences(e.g.

on-lineoroff-linetwo-dimensionalLC).Inaddition,pH-gradient basedseparationusinga CEXcolumnwasfoundtobea multi- productchargesensitiveseparationmethodforlargetherapeutic proteins(mAbs)[43,44].

3. MethoddevelopmentinIEXchromatography

Positively charged molecules can be separated using CEX columns,typicallypackedwith3–10␮mparticlesandcontaining negativelychargedacidicfunctionalgroups.Thesecolumnsbind cationicspecies suchasprotonatedbasesthroughionicinterac- tion.Inanion-exchange(AEX)mode,thestationaryphasecarries positivelychargedbasicfunctionalgroupsthatarecapableofbind- inganions(e.g.ionizedcarboxylicacids).Themobilephaseusually containsabuffertomaintainstablepHandvaryingthesaltcon- centration(counter-ion)tocontroltheretentionofsampleions.

Thechargeofthecounter-ionhasthesamesignasthesampleions, thereforeitcanbeusedtocontroltheretentionofprotonatedbases inCEXorionizedacidsinAEX.

Thestrengthoftheinteractionisdeterminedbythenumber andlocationofthechargesontheanalyzedmoleculesandonthe functionalgroups.Byincreasingthesaltconcentration,thesamples withtheweakestionicinteractionsstarttoelutefromthecolumn first.Moleculeshavingastrongerionicinteractionrequireahigher saltconcentrationandelutelaterinthegradient.

InthepH-gradientmode,theionicstrengthofthemobilephase iskeptlowandconstant,whilethepHisvariedthankstoalinear gradient.

3.1. Theimpactofstationaryphase

Regardingthestationaryphase,therearetwomainaspects:(1) thestrengthofinteractionandassociatedretention(strongorweak ion-exchanger)andthe(2)achievablepeakwidths(efficiency).

Bothcation and anionexchangerscanbeclassifiedaseither weakorstrongexchangers.Weakcationexchangersarecomprised ofaweakacidthatgraduallylosesitschargeasthepHdecreases (e.g.carboxymethylgroups),whilestrongcationexchangersare comprisedofastrongacidthatisabletosustainitschargeovera widepHrange(e.g.sulfopropylgroups).Ontheotherhand,strong anion exchangers contain quaternary amine functional groups, whileweakanionexchangerpossessesdiethylaminoethane(DEAE) groups.Stronganionexchangersremainunderionizedforminthe pHrangebelow12,whilestrongcationexchangersareionizedat pH>2.

Asaruleofthumb,itispreferredtobeginthemethoddevelop- mentwithastrongexchangertoenableworkingoverabroadpH range.Strongexchangersarealsousefulifthemaximumresolution occursatanextremepH.(However,silicabasedion-exchangerscan beoperatedonlyinarestrictedpHrange.Incontrast,polymeric ion-exchangerscanbeusedinawidepHrange.)

Inthecaseofproteins,thecationexchangemodeiswellsuited, butastronganionexchangercanbeappliedtobindtheproteins iftheirpIisbelowpH7.Weakexchangerscanonlybeusefulina secondinstance,iftheselectivityofstrongionexchangersisunsat- isfactory.However,itisimportanttokeepinmindthattheion exchangecapacityofweakionexchangersvarieswithpH.

CommerciallyavailableIEXcolumnsarebasedonsilicaorpoly- merparticles.Bothporousandnon-porousparticlesareavailable butforlargemoleculeswhichpossesslowdiffusivity,non-porous materialsareclearlypreferredtoavoidtheunwantedbandbroad- eningeffectsofthetransparticlemasstransferresistance(C-term of the van Deemter equation). Highly cross-linked non-porous poly(styrene–divinylbenzene) (PS/DVB) particles are most fre- quently used in protein separations due to their pH stability (2≤pH≤12).Thosematerialscannowwithstandpressuredrop ofuptoa500–600barandcanberoutinelyusedbeyond400bar.

Columnspackedwith10,5or3␮mnon-porousparticlesareoften used,butsub-2␮mmaterialsarealsoavailablesincerecently.On thosecolumnshighpeakcapacitycanbeattainedevenwithlarge biomolecules.Howeversomelimitationscanbeexpectedinterms ofloadingcapacityandretentionwhenapplyingthesenon-porous materials.Table1summarizesthemostpopularstate-of-the-art IEXcolumnsappliedfortheseparationofproteinchargevariants.

3.2. Theimpactofmobilephasecomposition

Inthesalt-gradientmode,themobilephasebufferpHmustbe betweenthepIofthechargedmolecule(e.g.therapeuticprotein) andthepKaofthechargedfunctionalgroupatthesurfaceofthe stationaryphase.InCEX,usingastrongcationexchangerwitha pKaof1.2,amoleculewithapI∼8(e.g.mAbs)maybeelutedwith amobilephasepHbufferof∼6.InAEX,amoleculewithapI∼6 mayberunwithamobilephasebufferatpH8whenthepKaofthe solidsupportisbeyond10.

IntheCEXmode,increasingthemobilephase bufferpHwill cause the molecule to become less protonated (less positively charged). Therefore,the proteinforms weaker ionicinteraction withthenegativelychargedstationaryphasegroups,whichresults inaretentiondecrease.Onthecontrary,decreasingthepHmani- festsinhigherretention.InAEXmode,–oppositely–decreasingthe mobilephasepHcausesthemoleculetobecomemoreprotonated (morepositivelyandlessnegativelycharged),thereforeadecrease inretentionisexpected.

ThemostoftenappliedpHrangeforproteinsIEXseparations isbetween5.5 and 7.0,however insomecaseslow pHaround 3.5isrequiredtoreachappropriateselectivityandretention.The most frequentlyused buffers for protein separations are 2-(N- morpholino)ethanesulfonicacid(MES),phosphateandcitrate.MES isusefulbetweenpH5.5and6.8(pKa∼6.15),phosphateisapplied forpHbetween6.7and7.6(pKa∼7.2),whilecitrateprovideshigh buffercapacityforpHbetween2.6and3.7(pKa∼3.1).Otheraddi- tivessuchasmalonicacid,aceticacidorformicacidhavealsobeen reportedforalimitednumberofapplications.Thebufferconcen- trationistypicallycomprisedbetween10and50mMandallowsa sufficientbuffercapacity.

AfterselectingthemobilephasepHandbuffer,thesalt-gradient hastobeoptimized.Typicallysodium-orpotassium-chlorideare usedforproteinscharacterization,usingasaltgradientfrom0to 0.2–0.5M.Theproteinsamplesareinjectedontothecolumnunder conditionswhereitissufficientlyretained.Then,agradientoflin- earlyincreasingsaltconcentrationisappliedtoelutethesample componentsfromthecolumn.Itisfinallyimportanttonoticethat thegradientsteepnesshasastrongimpactonretentionandselec- tivityandshouldthereforebesystematicallyoptimized.

InthepH-gradientmode,themaindifficultyistoperformlinear androbustpHgradients.Theuseofamixtureofaminebuffering

(5)

Table1

Propertiesofthemostpopularstate-of-the-artIEXcolumnsavailableforproteinseparations.

Columnname Chemistry Particle

size/macropore size

Max temperature (C)

pHrange Maxpressure (bar)

Monoliths Proswift (Thermo)

SAX-1S Stronganionexchange

(quaternaryamine) Information notavailable

70 2–12

WAX-1S Weakanionexchange 70 (tertiaryamine)

60 WCX-1S Weakcationexchange

(carboxylicacid)

60 SCX-1S Strongcationexchange

(polymethacrylate)

60

Packed

TSKgel(Tosoh)

SCX Strongcationexchange (sulfonicacid)

5 45 2–14

SuperQ-5PW Strongcationexchange 50 (trimethylamino)

10 2–12

SP-STAT Strongcationexchange (sulfopropyl)

7,10 3–10

Q-STAT Stronganionexchange (quaternary ammonium)

7,10 3–10

BioMab(Agilent) Weakcationexchange (carboxylate)

1.7 3 5 10

80 2–12 270

410 550 680 Antibodix(Supelco,Sepax) Weakcationexchange

(carboxylate)

1.7 3 5 10

80 2–12 270

410 550 680 Protein-PakHi

ResIEX (Waters)

SP Strongcationexchange (sulfopropyl)

7

60

3–10 100

CM Weakcationexchange

(carboxymethyl)

7 100

Q Stronganionexchange

(quaternary ammonium)

5 150

MAbPacSCX-10(Thermo) Strongcationexchange (sulfonicacid)

3 5 10

60 2–12 480

480 200 Bio-Pro(YMC) QA

QA-F

Stronganionexchange (quaternary ammonium)

5 60 2–12 30

120 SP

SP-F

Strongcationexchange (sulfopropyl)

30 120 Poly(PolyLC) CATA Weakcationexchange

(polyasparticacid) 5 Ambient Information

notavailable

Information notavailable WAXLP Weakanionexchange

(polyethyleneimine)

speciesinthehigh-pHrangeandamixtureofweakacidsinthe low-pHrangeisquitecommon[38,39,42].Aspreviouslydiscussed, themostoftenusedbuffercomponentsareTrisbase,piperazine, imidazole,triethylamine, diethylamineand ammoniumhydrox- ide[8,40,43].Finally,a0.25mM/minsodium-chloridegradientwas successfullyperformedconcomitantlywithapH-gradientforthe characterizationofmAbspossessingisoelectricpoints(pI)between 6.2and9.4,tohighlighttheinterestofpHgradientseparationover saltgradients[43].

3.3. TheimpactofsamplepI

Thechargeofproteinsdependsonthenumberandtypeofion- izableaminoacidgroups.Lysine,arginineandhistidineresidues haveapositivelychargedsidechaingroupwhenionized,whereas glutamicacidand asparticacidresiduesare negativelycharged whenionized.EachionizablesidechaingroupshasitsownpKa. Therefore,theoverallnumberofchargesonaparticularproteinat agivenpHdependsonthenumberandtypeofionizableamino acidgroups.ProteinstendtohavedifferentchargesatagivenpH and socan befractionatedonthebasisof theirnetand acces- siblecharges.EachproteinhasapIvalue,which correspondsto

thepHvaluewhereithasnonetcharge.Then,whenpHisequal topI,theproteinwillnotbindtotheion-exchangeresin.Below this pH value,the protein hasa net positive charge and binds toacationexchanger,whileabovethispH,ithasanetnegative chargeandbindstoananionexchanger.Inpractice,proteinsare stable and functionallyactive withina fairlynarrow pHrange, sothechoiceofion exchanger isoftendictatedby thepHsta- bilityofthedesiredprotein.IftheproteinisstableatpHvalues belowitspI,acationexchangershouldbeusedifitisstableat pHvaluesaboveitspI,thenananionexchangerphasehastobe chosen.

ThepIoftheproteinalsodeterminesthemobilephasepH.ThepI oftherapeuticproteinsdistributebetween3.6and11.0,andamong them,mAbspossesspIvaluesbetween6and10.Forsalt-gradient basedCEXmode,themobilephasepHshouldpreferablybeatleast 1–2unitsbelowthepIofthesample,tomaintainappropriatereten- tion.InAEXmode–oppositely–thepHhastobesetatleast1–2 unitsabovethepIoftheprotein.

InthepHgradientmode–performedonCEXcolumns–the startingpHshouldbebelow thepIof theless retainedprotein, whilethefinalpHhastobesomewhathigherthanthepIofthe mostretainedprotein.

(6)

3.4. Theimpactoftemperature

Theeffectoftemperatureonretentionfactor(k)isgenerally expressedinliquidchromatographywiththeGibbsfreeenergyor van’tHoffequation:

log k=−H RT +S

R +logˇ (5)

where H representstheenthalpy changeassociated withthe transfer of the solute between phases, S the corresponding entropychange,Rthemolargasconstant,Ttheabsolutetemper- atureandˇthephaseratioofthecolumn.Whenlog(k)isplotted against1/T,theenthalpyisgivenbytheslopeofthecurve.Withreg- ularcompounds,theseplotsgenerallyfollowalinearrelationship.

However,non-lineardependenceoflog(k)versus1/Toverawide rangeoftemperaturewasnoticedbydifferentauthorsusingsilica- basedaswellasnonsilica-basedstationaryphases[45].Theeffect oftemperatureontheretentionofpartiallyionizedcompounds whichmayexistintwoforms(i.e.molecularandionizedforms)can alsobedescribedwithEq.(5).However,bothenthalpyandentropy areexpectedtobedifferentforthetwoformsandasaresult,both HandScanvarywithtemperaturewhenbothformsarepresent toa significantextent[45].Withlargebiomolecules, theeffect oftemperatureonretentionbecomesmorecomplex.Depending onthestabilityofthesecondarystructure,themoleculesunfold tovariousextents andhenceinteractwiththestationaryphase withvariousstrengths[46]. Duetothedifferentconformation- dependentresponses of proteinsat elevated temperatures, the changeinretentioncanbedifficulttoassess[47,48].InRPLCsepa- rationofproteins,temperatureisausefulparameterforadjusting selectivity.InIEXseparationsofproteins,theimpactoftempera- turewasfoundtobeespeciallyimportantforpeakcapacity(and thereforeforresolution),buthasa limitedimpactonselectivity [32,41].Itseemedthatinbothsalt-andpH-gradientbasedsepa- rations,thetemperaturedoesnotmodifyseverelyselectivity,but impacttheachievablepeakcapacity.Therefore,insomecases,tem- peratureoptimizationcouldalsobeofimportanceduringtheIEX methoddevelopmentprocedure.

3.5. Optimizationprocedure

In contrastwithRPLC, the methoddevelopment inIEX was mostly basedon trialand erroror “one factor at time”(OFAT) approaches.However,therearesomeguidelinesavailablefromcol- umnproviders,whichexplainthebasicrulesformethodscreening (e.g.columnselection,bufferselection...).

Baietal.showedthedependenceofretentionandselectivityof IgGantibodiesonmobilephasepH,stationaryphasetypeandsalt- gradientsteepnessinCEXmode[49].Theystudiedtheeffectof thethreevariablesindependently,andfoundthatmobilephasepH wasthemostimportantparameterinCEXseparationsofproteins.

Ithadthebiggestimpactontheseparationandthereforeshould bedeterminedfirst[49].Itwasalsofoundthat(i)peakwidthof IgG-smostlydependsonthetypeofthestationaryphaseand(ii) resolutioncanbetunedbychangingthegradientsteepness.Fig.3 showstheimpactofsalt-gradientsteepnessontheseparationof IgGproteins.

Themobilephaselinearvelocityalsohasastronginfluenceon theseparationqualityoflargeproteins[50,51].Indeed,thelon- gitudinaldiffusionisnegligiblewithlargemolecules,whileband broadeningismostlydeterminedbythemasstransferresistance.

Therefore,lowflowrateisalwayspreferredforhighresolutionsep- arations,butacompromisehastobefoundbetweenresolutionand analysistime.

Fig.3. Theeffectofsalt-gradientslopeontheretention,selectivityandpeakwidth inCEXseparation.Sample:IgG1,mobilephase:40mMphosphatepH6.5,applying a0–0.4MNaClgradient.

AdaptedfromRef[49],withpermission.

Theinfluenceofsalttypecanalsobeimportant.Itseffecton theretentionofbovineserumalbuminwasreportedbyAl-Jibbouri [52].

Computerassistedmethoddevelopmentandoptimizationin RPLCproteinseparationsisquitecommon[53,54]andwasalso recently appliedin ion-exchange mode. Because of the system non-linearity,findingtheoptimumforprocessoptimizationischal- lenging[55].Thiemoetal.developedasoftwarecalledChromX fortheestimationofparameters,chromatogramsimulation,and processoptimization[55].ChromXprovidesnumericaltoolsfor solving varioustypes of chromatography models,includingthe modelcombinationofTransportDispersiveModel(TDM)andSMA.

SimilarlytoRPLCmethoddevelopment,anon-LSSand LSStype computerassistedmethoddevelopmentprocedurewasrecently reportedforbothsalt-andpH-gradientmodesinagreementwith QualitybyDesign(QbD)concept[32,41].

Forthesalt-gradientbasedproteinseparation,itseemedthat temperaturewasnotarelevantparameterfortuningselectivityand shouldbekeptat30C,toachievehighresolvingpower(elevated peakcapacity) [32].Becausetherelationship betweenapparent retentionfactorsandgradienttime(slope)canbedescribedwitha linearfunction,onlytwoinitialgradientrunsofdifferentslopes are required for optimizing the salt gradient program. For pH dependence,asecondorderpolynomialmodel(i.e.basedonthree initialruns)ispreferredtodescribekversuspHdependence.When combiningtheexperimentsina designofexperiments(DoE),it appearedthatmethodoptimizationcanbeperformedrapidly,in anautomatedwaythankstoaHPLCmodelingsoftware,usingtwo gradienttimesandthreemobilephasepH(e.g.10and30mingra- dientona100mmlongstandardborecolumnatpH=5.6,6.0and 6.4).Suchaprocedurecanbeappliedroutinelyandthetimespent formethoddevelopmentwouldbeonlyaround9h.Therelative errorinretentiontimepredictionwaslowerthan1%,makingthis approach highlyaccurate[32]. Fig.4Ashows a generic DoEfor

(7)

Fig.4. Designofexperiments(A)andresolutionmap(B)fortheoptimizationofsalt-gradientbasedCEXseparationofmAbs(tg–pHmodel).Column:YMCBioProSP-F (100mm×4.6mm).Mobilephase“A”10mMMES,“B”10mMMES+1MNaCl.Flowrate:0.6mL/min,gradient:0–20%B,temperature:30C.Gradienttimes:tg1=10min, tg2=30min,pH1=5.6,pH2=6.0,pH3=6.4.Ontheresolutionmap,red-orangecolorsshowthehighestresolutionwhilethedark-blueareasindicatetheco-elutionofpeaks.

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) AdaptedfromRef[31],withpermission.

themethoddevelopmentofsalt-gradientbasedCEXseparationof mAbs(possessingawiderangeofpIbetween6.7and9.1),while Fig.4Brepresentstheobtainedresolutionmapshowingthecriti- calresolutionofthepeakstobeseparatedasafunctionofmethod parameters.

InthepH-gradientmode,itwasfoundthattheretentionoflarge proteinscanbeaccuratelymodeledasafunctionofgradientsteep- nessand mobilephasetemperature[41].Becausetheretention modelswerealwayslinear,onlyfourinitialexperiments(2gradi- entstimesat2temperatures)wererequiredtomodelthebehavior inCEXpH-gradient.Then,only∼6hwererequiredtofindoutthe optimalconditionsona100×4.6mmcolumn[41].

4. ApplicationofIEXforproteinseparations

Today,IEXismainlyappliedtoseparateproteinchargevariants andisoforms.IEXmaybeusefulatdifferentlevelsofproteinanaly- sis,including(i)theanalysisofintactproteins(topdownapproach), (ii)theanalysisofpartlydigestedlargeproteinfragments(mid- dledownapproach)and(iii)thecharacterizationoftrypticdigests (peptidemappingorbottomupapproach).

Inthecaseoftherapeuticproteinscharacterization,IEXismostly usedtoseparateC-terminallysinevariants/truncation,N-terminal glutamine-pyroglutamatevariants,deamidatedforms(asparagine formsasuccinimideintermediatethatresultsintwoproductsofits hydrolysis,eitheraspartateorisoaspartate),glycoformsespecially sialicacidvariants(usuallyattachedatterminalpositionsofgly- canmolecules).Inaddition,IEXalsoseparatestheproductsofthe PEGylationreactionaccordingtotheextentofconjugation,andpro- videstheseparationfortheisomericformsofPEGylatedproteins (whichdifferfromoneanotherbythelocationoftheconjugation sitewithinthepolypeptidechain)[55,56].

4.1. Characterizationofchargevariantsoftherapeuticproteins Peptide mapping is commonly used todemonstrate protein identity.Inthelastphasesofpharmaceuticaldevelopmentandin qualityassurance/control(QA/QC),peptidemappingoftheprotein drugsservesasaprimaryproteinQCmethod.Althoughreversed- phase separation is the typical choice for separating peptides, high-resolution ion-exchangechromatography is an alternative methodthatprovidesadditionalinformationandadifferentselec- tivity [57]. Asexample,a strong CEXcolumn wasused forthe peptidemappingofcytochromeCtrypticdigest[58]andImamura etal.appliedCEXforthepeptidemappingofhemoglobintoiden- tifyitschargevariants[59].IEXwaswidelyusedinthepastfor

peptidemapping,buttodayitislesspopularandismostlyreplaced byRPLC,duetotheinherentincompatibilityofIEXwithMSdetec- tion.

IEXisdefinitelyoneofthemostpowerfultechniquestosepa- ratedeamidatedformsofnativeproteins.Deamidationisasource ofnonenzymaticproteindegradation,andshouldbestrictlymon- itored during the course of formulation development [60]. As example,CEXwassuccessfullyappliedtoseparatethedeamidated analogsofrecombinantgranulocytecolony-stimulatingfactor(G- CSF, filgrastim),asillustratedin Fig.5.Weitzhandler et al.[61]

presentedthebaselineseparationofcytochromeCvariants(bovine, horse,rabbit)and twodeamidation productsofribonucleaseA, suchastheAsp67andisoAsp67forms.Gotteetal.[62]appliedCEX fortheseparationofribonucleaseBdeamidatedforms.Abzalimov etal.[55]appliedthecombinationofIEXandtop-downtandemMS forthestructuralcharacterizationofprotein–polymerconjugates andtoassessheterogeneityofasmallPEGylatedproteinandmap- pingconjugationsites.Finally,Ganzleretal.showedtheseparation ofoxidizedanddeamidatedPEGylated-G-CSFusingCEX[63].

4.2. SeparationofmAbvariants

MAbsareaspecificclassoftherapeuticproteinsandgainedsig- nificantinterestoverthepastfewyears.Then,adedicatedsection wasdevotedtotheirIEXbasedseparationandcharacterization.

Fig.5. Ion-exchangeHPLCofrhG-CSFandthedeamidatedanalogs.(A)Gln11,20,67

Gluanalog,Gln67Gluanalog,f-metrhG-CSF,Gln11,20Gluanalog,andmet rhG-CSF(fromleft);(B)Gln12,21Gluanalog;(C)Gln67Gluanalog;(D)Gln11,20,67

Gluanalog.

AdaptedfromRef[60],withpermission.

(8)

ThemAbsareglycoproteinsthatbelongtotheimmunoglobulin (Ig)superfamily,whichcanbedividedintofiveisotypes:IgA,IgD, IgE,IgG,andIgM.BecauseonlyIgGsareproducedfortherapeutic purposesthroughgeneticengineering,thetermsrecombinantmAb andIgGareoftenusedinterchangeably.IgGsarelargetetrameric glycoproteinsmeasuringapproximately 150kDa that are struc- turallycomposedoffourpolypeptidechains:twoidenticalheavy chains(HC,∼50kDa)andtwoidenticallightchains(LC,∼25kDa) connectedthroughseveralinter-andintra-chaindisulfidebonds attheirhingeregion[64].Eachchainiscomposedofstructural domainsaccordingtotheirsizeandfunction,givingtheconstant, variable,andhypervariableregions.DifferencesbetweentheHC constantdomainsareresponsiblefortheIgGsub-classes(i.e.,IgG1, IgG2,IgG3,andIgG4).

Functionally,mAbs consist of two regions, thecrystallizable fraction (Fc) and the antigen-binding fraction (Fab) [65]. Fc (∼50kDa)iscomposedoftwo truncatedHCs andisresponsible fortheeffectorfunctions,suchascomplementfixationandrecep- torbinding.TheFcsequencealsohasaconservedN-glycosylation site,whichisgenerallyoccupiedbyabiantennaryoligosaccharide accountingforsignificanteffectsontheactivityandefficacyofthe IgGs[66].TheFabdomain(∼50kDa)iscomposedoftheLCandthe remainingportionoftheHC.Thisdomainisprimarilyinvolvedin antigenbinding[65].

There are several common modifications leading to anti- body charge variants (or isoforms) on thepeptide chains(e.g., deamidation, C-terminal lysine truncation, N-terminal pyroglu- tamation, methionine oxidation, or glycosylation variants) and sizevariantsonthepeptide chains(e.g.,aggregationorincom- pleteformation of disulfidebridges). Thecombination of these micro-heterogeneity sources in the peptidechains significantly increasestheoverallmicro-heterogeneityofanentireIgG.There- fore,thecompletecharacterization ofanintactmAb isdifficult to achieve. In this context, various enzymes, such as pepsin, papain, Lys-C or IdeS are often used toobtain mAb fragments andfacilitatetheinvestigationofitsmicro-heterogeneity.Papain isprimarilyusedtocleaveIgGsintothree fragmentsattheHC hingeregiontocreateoneFcandtwoidenticalFabfragmentsof

∼50kDaeach,whilepepsinandIdeSgeneratesF(ab)2fragments of∼100kDa.Thesetypesofdigestionarecalledlimitedproteolysis (LP).

Moorhouseetal.[56]wasamongthefirstonestodescribethe potentialofIEX formAbcharacterization. Papain-digestedmAb samplesweresuccessfullyseparatedandthecorrespondingfrag- ments were identified thanks to MS detection. The C-terminal lysine variability of the Fc and the N-terminal glutamine- pyroglutamatevariabilityoftheFabwereobserved.Arecentstudy demonstratedthesuitabilityofIEXforstudyingcomplexdegrada- tionprocessesinvolvingvariousIgG1molecules[67].Assignment ofcovalentdegradationstospecificregionsofthemAbswasfacil- itatedusingLys-CandpapaintogenerateFabandFcfragments.

Thismethodwasparticularlyusefulforcharacterizingproteinvari- ants formedin the presenceof salts under accelerated storage conditions.Theusefulnessofthisassaywasfurtherillustratedby characterizationof light-induced degradationsof mAbformula- tions.AnotherstudypresentedtheimportanceofIEXintheanalysis ofoxidizedmAbsamples[68].BothCEXandAEXapproacheswere usedandfoundsuitablefortheseparationofthemorebasicoxi- dizedvariantsoftheintactmAbs.Fig.6displaysmultipleacidicand basicisoformsobtainedinAEXmode,typicalofrecombinantmAb drugproducts.Vlasaketal.[69]combinedCEX,papaindigestion andapanelofMStechniquestoidentifyasparaginedeamidationin thelightchainregionofahumanizedIgG1mAb.Anotherstudyalso presentedandprovedtheimportanceofCEX(salt-gradientbased) inmAbcharacterizationandshowedtheseparationofdifferent isoforms[70].

Fig.6.CEXofXOMA3ABantibodies.ThethreeXOMA3ABreferenceantibodies(Ab- A,Ab-B,andAb-C)displaymultipleacidicandbasicisoformstypicalofrecombinant monoclonalantibodydrugproducts.Theforcedoxidizedsamplesofeachofthese antibodiesexhibitbroadpeakprofilesindicatingunderlyingstructuralheterogene- ity.

AdaptedfromRef[68],withpermission.

A pH-gradient based separation using CEX chromatography was evaluated in a recent study [8]. The method was shown toberobust formAbs and suitable for itsintended purposeof chargeheterogeneityanalysis.Simplemixturesofdefinedbuffer componentswereusedtogenerate thepHgradientsthatsepa- ratedcloselyrelatedantibodyspecies.Validationcharacteristics, suchas precision,linearity and robustnesswere demonstrated.

Thestability-indicatingcapabilityofthemethodwasdetermined using thermally stressed antibody samples [8]. Another recent studyshowedtheapplicabilityofashallowpHgradientthrough CEX monolithic column and demonstrated relatively high res- olution separation of mAb charge variants in three different biopharmaceuticals[40].Zhangetal.[43]presentedamultiprod- uctchargesensitiveseparation methodfor 16mAbs possessing pI-s between 6.2 and 9.4. This salt-mediated pH-gradient IEX method was demonstrated to be robust under various chro- matographicconditionsandcapableofassessingmanufacturing consistency and monitoring degradation of mAbs. As an illus- tration, Fig. 7 shows the charge heterogeneity profile of 16 mAbs.

High-performance cation-exchange chromatofocusing meth- odsweredevelopedforthevariantsofneutraltoacidicantibodies, and base-line separation of a variety of antibody variants wasachieved [71]. Thehighresolution achieved indicated that the methods developed were useful alternatives to isoelectric focusingforcharacterizingthechargeheterogeneityofmAbsvari- ants.

ThefastandefficientseparationofcetuximabFabandFcvari- ants were recently reported in both salt and pH-gradient CEX mode[32,41].Fourteen charge variantswere separatedin only 17min.

AsystematicstudycomparedthepossibilitiesofIEXmodesand showedthattheseapproachesarecost-andtimesavingalterna- tivetoclassicalproteinanalysismethods(e.g.gelelectrophoresis).

Theauthorspredictedthatinthenextstep,furtherbiologicals,e.g.

antibodies,willbeanalyzedandquantifiedmostlywithIEXand RPLCinthenativeaswellasinitsdenaturedform,respectively [72].AnotherstudyalsofoundbenefitsofIEXcomparedtoelec- trophoreticmethodssuchasthepossibilityofbeingautomatedand betterquantitativeresults[73].

BesidestheseparationofmAbs’chargevariants,pH-gradient basedIEXchromatographycanalsobeappliedtoevaluatethepIof intactmAbs[74].

BesidesrecombinantmAbs,IEXseemstobeapromisingtech- niqueforthecharacterizationofotherantibody-relatedproducts suchasbispecificantibodies,recombinantpolyclonalantibodies (pAbs)andFc-fusionproteins[75–80].

(9)

Fig.7.Thechargeheterogeneityprofilesof16mAbswithpIrangingfrom6.2to9.4obtainedwiththesalt-mediatedpH-gradientbasedIEXmethod.

AdaptedfromRef[43],withpermission.

4.3. Analysisofantibody–drugconjugates

Antibody–drug conjugates(ADCs) or immunoconjugates, are becoming another increasingly important class of therapeutic agents undergoing clinicalinvestigations for treatmentof vari- ouscancer[81].ADCsareproducedthroughthechemicallinkage ofapotentsmallmoleculecytotoxin(drug)toa mAbandhave morecomplexandheterogeneousstructuresthanthecorrespond- ingantibodies[82].ADCsareconstructedfromthreecomponents:

amAbthatisspecifictoatumorantigen,ahighlypotentcyto- toxicagentandalinkerspeciesthatenablescovalentattachment ofthecytotoxintothemAbthrougheithertheproteinorthegly- can.Theprimarysitesusedforprotein-directedconjugationare theaminogroupsoflysineresiduesorthesulfhydrylgroupsofthe inter-chaincysteineresidues[82].Dependingonthecharacteristics ofthedrug,thelinkerandtheconjugationsite(i.e.,lysine,inter- chainsulfhydryl,carbohydrate),themethodscommonlyusedto characterizetheparentmAbmaynotbeapplicabletotheADCor maygivesignificantlydifferentinformation.

Attachmentof anunchargedlinker anddrug throughlysine residuesdecreasesthenetpositivechargebyoneforeachbound drug-linker.Inthiscase,separationbasedoncharge,suchasusing IEXoriso-electricfocusing(IEF),resultsinprofilesthatcharacterize thedrugload,ratherthanprovinginformationabouttheunderly- ingmAb[83].Despitetheutilityofthesemethods,thereareonlya fewpublishedreportsofcharge-basedassaysappliedtoADCs.

Forgemtuzumabozogamicin,theIEXprofileshowedthatmost ofthecalicheamicinwasonapproximatelyhalfof theantibody while45–65%oftheproductwasalowconjugatedfraction,essen- tiallyunconjugatedantibody[83,84].

Thiomabsareantibodieswithanengineeredunpairedcysteine residueoneachheavychainthatcanbeusedasintermediatesto generateADCs[85].Multiplechargevariantpeakswereobserved duringCEXanalysisofseveraldifferentthiomabs.Thischargehet- erogeneitywasduetocysteinylationand/orglutathionylationat

theengineered and unpairedcysteinesthrough disulfidebonds formedduringthecellcultureprocess[85].

Ina recentstudy,theeffectsof chemicalconjugationonthe electrostatic properties of Fc-conjugates were estimated [86].

Tominimizetheeffectsofpost-translational modifications(e.g., deamidation),asingleFcchargevariantwasisolatedpriortocon- jugationofafluorescentprobe,tothesidechainsoflysineresidues.

TheresultingFc-conjugateswereassessedbyavarietyofanalyti- caltechniques,includingIEX,todeterminetheirchargeproperties [86].

5. PerspectivesinIEX 5.1. Decreasingtheparticlesize

TheUltra-HighPressureLiquidChromatography(UHPLC)tech- nologywasoriginallydevelopedforRPLCapplications,butitisnow alsoavailableforSEC[87]andIEXoperationsduetotheavailability of1.7and3␮mnon-porousparticles(PS/DVB)[88,89].

Applying1.7and3␮mparticlesmayopenanewlevelofper- formanceinIEX,butithastobekeptinmindthatonveryfine particles,theseparationqualityisimprovedatthecostofpressure (andtemperaturegradientsattributedtofrictionalheatingeffects).

Therefore,thereisariskofcreatingon-columndegradationwhen analyzingtemperatureorpressuresensitiveproteinsunderhigh pressure(i.e.,>300bar)conditions,asreportedforRPLCandSEC [90,91].Theotherdisadvantageofsub-2␮mIEXseparationsisthat currentlythereareonlyaverylimitednumberofcommercially availablestationaryphases.

Columnspackedwiththeseveryfineparticlesarestableupto 600barthatcouldbebeneficialforbothfastandhighresolution separations.Onshortcolumns,highthroughputseparationscan beachievedbyapplyinghighflowrates.Ontheotherhand,the separationpowercanbeimprovedbyincreasingthecolumnlength (e.g.couplingcolumnsinseries).Withrelativelylongcolumns(e.g.

(10)

Fig.8. Separationofastandardproteinmixtureona0.32mmID×25cmstrong anionexchangercapillarycolumnusingpH-gradientmode.Theelutionorderofthe proteins:cytochromeC(1),myoglobinbasicband(2),myoglobinacidicband(3), conalbumin(4),and␤-lactoglobulinB(5)andA(6).

AdaptedfromRef[43],withpermission.

20–40cm)employedatlowflowrates,thepeakcapacitycanbe improvedatthecostofanalysistime.

5.2. CapillaryIEX

Toimprovethesensitivityofproteinvariantsdeterminationor handleverysmallamountsofsamples,theuseofcapillarycolumns inIEXappearstobeapromisingapproach.However,severalkey modificationstoacommerciallyavailableliquidchromatography systemarerequiredtoreducethesystemvolumeandassociated extra-columnbandbroadening,whichcouldbecriticalforcapil- laryIEXoperation.Untilnow,thenumberofapplicationsinthis fieldisratherlimited,buta0.32mmI.D.IEXcapillarycolumnwas successfullyappliedinpH-gradientmodeasthefirstdimensionin a2Dseparationofstandardproteinmixtures[92].Fig.8showsthe

chromatogramobservedwitha0.32mmID×25cmstronganion exchangercapillarycolumnusingpH-gradientmode.

5.3. Monolithiccolumns

Monolithic stationary phases are promising materials to improvechromatographicperformance[93,94].

A monolithic column can be defined as a continuous solid matrix, porous in nature and containing interconnected flow paths. Various types of inorganic (e.g. silica, zirconia, car- bon,titania)andorganic(e.g.polymethacrylate,polyacrylamide, poly(styrene-divinylbenzene...)monoliths can beprepared but onlypolymethacrylate,poly(styrene–divinylbenzene),andsilica- based monoliths are commercially available (mostly for RPLC separations).

Thelargeflow-throughchannelsandessentiallynonporoussur- facessupport fast masstransfer, especially for largemolecules (possessingslowdiffusion),resultinginhighresolutionorfastsep- arations.Thesechannelsalsoprovidehighpermeability,allowing theuseofhighlinearvelocities.

Monolithsaregenerallyclassifiedasorganicandsilica-based monoliths. The organic monoliths are usually applied for the separationsofbiomolecules,includingoligonucleotides,peptides, and intact proteinssuch as protein isoforms [95,96]. They are better accepted for protein separations than inorganic mono- liths because of their biocompatibility. However, low surface areaandbinding capacity,swelling and shrinkagein somesol- vents, as well as deficiency in mechanical stability are their major drawbacks. Contrarily, silica-based monoliths are well adapted to the analysis of small molecules. They consist of a singlerodof silicawithtwo typesofpores:macropores,which enablelowflowresistance,andmesopores,whichensureenough surface area to reach high separation efficiency and loadabil- ity.

Currently,only5cmlongorganicmonolithscontainingstrong andweakexchangersareavailableineither4.6or1.0mmIDformat [97].

Fig.9. The2DproteinexpressionmapofE.colibacteriallysate.ThexaxisisinpIunitfrompH4.0to7.0(measuredbypH-gradientIEX)andtheyaxisdisplaysincreasing hydrophobicity(%B)(measuredbyRPLC).

AdaptedfromRef[98],withpermission.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

Abstract: An objective measure for image quality assessment based on a direct comparison of visual gradient information in the test and reference images is proposed.. A

The selec- tion of study sites located along a Zn contamination gradient made it possible to put forth the following hypotheses: (i) in a gradient of heavy metal contamination,

Abstract. Regularizing the gradient norm of the output of a neural network is a powerful technique, rediscovered several times. This paper presents evidence that gradient

The most frequently used elution mode in high resolution applications of IEX is salt concentration gradient elution... Automatic pH scouting performed on

The effect of gradient time (at a given temperature) on the apparent gradient retention factor of rituximab heavy chain and light chain fragments (A), and of bevacizumab Fc and

The impact of gradient steepness and mobile phase temperature on retention, peak capacity and selec- tivity was studied in details using six selected model mAbs and their variants

In our work, the impact of mobile phase pH, gradient steepness and temperature on retention, peak capacity and selec- tivity was studied in details using six selected model mAbs