• Nem Talált Eredményt

A corneal-PAMPA-based silico model for in predicting cornealpermeability Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A corneal-PAMPA-based silico model for in predicting cornealpermeability Journal of Pharmaceutical and Biomedical Analysis"

Copied!
10
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

A corneal-PAMPA-based in silico model for predicting corneal permeability

Anna Vincze

a

, Gerg ˝o Dargó

a

, Anita Rácz

c,∗∗

, György T. Balogh

a,b,∗

aDepartmentofChemicalandEnvironmentalProcessEngineering,BudapestUniversityofTechnologyandEconomics,M ˝uegyetemRakpart3.,1111, Budapest,Hungary

bDepartmentofPharmacodynamicsandBiopharmacy,UniversityofSzeged,Eötvösu.6.,6720,Szeged,Hungary

cInstituteofMaterialsandEnvironmentalChemistry,ResearchCentreforNaturalSciences,MagyarTudósokKrt.2.,1117,Budapest,Hungary

a rt i c l e i nf o

Articlehistory:

Received3February2021

Receivedinrevisedform14June2021 Accepted15June2021

Availableonline17June2021

Keywords:

Cornealpermeability Invitro

Non-cell-basedmodel PAMPA

Insilicomodel QSPR

Quantitativestructure-property relationships

Lipophilicity Polarsurfacearea

a b s t ra c t

Thecapabilitytopredictcornealpermeabilitybasedonphysicochemicalparametershasalwaysbeen adesirableobjectiveofophthalmicdrugdevelopment.However,previousworkhasbeenlimitedto caseswhereeitherthediversityofcompoundsusedwaslackingortheperformanceofthemodels waspoor.Ourstudyprovidesextensivequantitativestructure-propertyrelationship(QSPR)modelsfor cornealpermeabilitypredictions.Themodelsinvolvedinvitrocornealpermeabilitymeasurementsof189 diversecompounds.Preliminaryanalysisofdatashowedthatthereisnosignificantcorrelationbetween corneal-PAMPA(ParallelArtificialMembranePermeabilityAssay)permeabilityvaluesandotherpharma- cokineticallyrelevantinsilicodrugtransportparameterslikeCaco-2,jejunalpermeabilityandblood-brain partitioncoefficient(logBB).TwodifferentQSPRmodelsweredeveloped:oneforcornealpermeability andoneforcornealmembraneretention,basedonexperimentalcorneal-PAMPApermeabilitydata.Par- tialleastsquaresregressionwasappliedforproducingthemodels,whichcontainedclassicalmolecular descriptorsandECFPfingerprintsincombination.Acomplexvalidationprotocol(includinginternaland externalvalidation)wascarriedouttoproviderobustandappropriatepredictionsforthepermeability andmembraneretentionvalues.BothmodelshadanoverallfitofR2>0.90,includingR2-valuesnotlower than0.85forvalidationruns,andprovidequickandaccuratepredictionsofcornealpermeabilityvalues foradiversesetofcompounds.

©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: ADME,absorption,distribution,metabolism,excretion;API,activepharmaceuticalingredient;Caco-2,celllineofheterogeneoushumanepithelialcol- orectaladenocarcinomacells;clogD7.4,logofcalculateddistributioncoefficientatpH7.4;clogP,logofcalculatedpartitioncoefficient;clogPeCaco-2,logofcalculatedCaco-2 permeability;clogPejejunal,logofcalculatedjejunalpermeability;DOOD,D-optimaloniondesignalgorithm;fbu,fractionunboundinthebrain;GA,geneticalgorithm;HBD, numberofhydrogenbonddonors;HPLC,highperformanceliquidchromatography;ka,absorptionrateconstant;logBB,blood-brainpartitioncoefficient;logD7.4,logof distributioncoefficientatpH7.4;logDI7,65,degreeofionizationatpH7.65;logP,logofpartitioncoefficient;logPe,logofeffectivepermeability;logS,logaqueoussolubil- itymeasuredinmol/L;MR,membraneretention;MW,molecularweight;NN,neuralnetworks;PAMPA,parallelartificialmembranepermeabilityassay;PBS,phosphate bufferedsaline;PC,phosphatidylcholine;PCA,principalcomponentanalysis;P-gp,P,-glycoprotein;PLS,partialleastsquares;PLS,COMP.numberofPLScomponentsinthe model;PPB,plasmaproteinbinding;PSA,polarsurfacearea;Q2CV,goodnessoffitforthecross-validation;R2P,goodnessoffitfortheexternalvalidation;QSAR,quantitative structure-activityrelationship;QSPR,quantitativestructure-propertyrelationship;R2,goodnessoffitforthecalibration;RMSEC,rootmeansquarederrorofcalibration;

RMSECV,rootmeansquarederrorofcross-validation;RMSEP,rootmeansquarederrorofexternalvalidation;TPSA,topologicalpolarsurfacearea;VIP,variableimportance projection;max,thewavelengthofmaximumabsorbance;Y-SCR,CVgoodnessoffitforthecrossvalidationusingYscrambling;Y-SCRP.,goodnessoffitforthetestprediction usingY-scrambling.

Correspondingauthorat:DepartmentofChemicalandEnvironmentalProcessEngineering,BudapestUniversityofTechnologyandEconomics,M ˝uegyetemrakpart3., 1111,Budapest,Hungary.

∗∗Correspondingauthor.

E-mailaddresses:racz.anita@ttk.hu(A.Rácz),balogh.gyorgy@vbk.bme.hu(G.T.Balogh).

https://doi.org/10.1016/j.jpba.2021.114218

0731-7085/©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

1. Introduction

Theeyeisachallengingtargetoftherapy.Becauseofitscompli- catedanatomicstructureandsmallabsorptivesurface,itisdifficult to achievetherapeutic druglevelsin theinterior oftheeye by topical dosageforms (eye drops, ointments,in-situgel-forming systems,etc.).Moreinvasiveonessuchasintraocularinjections orimplantscanbeveryusefulformaintaininghighdruglevelsin both theanteriorandposteriorsegment[1–3].Topicaladminis- trationisthemostcommonwayofanteriorsegmenttreatment asitisnon-invasive,easyandverycomfortable.However,ithas manydrawbacksincludinglowbioavailabilitydespitethefactthat the activepharmaceuticalingredient (API) is usuallyapplied in highdoses[4].Blinking,tearformationandnasolacrimaldrainage causeahugedropindruglevelasthesolutionsarewashedaway withinthefirst15–30secondsfromtheeyesurface [5,6]. Typi- callynomorethan5%bioavailabilitycanbereachedintheanterior segmentbytopicaladministrationduetothesedefensemecha- nisms,andmembranepenetrationissues[4–7].Byusingdosage formswithhighviscosityandmucoadhesivitytheresidencetimeof drugscanbeincreased,however,theseointmentsandinsitugelling systemsoftencauseirritationandblurredvision[1,4,5,8].Higher druglevelscan bereachedin theposteriorsegmentof theeye bysystemicadministrationorintraocularinjectionsandimplants [2,3,5,9].Whilethefirstmayresultinsystemicsideeffectsdueto highdosagethelatterdoesnotrequirefrequentuse,although,it maycauseendophthalmitis,lens damageorretinaldetachment [4,10,11].Despitelow patientcompliance,theintraocularinjec- tions(usuallytargetingthevitreous)arestillthemostcommonly usedposteriorsegmenttherapiessincetherearenootherefficient deliveryroutesforreachinghighdruglevelsintheposteriorwith minimalsystemicsideeffects[9].

The possible routes of absorption are the corneal and non- corneal pathwaysinterms oftopicaladministration [5,6,10].In thecase ofnon-cornealroutesthedrugpenetratesthroughthe conjunctivaand/orsclerawhich isnotveryeffectiveduetothe presenceoflocalcapillarybedsthatcontinuouslyremovethedrug, transferring itintothesystemic circulation.On theotherhand, thecornealrouterepresentsthemainabsorptionpathformost ophthalmictherapeutics(small,lipophiliccompounds)andforthis reason,itisthemoststudiedareabothintermsofdrugdiscovery anddrugformuladevelopment[4,5].Thecorneaisaclearandavas- culartissueconsistingof5layers:cornealepithelium,Bowman’s layer,stroma,Descemet’smembraneandendothelium.Although therelativethicknessesofcornealepithelium,stromaandendothe- liumareabout0.1:1:0.01,thethinnestcornealepitheliumisthe mainbarrierofdrugabsorptionintotheeye[7,10].

Likeinthecaseofothertopicaldosageforms,theinvivohuman pharmacokineticcharacterizationofAPIsinophthalmictreatment isgreatlyhamperedbythedifficultyofdirectlyexaminingtopical drugconcentrations.Furthermore,duetotechnicaldifficultiesno suitableinvivoanimaltestingsolutionisavailableeither[12].For preclinicalophthalmicabsorptionstudiesexvivoandinvitrocel- lularmodelsareavailable.Forexvivostudiesexcisedrabbitcornea isusedmostcommonlybecauseofeasyaccessandanatomicsim- ilaritiesbetweenrabbitandhumaneyes[10,13].However,there arealsosomedifferencesbetweenthetwospeciesandthusthe penetrationisgenerallymuchhigherandcannotbecorrelatedade- quatelytohumans[10].Invitrostudiesapplyrabbitorhumancell cultureswhichareconsideredasamoreethicalalternative.Inthis case,mostlycornealepithelialcellsareusedconsideringthemain roleofcornealepitheliumindrugtransport,however,itisdifficult toisolateoculartissuesforthispurposeandthelifespanofthese primarycellsisveryshort[13,14].Althoughimmortalizedcelllines provideaninexhaustiblesupplyofcellstheymayexhibitabnormal geneexpressionorbiologicalfunctionsespeciallyafterseveraldivi-

sions.Also,penetrationacrosscellculturesisonlyacrudeestimate atbestsinceasingletypeofcellcannotrepresentthecomplexity ofthecornealbarrierasawhole[13].

Thecapabilitytopredictcornealpermeabilitybasedonphysic- ochemical parameters hasalwaysbeena desirable objective of ophthalmicdrugdevelopment.Forthispurpose,greateffortshave beenmadetodeveloppredictivemodelsstartingwiththeworkof SchoenwaldandWard[15].Asummaryoftheearlydevelopment stagescanbefoundinTable1.Thesemodelswerebasedonjust afewphysicochemicalpropertiesbutweretypicallynotgenerally applicable–theirdiversityandperformancewerelimitedtoonly certaingroupsofmolecules.

Inthepastfewdecades,quantitativestructure-propertyrela- tionship (QSPR) techniques have become a well-established methodforcorrelatingmolecularstructureandphysicochemical propertiesofchemicalcompoundswiththeuseofseveraldescrip- torsandnowadaystheyarecommonlyusedforthefastprediction of differentADME(absorption, distribution,metabolism, excre- tion)relatedmolecularproperties[21,22].Therehavebeenafew attemptstodevelopQSPRmodelsalsoforthepredictionofcorneal permeability.Kidronetal.usedpartialleastsquares(PLS)regres- sionfor 69 non-congenericcompoundsand concluded thatthe totalnumberofputativehydrogenbonds(HBTOT)andlogarithmic distributioncoefficients(logDpH7.4,logDpH8.0)werethemostsig- nificantdescriptorsforcornealpermeability[12].Thesignificance oflipophilicityin cornealpenetrationhasbeenrecognizedlong ago,whileforionizablecompounds(mostoftheophthalmicdrugs) thedistributioncoefficientmeasuredatthepHofaqueoushumor andtearfilm(pH7.2–7.6) hasbeenfoundtobeamoreproper descriptorintermsofmembranepermeability[5,8].Inthework ofGhorbanzadeetal.thesamedatasetwasanalyzedbystepwise multivariatelinearregression (MLR),andneuralnetworks(NN) aswell[23].Withthemultilayerperceptron-NNtechnique,they establishedanonlinearmodelforcornealpermeabilitywithmod- erateperformance. AlthoughKidronandGhorbanzade analyzed morecompoundscomparedtotheirpredecessors,thedatacame fromseveralsourceswithdifferentexperimentalconditions.

In2018,Ramsayetal.producedacornealandconjunctivalQSPR modelbyPLSandprincipalcomponentanalysis(PCA)basedonan exvivodatasetof32smallmolecules.Theyfoundthatcornealper- meabilityhasaninverserelationshipwiththepolarsurfacearea (PSA)andthenumberofhydrogenbonddonors(HBD)[24].How- ever,thepredictivepoweroftheirmodelwasrelativelymodest.

Uptothepresentday,therehavebeenseveralmodelsdeveloped forpredictingcornealpermeability, butthere isstillnoreliable QSPRmodelbasedonalargeandhomogeneousdataset.Ofcourse, itisnotaneasymissionsinceexvivoexperimentshaveseriouscon- straintslikethedemandfornumerousanimals,appropriatetissue viabilityandhighcosts.Invitrocellculturemodelsarebetterin termsofcost-effectivenessandthroughput,however,theuseof cell-basedassaysisnotarobustprocess.

To solvethis problem, we have recently developed a novel invitronon-cellularPAMPA-basedmethodforinvestigatingthe cornealpermeabilityofAPIs[25].Corneal-PAMPAisarobust,high- throughputassayusingeasilyaccessiblematerialslikephosphate bufferedsaline(PBS),phosphatidylcholine,dodecane,hexaneand chloroform.Fordevelopingthemethod,exvivorabbitcornealper- meabilitydatawereusedfromheterogeneousdatasetsinterms ofexperimentalconditions.Despitetheuseofheterogeneousdata, thePAMPAmodelwithstandardizedexperimentalconditionspro- videdhighlyreproduciblepermeabilityvaluesthatcorrelatedwell withtheexvivodata(R2=0.88).Thecorneal-PAMPAmethodology canprovidemanycornealpermeabilityvaluesasahomogeneous datasetinashorttimeperiodandthereforeitisasuitablebasisfor thedevelopmentofaninsilicomodel.

(3)

Table1

Detailedsummaryoftheearlymodelsforcornealpermeabilitydetermination.

Equation Typeofmolecules(andnumbers) Molecularproperties Ref.

parabolic steroids(11) logP [15]

parabolic N-alkyl-p-aminobenzoateesters(6) logP [16]

parabolic ␤-blockingagents(12) logP,logDpH7.65,logMW,logDI7.65* [17]

parabolic/sigmoidal ␤-blockingagents(13) logP [18]

parabolic ␤-blockers,steroids,miscellaneouscompounds(32) logD,logP(logPoctanol-logPalkane) [19]

MLRmodel ␤-blockers,steroids,miscellaneouscompounds(30) quantumchemicaldescriptors(3) [20]

*DegreeofionizationatpH7.65.

In the present work, the corneal permeability of 189 APIs selected froma diversechemical spacewasdetermined bythe corneal-PAMPA method [25] experimentally and used to build a robustQSPRmodelfor predictingcornealpermeability,which couldbeausefultool inthedevelopmentoffutureophthalmic agents.

2. Materialsandmethods 2.1. Materials

Analytical grade solvents like acetonitrile, chloroform, hex- ane,dodecaneandformicacidwerepurchasedfromMerckKGaA (Darmstadt,Germany).Phosphatebufferedsaline(PBS)powder,l-

␣-phosphatidylcholine(PC)andallinvestigatedcompounds(See TableA1.,AppendixA)werepurchasedfromSigmaAldrichCo.Ltd.

(Budapest,Hungary)exceptforbetaxololhydrochloride,bevantolol hydrochloride, bromfenac sodium, bufuralol hydrochloride, 11- deoxycorticosterone,ethoxzolamide,flurbiprofen,nepafenacand penbutolol,whichwerepurchasedfromTorontoResearchChemi- calsInc.(NorthYork,Toronto,Canada).Distilledwaterwaspurified bytheMilliporeMilli-Q®140GradientWaterPurificationSystem.

2.2. Invitropermeabilitystudies

Thecorneal-PAMPAmeasurementswerebasedonourprevi- ousreport[25].BrieflyallcompoundsweredissolvedinPBSbuffer (pH7.4)tomakesolutionswith100␮Mnominalconcentration.

DuetothenegativeeffectofusingDMSOasacosolventonthe goodnessofpredictioninthecorneal-PAMPAassaysystem(accord- ingtoourpreviousreport[25]),noDMSOwasusedforthisstudy either.300␮LoftheinitialPBSsolutionswereplacedintoa96- wellpolypropyleneplate(A)(Agilent,Waldbronn,Germany).For thecorneal-PAMPAmembrane,16mgPCwasdissolvedinasol- ventmixtureofchloroform,hexaneanddodecane5:70:25%(v/v) in atotal volumeof600␮L.Eachwelloftheacceptorplate(B) (MultiscreenAcceptorPlate,MSSACCEPTOR;Millipore)contained 300␮LPBSandeachwellofthedonorplate(MultiscreenTM-IP, MAIPN4510,poresize0.45␮m;Millipore)(C)wascoatedwith5␮L ofthelipidsolution.Afterevaporationofhexaneandchloroform, thedonorplatewasinsertedintotheacceptorplate,andeachwell ofthedonorplatewasfilledwith150␮LPBSsolutionsofcom- poundsfromplateA.Afterthat,thedonorplatewascoveredwitha sheetofwettissuepaperandplatelidtopreventevaporationofthe solventduringthe4hincubation(35C,HeidolphTitramax1000).

Ineachassay,tworeferencecompoundsweremeasured:buspirone andhydrocortisonewithhighandlowcornealpermeabilityvalues, respectively.

For HPLCanalysisatleast120␮Laliquotsweretakenout of everywellofplatesBandCandtransferredto96-wellpolypropy- lene platesandsealed.TheinitialplateAwasanalyzedaswell.

Theeffectivepermeabilityandmembraneretentionofdrugswere calculatedusingthefollowingequations[26]:

Pe= −2.303

A×(t−ss

1

1+rv

×lg

−rv+

1+r

v 1−MR

× cD(t) cD(0)

(1) wherePe istheeffectivepermeability (cm/s),Aisthefilterarea (0.3cm2),tistheincubationtimeofPAMPAassay(14400s),ssis thetimetoreachsteady-state(s),rvisthevolumeratioofaqueous compartments(VD/VA),VDandVAarethevolumesinthedonor (0.15cm3)andacceptorphase(0.3cm3),cD(t)istheconcentration ofthecompoundafterincubationonplateC(mol/cm3),cD(0)isthe concentrationofthecompoundonplateA(mol/cm3)andMRisthe membraneretentionfactor,definedas:

MR=1− cD(t)

cD(0)− VAcA(t)

VDcD(t) (2)

wherecA(t)istheconcentrationofthecompoundafterincubation onplateB(mol/cm3).Intablesandfiguresweusuallyusethisterm as100*MR(%).

2.3. HPLCanalysis

Quantitativechromatographicanalyseswerecarriedoutusing anAgilent1260liquidchromatographysystem(AgilentTechnolo- gies,PaloAlto,CA,USA)onaKinetex®2.6␮mC18100ÅLCcolumn (30×3mm)withamobilephaseflowrateof1.1mL/min.Mobile phaseAandBconsistedof0.1%(v/v)formicacidinwater,andace- tonitrile/water(95/5)with0.1%(v/v)formicacid,respectively.A 3.91minlonglineargradientprogramwasused:inthefirst0.3min 0%B,between0.3and1.8min0–100%B,then100%Bwaskept for0.6minand finally,at2.41the100%Bwasdroppedto0%.

Thiswasfollowedbyanequilibrationperiodof1.5minpriorto thenextinjection.Theinjectionvolumewas6␮L.Chromatograms wererecordedbyadiodearraydetectorinthewavelengthrange of200–500nm,andintegrationwascarriedoutatthe␭maxofeach compound.Data acquisitionand analysiswerecarriedoutwith ChemStationB.04.03.

2.4. Datasetgeneration

Theapplieddatasetcontainedtheexperimentalcorneal-PAMPA permeabilityandthemembraneretentionvaluesof189APIsbased onthepreviouslymentionedexperimentalmodel[15].Thedom- inantprotonationstateatpH7.4wasassignedtoeachcompound withtheChemAxonCalculator(cxcalc)[27]andSchrödinger(Lig- Prep)[28,29].Consequently,theappropriate3Dstructureswere usedforthemoleculardescriptorgeneration.

Classical1,2and3Dmoleculardescriptorsandextendedcon- nectivityfingerprints(ECFP)weregeneratedfortheAPIswiththe DRAGON7.0software[30].Thedefinitionoftheappliedmolecular descriptorscanbefoundintheworkofTodeschinietal.[31].More- over,anadditional80physicochemicalpropertieswerecalculated bytheACD/Perceptasoftware[32].Aninter-correlationlimit of 0.997wasusedforthefilteringoftheclassicaldescriptors[33].Con- stantdescriptorswerealsoexcludedfromthedataset.FortheECFP

(4)

fingerprints,defaultparameterswereappliedinDRAGON7.0,with amaximumradiusof4andafingerprintlengthof1024[34].The finalnumberofgeneratedmoleculardescriptorswas3302,which werefurtherusedfortheQSPRmodelbuilding.

2.5. QSPRmodeling

Partialleastsquares(PLS)regressionwasappliedasaclassical andfrequentlyusedregressionalgorithmforthemodelbuilding.

InPLSregression,latentvariablesarecalculated,whichcanbeused for the predictionof theY dependentvariable,in ourcase the corneal-PAMPApermeabilityvaluesandthemembraneretention.

Asawell-establishedtoolinQSAR/QSPRanalysis,thereisnoneed toexplainthePLSalgorithminmoredetailotherthanreferringto thetutorialpaperofGeladiandKowalski[35].Theoptimalnum- berofPLScomponentsforthemodelswasselectedbasedonthe globalminimumoftherootmeansquarederrorofcross-validation (RMSECV).Outlierselectionofthesampleshasbeencarriedoutby theplotofthefirsttwolatentvariables(PLScomponents).The95

%confidenceellipsewasusedforthedeterminationoftheoutliers.

TherangeoftheYvariable(corneal-PAMPAvalues)wasalsomod- ifiedto0−50×106cm/s,duetothepoorcoverageoutsideofthis range.

In eachmultivariatecalibrationwiththousandsofmolecular descriptors, the use of variable selection techniques [36] is an essentialstepfortheappropriatemodelbuildingwithgoodpredic- tionperformance.Inourcase,thevariableimportanceprojection (VIP)andgeneticalgorithm(GA)methodswerecombinedforthis purpose.First,thenumberofvariableswasdecreasedtothemost important20%basedonVIPvalues,thenageneticalgorithmwas usedontheremainingvariables.Thisformofpre-filteringwithVIP scoreswasnecessaryinordertodecreasethecalculationtimefor themoretime-demandingGAprotocol.Themajorparametersof thegeneticalgorithmwerethefollowing:thepopulationsizewas 64,thepercentageoftheinitialtermswas30,thealgorithmwas runforahundredgenerationsanddoublecross-overwasused.

ModelbuildingwascarriedoutinPLSToolbox[37].Validation ofthemodelsisindispensableforreliableprediction,thereforeour modelswerevalidatedinthreedifferentways:cross-validation, externalvalidationandY-scrambling[38].Trainingandtestsplits werecarriedoutbytheD-optimaloniondesignalgorithm(DOOD) implemented inPLStoolbox[39].Thedatasplit ratiowas80% Training–20 %Testset.Thetraining sampleswereusedfor7- foldcross-validation,whichmeansthat1/7ofthesampleswere predictedbasedontheother6/7ofthesamples,andthisprocess wasrepeatedwhileallthepartitionshavebeenpredictedexactly once.Thefoldsofsampleswereselectedrandomly,thustwenty iterationswereimplementedintotheprotocol.Seven-foldcross- validationisawell-knownoptionforcross-validationprocesses.

Theoptimalnumberoffoldsshouldbebetween5and10basedon theworkofHastieetal.[40].Thetestsplitsofthesampleswere usedfortheexternalvalidation,wheretheYtargetvaluesofthe moleculeswerepredictedbasedonthecalibrationmodel.Finally, Y-scrambling (randomlyreorderedYvector)canverifythatour modelsarefarbetterthantheuseofrandomnumbers.Thiscan helpustocheck“chancecorrelations”andwhetherthemodelsare overfittedornot.Anadditionalmethod,calledthepermutationtest wasalsoappliedtotestthesignificanceofthedifferencebetween theactualandtherandommodel.Herethemainhypothesisisthat ouroriginalmodelisnotsignificantlydifferentfromtherandomly reorderedYvectorones.Wilcoxon,SignandrandomizationT-tests wereappliedfortesting.

PerformanceparameterssuchasR2(calibration),Q2CV(cross- validation),R2P(externalvalidation)andQ2Fn[41],therootmean squared error of calibration, cross-validation and external vali- dation(RMSEC/RMSECV/RMSEPrespectively),themeanabsolute

error(forcalibration,cross-validationandexternalvalidation)the coefficientofconcordance(CCC,likewiseforallcalibrationandval- idationsteps)[42]etc.werecalculatedtoappropriatelydetermine thequalityofthemodels.

3. Resultsanddiscussion 3.1. PreliminaryanalysisoftheAPIs

Inourpreviouswork,weinvestigatedtherelationshipsbetween corneal-PAMPApermeability(logPe)andmembraneretentionval- ues(MR) incomparisonwithexperimentalCaco-2 permeability dataandcalculatedphysicochemicalproperties,suchasmolecular weight(MW),topologicalpolarsurfacearea(TPSA)andlipophilic- itydescriptors(logP,logDpH7.4),inthecaseof50structurallyand physicochemicallydiversecompounds[43].Duetoweakcorrela- tions(R2=0.018−0.506)weconcludedthatcornealpermeability cannotbepredictedbasedononlythesephysicochemicaldescrip- torsandforthisreason,alargermeasuredpermeabilitydataset is needed to be able to carry out a QSPR analysis. As part of ourconclusion,weestablishedthattheweakcorrelationbetween corneal-PAMPApermeabilityandCaco-2(gastrointestinal)perme- ability(R2=0.125)confirmsthatourmodelisindependentofthe generallyacceptedgastrointestinalpermeabilitymodelandmay supportitsadequacyforcornea-specificinvitromeasurements.

Inthecurrentwork,189APIs(fromwhich50APIshavealready beenmeasuredinthepreviouswork[43])wereselectedfroma diversechemicalspaceandtestedinthecorneal-PAMPAmodelto producedatasetforinsilicomodeling.(Seeexperimentaldatain TableA1.,AppendixA)Beforecomputationalmodeling,weeval- uatedthemaincharacteristicsofthecompoundsbasedontheir physicochemical properties like logP, logDpH7.4,MW, TPSA and acid-basecharacteristics(Fig.1).

Weinvestigatedtherelationshipbetweencorneal-PAMPAper- meabilityandtheabove-mentionedphysicochemicalparameters (Fig.2).Forlinearregressionanalysis,theGraphPadPrismsoftware wasused[45].Theresultprovedtobealikeaseachoftheseparam- etersshowedweakcorrelationwithcornealpermeability,onlythe followingtendenciescouldbeobserved:thecornealpermeability decreasedwithincreasingTPSAwhileitincreasedwithincreasing logPandlogDpH7.4values.However,themolecularweightseemed tohavenoeffectoncornealpermeability.Theneutralandbasic compoundsexhibitedhigherpermeabilityvaluesthantheacidic oramphotericones,which observationcorresponds tothegen- eraltrendformembranepermeabilityofdrugsitashasalsobeen reportedpreviously[46].Thebestsquaredcorrelationcoefficient (R2=0.356)wasobservedinthecaseoflogDpH7.4,whichisprobably duetothefactthatthemeasurementswerecarriedoutatiso-pH 7.4conditions.

The relationship between membrane retention and these physicochemical parameters hasalso been investigated. In the case ofTPSAand logPonlytrends couldbeobserved withlow squaredcorrelationcoefficients(R2=0.289and0.367respectively).

TheMRvaluesincreasedwithincreasinglogPanddecreasedwith increasingTPSA,whichisinaccordancewiththefactthatthemore lipophilic(andlesspolar)theAPIis,themorelikelyitgetsintothe membrane.Theanalysisresultedinverypoorfitswiththeother twoparameters.(SeeFigureB1.,AppendixB).Thecorneal-PAMPA permeabilityvalueswerealsocomparedwithotherpermeability- relatedinsilicovalueslikeCaco-2permeability(pH7.4,at350rpm stirringrate)jejunalpermeability[47]and blood-brainpartition coefficient[48](logBB),whichwerepredictedbytheACD/Percepta software[32]asagoldstandardtoolindrugdiscovery(Fig.3).

The Caco-2 model applies human epithelial colorectal ade- nocarcinoma cells thus, unlike the PAMPA model, it contains

(5)

Fig.1.Histogramsofphysicochemicalpropertiesof189compounds.Physicochemicalpropertiesincludemolecularweight,topologicalpolarsurfacearea,calculated logpartitioncoefficient,calculatedlogdistributioncoefficientatpH7.4,andacid-basecharacteristics.TheTPSA,clogPandclogDpH7.4valueswerecalculatedwiththe ACD/Perceptasoftware[32]andtheacid-basecharacteristicsweredeterminedwiththeChemAxon/MarvinSketchsoftware[44].

activetransporters.Forcomparingthecorneal-PAMPAandCaco- 2permeabilityvalues,9APIs(hydrocortisone,emetine,etoposide, loperamide,quinine,risperidone,sparfloxacin,trimethoprim,ver- apamil)werelabeledwithredstarsonFig.3,whicharepotential substrates of P-gp efflux pump according to the prediction of ACD/Perceptasoftware[32].Forthepropercomparisonbetween thedifferentassays,compoundsthatareknowntobepenetrating viaactivetransportshouldbeavoided.Toclarifythedifferences intheirpenetrationbehavior,squaredcorrelationcoefficientsare representedhere,whichrefertothedatasetswithout(R2)andwith (R2*)theP-gpsubstratesaidedbyactivetransport.Similarly,to ourformer conclusion, onlya weakcorrelationcouldbedeter- minedbetweencorneal-PAMPAandCaco-2permeabilityvalues.

Aweakcorrelationwasfoundinthecaseofjejunalpermeability andblood-brainpartitioncoefficienttoo,whichindicatesthatthe corneal-PAMPAisnotauniversalpermeabilitymodelandthatthe trans-cornealdiffusionprocessispresumablygovernedbydiffer- entfactorsthanintestinalorblood-brain-barrierpenetration.Thus, theresultsofthepreliminaryanalysisclearlyverifiedtheneedfor auniqueQSPRmodelforcorneal-PAMPApredictions.

3.2. Corneal-PAMPApermeabilityQSPRprediction

Inthemodel-buildingphase,theoriginalmatrixcontained3302 molecular descriptors(including the predictedphysicochemical ones,classical1,2and3DdescriptorsandtheECFPfingerprint)as Xvariables,andcorneal-PAMPAexperimentalresultsastheYvec- tor.ThetotalnumberofAPIswherecorneal-PAMPAexperimental values couldbedeterminedwas151.Outlierselectionwasper- formedonthedataset:a)firsttheAPIsoutsideofthewell-covered

0−50×106cm/srangewereexcluded,b)thenthefirsttwoPLS componentswereplottedagainsteachotherand95%confidence ellipsewascalculatedtoexcludetheoutliersbasedonthemolec- ulardescriptors.Inthefinalform,143APIswereincludedinthe dataset.

Inthenextstep,thematrixwassplitintotrainingandtestset, whichwasobligatorytocarryoutapropervalidationofthemodel.

WiththeDOODalgorithm,80%ofthecompoundswereselected forthetrainingset.Thus,114APIswereappliedforthecalibration andcross-validationof themodel.Autoscaling(standardization) wasusedasdatapretreatment.Wehaveselected100molecular descriptorswiththecombinationofVIPscoringandgeneticalgo- rithmfromtheoriginaldescriptorset.Inthe7-foldcross-validation part,RMSECVvalueswereusedforthedeterminationofthenum- berofPLScomponents.TheglobalminimumoftheRMSECVvalues wasatfivePLScomponents.Cross-validationwasperformedwith arandomizedselectionin20iterations.Thefinalcalibrationcurve alongwiththetestvalidationsamplesbasedon5PLScomponents isshowninFig.4ab.

Thesampleswerewell-fittedtothecalibrationcurveandthe errorswerehomogenousalongtherange.Itisclearlyseeninthe performancesaswell:theR2(goodnessoffitforthecalibration)and Q2CV(goodnessoffitforthecross-validation)were0.953and0.866, respectively.Theperformanceofthetestvalidationwas0.862.The remainingperformanceparametersofthemodelaresummarized inTable2.

Outoftheselected100variables,themostimportantphysic- ochemical descriptors (based on their VIP scores) were the following: absorption rate constant (ka), jejunal permeabil- ity (clogPejejunal,pH=7.4), fraction unbound in the brain (fbu),

(6)

Fig.2. PAMPA-relatedcornealpermeabilityasafunctionofphysicochemicalproperties.Correlationbetweencornealpermeabilityandmolecularweight(a.),topological polarsurfacearea(b.),calculatedlogpartitioncoefficient(c.),calculatedlogdistributioncoefficientatpH7.4(d.)andacid-basecharacteristics(e.)ofthecompoundswiththe squaredcorrelationcoefficient(R2).TPSA,clogPandclogDpH7.4valueswerecalculatedwiththeACD/Perceptasoftware[32]andtheacid-basecharacteristicsweredetermined bytheChemAxon/MarvinSketchsoftware[44].ThecorrelationcoefficientsweredeterminedusingtheGraphPadPrismsoftware[45].Thebluedottedlinesstandforthe95

%confidencebands.

clogDpH7.4,plasmaproteinbinding(PPB).Allthesedescriptorshad VIP(variableimportance)scoresabove1.3.Theresultscorrespond to thekinetic behavior of the permeability parameteras these descriptorsarerelatedtopassivetransportofdrugs.Inaddition, the fact that predicted data of neither thegastrointestinal (ka, clogPejejunal),northeblood-brainbarriertransport(fbu)insilico modelscoulddescribethecorneal-PAMPA permeabilityprocess, suggeststhecomplexityofourmodel,whichisalsosupportedby ourconclusionsinthepreliminaryanalysis.Ionizationstateand lipophilicityarealsowell-knowndeterminantsofthepermeabil- ity process [46,49,50], which are alsopresent herein theform ofclogDpH7.4.Additionally,linearregressionanalysiswascarried outinthecaseofka,PPBandfbu againstlogPe andonlyaweak correlationwasfoundineachcase,whichsupportsourprevious observationthatusinglinearregressionofonlyoneparameterata timecouldnotresultinagoodmodelforprediction(SeeFigureB2., AppendixBandTableA2.,AppendixA).

Yscramblingwasalsousedforthevalidationofthemodeland tocheckthepossibilityofoverfitting.Theexperimentalcorneal- PAMPAvalueswererandomizedinthedatasetforthisvalidation.

Thepredictionperformancesat5PLScomponentsweredecreased properlyto0.016and0.14forcross-validationandtestvalidation, respectively.Thepermutationtest(with50iterations)hasfounda significantdifferencebetweenourfinalmodelandtherandomized one(at␣=0.05level).FortheresultofthepermutationseeTable A3,AppendixA.

3.3. Corneal-PAMPAmembraneretentionQSPRprediction

Inthecaseofmembraneretentionprediction,thesameproto- col(withthesameparameters)wascarriedoutasinthecaseof permeabilityprediction.Theselectedrangeofmembrane reten- tionwasbetween0and100%.Aftertheoutlierselectionprocess, 180APIsoutof189wereincludedinthedataset.Theremaining

(7)

Fig.3.PAMPA-relatedcornealpermeabilityasafunctionofvariousinsilicotransportparameters.CorrelationbetweencornealpermeabilityandcalculatedCaco-2 permeability(pH7.4,at350rpmstirringrate)(a.),calculatedjejunalpermeability(b.)[47]andcalculatedblood-brainpartitioncoefficient(c.)[48]ofthecompounds withsquaredcorrelationcoefficients(R2).InthecaseofCaco-2permeability(a.)recalculatedsquaredcorrelationcoefficient(R2*)wasalsointroducedincludingnineP-gp substrates.clogPeCaco-2,clogPejejunalandclogBBvalueswerecalculatedwiththeACD/Perceptasoftware[32].ThecorrelationcoefficientsweredeterminedusingtheGraphPad Prismsoftware[45].Thebluedottedlinesstandforthe95%confidencebands.

Fig.4. ab.ThePLScalibrationcurve.a)Predictedcorneal-PAMPAvaluesareplottedagainsttheexperimentalones.InFig.4b)themodelistransformedtologarithmic scale.Calibrationsamplesaremarkedwithgreycircles,whiletestvalidationcompoundsaremarkedwithreddiamonds.

ninecompoundswereexcludedduetotheirnegativemembrane retentionvalues(theywereoutofthe0–100%range).Intotal,83 moleculardescriptorswereincludedinthematrixafterthevari- ableselectionprocess(VIPscoresandgeneticalgorithm).Classical physicochemical,two-dimensional,three-dimensionaldescriptors andfingerprintbitpositionswereincludedintheselectedsetof variables.ThesameDOODalgorithmwasusedforthetraining-test split.Thetrainingsetcontained144compounds(80%),whilethe remaining36compoundswereusedfortestvalidation.Seven-fold cross-validationwasusedfortheinternalvalidationofthemodel with20iterations,andeightPLScomponentswereappliedbased

ontheglobalminimumoftheRMSECVcurve.Thefinalcalibration modelwiththecalibrationandtestsamplestogetherisplottedin Fig.5.Thesampleswerewell-fittedtothecalibrationcurve(even thetestones)andtheerrorswerehomogeneousalongtherange.

TheR2 valueofthecalibrationwas0.97,whiletheQ2CVandQ2 predictionwere0.91and0.94,respectively.Alltheperformance parametersaresummarizedinTable2.

Themostimportantphysicochemicalpropertiesamongstthe83 selecteddescriptors(basedontheirVIPscores)werethefollow- ing:logaqueoussolubility(logS),logPandPPB.Thesedescriptors hadVIPscoresabove1.3.Theresultconfirmsthethermodynamic

(8)

Table2

SummaryoftheperformanceparametersforthefinalQSPRmodels*.

Model Permeability Membraneretention Permeability(in logsale)

RMSEC 2.87 4.37 0.04

RMSECV 5.06 8.14 0.08

RMSEP 5.15 7.05 0.11

R2 0.95 0.97 0.95

Q2CV 0.87 0.91 0.86

R2P 0.86 0.94 0.85

Q2F1 0.86 0.96 0.75

Q2F2 0.86 0.93 0.75

Q2F3 0.85 0.93 0.79

CCCTrain 0.98 0.99 0.97

CCCCV 0.93 0.95 0.93

CCCExt 0.92 0.97 0.89

MAETrain 2.15 3.28 0.04

MAECV 3.79 4.90 0.06

MAEExt 3.92 5.74 0.08

r2m 0.80 0.89 0.58

r¯2m 0.76 0.88 0.65

r2m 0.07 0.01 0.13

r02r02

0.02 0.00 0.07

k 0.87 0.96 1.09

k’ 0.91 0.99 1.01

Y-SCRCV 0.02 0.02

Y-SCRP. 0.14 0.04

PLSCOMP. 5 8

*RMSECrootmeansquarederrorofcalibration,RMSECVrootmeansquared errorofcross-validation,RMSEProotmeansquarederrorofexternalvalidation, R2-goodnessoffitforthecalibration,Q2CV-goodnessoffitforthecross-validation, R2P-goodnessoffitfortheexternalvalidation,QF12F1typegoodnessoffitforthe externalvalidation,QF22F2typegoodnessoffitfortheexternalvalidation,QF32 F3typegoodnessoffitfortheexternalvalidation,CCC(Train/CV/Ext)coefficient ofconcordanceforthetraining/CV/externaltestset,MAE(Train/CV/Ext)mean absoluteerrorforthetraining/CV/externaltestset,r2mandr2mbasedonthe workofRoyetal.[52],

r02r02

istheabsolutedifferenceofther20valueswithout interceptinthecaseofobservedvs.predictedandpredictedvs.observedvalues, kandk’-theslopeoftheregressionlines(withorwithoutpassingthroughthe origin),Y-SCRCV-goodnessoffitforthecrossvalidationusingYscrambling,Y-SCR P-goodnessoffitforthetestpredictionusingY-scrambling,PLSCOMP.numberof PLScomponentsinthemodel.

Fig.5.Predictionofthemembraneretention.Predictedvaluesareplottedagainst theexperimentalmembraneretentionvalues.Thetestsamplesaremarkedwith reddiamondsandthecalibrationonesaremarkedwithgreycircles.Thecalibration curveismarkedwiththeredline.

behavioroftheMRparameterforthetestedcompoundsinthatit relatestotheirdistributionbetweenthedonor,acceptorandlipid membrane.TheprimaryrelevanceofthelogPandlogSparame- terssuggeststhedominanceoftheneutralformofthecompounds, whichalsosupportsthespecificityoftheinsilicodescription,as theprotondissociationofdrugmoleculesinthemembraneistypi-

callydepressed.ThefactthatlogPismorefavorablethanlogDpH7.4 asa descriptor for membrane retention confirms theresultsof ourpreliminaryanalysis(SeeFigureB1.,AppendixB).Theweighted appearanceofPPBcanbeexplainedbythelipophilicity-dependent natureofthefreeformofthedrug,whichisconsistentwiththe generalkineticdescriptionofdrugtransport.Additionally,linear regressionanalysiswascarried outin thecaseof logS andPPB againstMRandonlyweakcorrelationswerefoundwiththesquared correlationcoefficientsof0.232and0.189respectivelywhichalso verifiestheneedformorecomplexmodelsthanthelinearregres- sionofonephysicochemicalparameteratatime(SeeFigureB3., AppendixBandTableA2.,AppendixA).

Y-scramblingwasalsousedtocheckthepossibilityofover- fitting.Themodelperformancesstronglydecreasedwiththeuse ofrandomizedYvalues.TheQ2CVwas0.02,whiletheQ2fortest predictionwas0.04.Thepermutationtest(with50iterations)has foundasignificantdifferencebetweenourfinalmodelandtheran- domizedone(at␣=0.05level),verifyingourmodel.

Thedetailedsummaryoftheperformanceparametersofthe finalmodels(permeabilityandmembraneretention)isshownin Table2.Allparametersaregoodandfulfillthesuggestedconditions fortheacceptanceofthemodel:R2 >0.7,QFn2>0.6,CCC>0.85, r2m >0.5,r2m< 0.2[42,51],and

r02−r02

<0.2.Based onthe performancesofthemodels,wearerecommendingtheuseofper- meabilityvaluesinlinearscaleforfurthercalculations.

4. Conclusion

Twoquantitativestructure-propertyrelationshipmodelswere developedfortheinvestigationofcornealpermeabilityandmem- braneretention.TheQSPRmodelswerebasedonexperimentally determinedcorneal-PAMPAvalues.Partialleastsquaresregression wasappliedfor theprocess. Thefinal models containedclassi- calmoleculardescriptorsandECFPfingerprintsin combination.

Themodelsincluded143and180APIsforPeandMRprediction, respectively.Acomplexvalidationprotocol(includinginternaland external phases)was carried outto provide robustand appro- priatepredictionsforthepermeabilityand membraneretention values.Thegoodnessofthemodels(R2)wereabove0.90inboth cases and theywere not lower than0.85 for validation either.

Thepermutationtests showedthatourmodelsare notoverfit- tedandtheyareclearlyapplicabletoprovidegoodpredictionsfor thecornealpermeabilityoftheAPIs.Thisis,toourknowledge,the firstsuchinsilicomodelreportedsofar.Theresultsalsoshowed thattherewasnosignificantcorrelationbetweentheexperimental corneal-PAMPA values and the existing classical in silicophar- macokineticallyrelevantdrugtransport models,suchasCaco-2 permeability,jejunalpermeability andtheblood-brainpartition coefficient(logBB).Thus,ourmodelscanbegoodcandidatestopro- videthecornealpermeabilityandcornealmembraneretentionof compoundsinaveryshorttimewithappropriateprecision.

Authors’contributions

The manuscript was written through contributions of all authors.Allauthorshavegivenapprovaltothefinalversionofthe manuscript.

DeclarationofCompetingInterest

Theauthorsreportnodeclarationsofinterest.

Ábra

Fig. 1. Histograms of physicochemical properties of 189 compounds. Physicochemical properties include molecular weight, topological polar surface area, calculated log partition coefficient, calculated log distribution coefficient at pH 7.4, and acid-base cha
Fig. 2. PAMPA-related corneal permeability as a function of physicochemical properties
Fig. 4. a b. The PLS calibration curve. a) Predicted corneal-PAMPA values are plotted against the experimental ones
Fig. 5. Prediction of the membrane retention. Predicted values are plotted against the experimental membrane retention values

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Model M3 can be used for predicting the failure rate in other water systems but the values of constant coe ffi cients D, C and E should be determined after an in-depth analysis of

The retention of large proteins in salt-gradient mode is strongly dependent on the salt concentration (gradient steepness or gradient time) – due to the relatively high z value – and

First, sucrose esters (sucrose myristate [C-1416] and sucrose laurate [D-1216]) were used to enhanc the penetration of the API. In the other hand, some gels also

keratometry values in the flat (K 1 ) and steep (K 2 ) meridian, corneal astigmatism (cylinder), corneal thickness at the center (central pachymetry) and at the

Analysis of clinical characteristics and other laboratory parameters revealed a significant correlation between serum heat shock protein 70 levels and age, serum

Good agreement was found between Franz cell and Skin PAMPA results in terms of ranking order the samples, however Skin PAMPA model provided higher permeation results compared

(There are no relevant data on the oncogenic relevance of the second most abundant hsa-miR-325 in Weber’s study.) Two fur- ther microRNAs found to be abundant in our in silico

Abstract: Unsuitable feed water quality causes fouling and serious decrease in membrane permeability during the operation of reverse osmosis filters, which leads to