• Nem Talált Eredményt

Reduction of glycine particle size by impinging jet crystallization International Journal of Pharmaceutics

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Reduction of glycine particle size by impinging jet crystallization International Journal of Pharmaceutics"

Copied!
7
0
0

Teljes szövegt

(1)

Reduction of glycine particle size by impinging jet crystallization

Tímea Tari, Zoltán Fekete, Piroska Szabó-Révész, Zoltán Aigner *

DepartmentofPharmaceuticalTechnology,UniversityofSzeged,Eötvösu.6,H-6720Szeged,Hungary

ARTICLE INFO

Articlehistory:

Received25June2014

Receivedinrevisedform7November2014 Accepted8November2014

Availableonline13November2014

Keywords:

Impingingjetcrystallization Particlesize

Glycine Crystalhabit Polymorphism Residualsolventcontent

ABSTRACT

Theparametersofcrystallizationprocessesdeterminethehabitandparticlesizedistributionofthe products. A narrow particle sizedistribution and asmall averageparticle sizeare crucialfor the bioavailabilityofpoorlywater-solublepharmacons.Thus,particlesizereductionisoftenrequiredduring crystallizationprocesses.Impingingjet crystallizationisamethod thatresultsinaproductwitha reducedparticlesizeduetothehomogeneousandhighdegreeofsupersaturationattheimpingement point.

Inthiswork,theapplicabilityoftheimpingingjettechniqueasanewapproachincrystallizationwas investigatedforthe antisolventcrystallization ofglycine. Afactorial designwasapplied tochoose the relevant crystallization factors. The results wereanalysed by means of a statistical program.

Theparticlesizedistributionofthecrystallizedproductswasinvestigatedwithalaserdiffractionparticle sizeanalyser.Theroundnessandmorphologyweredeterminedwiththeuseofalightmicroscopicimage analysissystemandascanningelectronmicroscope.Polymorphismwascharacterizedbydifferential scanningcalorimetryandpowderX-raydiffraction.Headspace gaschromatographywasutilizedto determinetheresidualsolventcontent.

Impingingjetcrystallizationprovedtoreducetheparticlesizeofglycine.Theparticlesizedistribution wasappropriate,andtheaverageparticlesizewasanorderofmagnitudesmaller(d(0.5)=8–35mm)than thatachievedwithconventionalcrystallization(d(0.5)=82–680mm).Thepolymorphicformsofthe products wereinfluenced bythesolvent ratio.Thequantityofresidual solvent inthe crystallized productswasincompliancewiththerequirementsoftheInternationalConferenceonHarmonization.

ã2014ElsevierB.V.Allrightsreserved.

1.Introduction

Crystallization is an important pharmaceutical industrial process.Themajorityofactivepharmaceuticalingredients(APIs) andexcipientscanbeproducedbycrystallization.Thecrystalliza- tion process determines the chemical purity and physical propertiesof theproduct, includingits habit, particlesize and crystal structure. The average particle size, the particle size distribution, and the habit of particles play decisive roles in pharmaceuticalformulation.Theseparametersmayinfluencethe bioavailabilityand theprocessability.Directtablet compression requiressufficientlylargeandisodimensionalparticles,butasmall averageparticlesize witha narrowparticlesize distributionis preferredforpoorlywater-solubleAPIs.Themarketablematerials willbethosethatcan bedirectlyappliedintheformulation of pharmaceuticalproducts(Hacherletal.,2003;Wooetal.,2011;Liu etal.,2013).

Crystallization methods that are commonly used in the pharmaceuticalindustryincludecooling,antisolventandprecipi- tationprocesses.However,withthesetechniquestheparticlesize can be reduced only within certain limits. New methods are thereforesoughttodecreasetheparticlesizeofAPIs.Onesuchmay be sonocrystallization, which has been studied with various crystallizationsystems,butitsadvantagesinvariouscrystalliza- tionapplicationsaredisputed(McCauslandetal.,2001;McCaus- landandCains,2003;Louhi-Kultanenetal.,2006).Otheroptions involvetheuseofimpingingjetcrystallizationandtheapplication of multiple inlet vortex mixers (Liu et al., 2008; D’Addio and Prud’homme,2011).

Midleretal.(1994)introducedandadaptedtheimpingingjet techniqueincrystallization(Midleretal.,1994;Tungetal.,2009).

The impinging jet mixer consists of two jet nozzles arranged diametricallyoppositeand facingeachother.The impingingjet elementcanbeusedinacrystallizationreactororoperatedinnon- submergedmode.ArichsolutionoftheAPIandtheantisolvent flowthroughthenozzlesataconstantlinearvelocity,causinghigh supersaturation at the impingement point before the onset of nucleation.Thisprocesspotentiallyresultsinrapidcrystallization

*Correspondingauthor.Tel.:+3662545577;fax:+3662545571.

E-mailaddress:aigner@pharm.u-szeged.hu(Z.Aigner).

http://dx.doi.org/10.1016/j.ijpharm.2014.11.021 0378-5173/ã2014ElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

International Journal of Pharmaceutics

j o u r n al h o m ep a g e: w w w . el s e v i e r . c o m / l o c at e / i j p h a r m

(2)

in the absence of concentration gradients and produces a monodisperse populationof small crystals witha highsurface area. Impingingjet crystallizationis often usedin combination withultrasoundtoachieveafurtherreductioninparticlesize.The directproductionofsmalluniformcrystalswithhighsurfacearea that meet thebioavailability and dissolution requirements can eliminatetheneedformilling,whichcangiverisetodustissues, yieldlosses,longproductiontimes,polymorphictransformationor amorphization(Wooetal.,2009;Bauer-Brandl,1996a,b;amEnde andBrenek,2004;CalvignacandBoutin,2009;Hacherletal.,2003;

Dongetal.,2011).

Glycine exists in three polymorphic forms under ambient conditions.Forms

a

and

b

aremonoclinic(

a

,P21/n;

b

,P21),while

g

istrigonal(P31).Otherpolymorphshavebeenobservedathigh pressure.Inaqueoussolution,form

a

isobtainedbyspontaneous nucleation(Rabesiakaetal.,2010;Goryainovetal.,2006;Linetal., 1998).Thelessstable

b

glycinehasbeenfoundtotransformrapidly intoform

a

inairorwater,butthecrystalsremainunchangedif keptinadryenvironment.The

g

formofglycineisthestableform atroomtemperatureandtransformstothe

a

formwhenheated above 165C (Boldyreva et al., 2003a,b,b; Ferrari et al., 2003;

Srinivasan,2008).Theadditionofethanoltoanaqueousglycine solutioninduces precipitation of the

b

form(Weissbuch etal., 2005; Ferrari et al., 2003). The crystallization methods and conditions,thepHofthesolution,andthepresenceofadditives also influence the crystal morphology and the polymorphism (Dubbinietal.,2014).

Glycineis a widely used material for crystallization experi- ments (Srinivasan et al., 2011; Rabesiaka et al., 2010; Lung- Somarriba et al., 2004). It is fast-growing and its crystals are typicallyquitelarge,soitisasuitablemodelmaterialforparticle sizereductionstudies.Inordertoreducetheglycineparticlesize, Louhi-Kultanen et al. (2006) studied the effects of ultrasound duringcoolingcrystallizationonthepolymorphism,crystalsize distribution and heat transfer in batch cooling crystallization.

Sonocrystallizationprovedtobea goodtoolfor optimizingand controllingthenucleationandcrystallizationofglycine,andcanbe usedasasizereductionmethodtoproduceafinalproductwith uniformcrystal morphology. Thesmallest average particlesize achievedwas about100

m

m. Aigneret al.(2012) examined the

effects of several crystallization methods and their parameters (cooling,reverseantisolventandantisolventcrystallizationwith ultrasound)ontheaverageparticlesize,particlesizedistribution and roundness of glycine, and found that these methods are capableofreducingtheaverageparticlesizeonlywithinacertain range.Theparticlesizeranges(d(0.5))obtainedwereasfollows:

268–680

m

m in cooling crystallization; 160–466

m

min reverse antisolventcrystallization;and82–232

m

minantisolventcrystal- lizationwithultrasound.

Inthepresentwork,theimpingingjetantisolventcrystalliza- tionofglycineasmodelmaterialwereinvestigatedbymeansofa factorialdesignforafurtherparticlesizedecrease.Theeffectsofa number of operating parameters,suchas thelinear velocity of feeding,thepost-mixingtime,thetemperaturedifferenceandthe solvent ratio, on the resulting particle size distribution and roundness were studied. A statistical program was used to evaluatetheresults.Theparticlesizedistributionwasmeasured withalaserdiffractionparticlesizeanalyser.Glycinecrystalswere analysedwithalightmicroscopicimageanalysissystem,scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRPD) in order to obtain imagesofthecrystalshape,roundnessandstructure.Theresidual solventcontentofthecrystallizedproductswasinvestigatedbya headspacegaschromatographicmethod.

2.Materialsandmethods 2.1.Materials

The following components were used in the experimental work:glycineandethanol96%suppliedbyVWRHungary;neutral oil (Miglyol 812) purchased from Sasol Germany GmbH; and purifiedwater(Ph.Eur.quality).

2.2.Impingingjetcrystallization

Crystallization experiments were carried out in a 250mL round-bottomed, double-walled Schmizo crystallization reactor (Schmizo AG, Oftringen, Switzerland) equipped with an IKA Eurostardigitalmixer(IKA-WerkeGmbH&Co.,Staufen,Germany).

Fig.1.Experimentalapparatuswithanimpingingjetunitappliedinnon-submergedmode.

(3)

Temperatures were adjusted with a Thermo Haake P5/C10 (Thermo Haake, Karlsruhe, Germany) thermostat and a Julabo F32(JulaboGmbH,Seelbach,Germany)cryothermostatcontrolled byJulaboEasyTemp2.3esoftware.TwocalibratedRollpumpType 5198 peristaltic pumps (MTA Kutesz, Budapest, Hungary) were used for liquid feeding. The impinging jet unit was a locally developeddeviceequippedwithvariable-diameternozzles,used innon-submergedmode.

During the experiments, the two pumps dosed a nearly saturatedaqueoussolutionofglycineat25C(10.02gofglycine dissolvedin50mLofpurifiedwater)andtherequiredamountof ethanolatdefinedtemperatures.Thestirringspeedwas250rpm.

The crystallized products were filtered in porcelain filter and washedwith96%ethanol.Aftervacuumdrying(40C,24h),the productswerestoredundernormalconditionsinclosedcontain- ers.TheexperimentalapparatusisoutlinedinFig.1.

2.3.Factorialdesign

A 32 fullfactorial designwas appliedtochoosetherelevant factors.InseriesAtheinfluenceofthelinearvelocityandthepost mixing time, and in series B theinfluence of the temperature differenceandthepostmixingtimewereinvestigatedonthree operationalparameters:roundness,d(0.5)andD[4,3].

The levelsof the factorscan befoundin Table 1, whilethe samples are designated in Table 2. The experiments were performed in randomized sequence. The following approach, containingtheinteractionsofthefactors,wasusedtodetermine theresponsesurfaceandtherelativeeffectsofthefactors(b):

y¼b0þb1x1þb2x2þb3x21þb4x22þb5x1x2

Statistica for Windows11 AGAsoftware(StatSoft, Inc.Tulsa, USA) was used for the calculations. During the mathematical evaluations,theconfidenceintervalwas95%,i.e.thedifferences weresignificantifp<0.05.

2.4.Differentialscanningcalorimetry

TheDSCanalysiswascarriedoutwithaMettlerToledoSTARe thermalanalysissystem,version9.30 DSC821e(Mettler-Toledo AG,Greifensee,Switzerland),atalinearheatingrateof10Cmin1, withargonascarriergas(100mLmin1).Thesampleweightwas in the range 2–5mg and examinations wereperformed in the

temperature interval 25–300C, in a sealed 40

m

L aluminium cruciblehavingthreeleaksinthelid.

2.5.X-raypowderdiffractometry

Crystal structures were verified by measuring the X-ray powder diffraction patterns of crystallized samples and the initialmaterialwithaBrukerD8Advancediffractometer(Bruker AXS GmbH, Karlsruhe, Germany) and compared with the structures in the Cambridge Structural Database (Cambridge CrystallographicDataCentre,CCDC,Cambridge,UK).Theexperi- mentswereperformedinsymmetricalreflectionmodewithCu K

a

radiation (

l

=1.5406Å), using Göbel Mirror bent gradient

multilayeroptics.Thescatteredintensitiesweremeasuredwitha Våntec-1linedetector.Theangularrangewasfrom3 to40 in stepsof0.007.Othermeasurement conditionswereasfollows:

target, Cu; filter, Ni; voltage,40kV; current, 40mA; measuring time,0.1sperstep.

2.6.Investigationofcrystalshapeandroundness

Thecrystalshapeandroundnessofthecrystallizedproducts were measured with the LEICA Image Processing and Analysis System (LEICAQ500MC,LEICACambridge Ltd.,Cambridge,UK).

The particles weredescribed in terms of their length,breadth, surface area, perimeterand roundness, which isa shape factor givingaminimumvalueofunityforacircle.Thisiscalculatedfrom theratioof theperimeter squaredtothearea. Theadjustment factorof1.064correctstheperimeterfortheeffectofthecorners producedbythedigitizationoftheimage:

Roundness¼ Perimeter2 4

p

Area

1:064

Table2

Designationofsamples.

Samplecode Linearvelocity(ms1) Postmixingtime(min) Temperaturedifference(C)

SeriesA x1 x2

A1 1.41 0 0

A2 1.41 5 0

A3 1.41 10 0

A4 2.77 0 0

A5 2.77 5 0

A6 2.77 10 0

A7 4.06 0 0

A8 4.06 5 0

A9 4.06 10 0

SeriesB

x2 x1

B1 2.77 0 0

B2 2.77 5 0

B3 2.77 10 0

B4 2.77 0 12.5

B5 2.77 5 12.5

B6 2.77 10 12.5

B7 2.77 0 25

B8 2.77 5 25

B9 2.77 10 25

Table1 Valuesoffactors.

Factor Lowlevel() Midlevel(0) Highlevel(+)

Linearvelocity(ms1) 1.41 2.77 4.06

Postmixingtime(min) 0 5 10

Temperaturedifference(C) 0 12.5 25

(4)

TheproductsweresuspendedinMiglyol812withultrasoundin ordertoensurethepresenceofindividualparticles.Approximately 1000particlespersamplewereexamined.

2.7.Scanningelectronmicroscopy

ThemorphologyoftheparticleswasexaminedbySEM(Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Japan). A sputter coating apparatus (Bio-Rad SC 502, VG Microtech, Uckfield, UK) was applied to induce electric conductivity on the surface of the samples.Theairpressurewas1.3–13.0mPa.

2.8.Particlesizedistributionanalysis

A Malvern Mastersizer laser diffraction analyser (Malvern InstrumentsLtd.,Malvern,UK)withameasuringrangeof0.02– 2000

m

mwasusedtomeasurethecrystalsizedistributions.The particlesizedistributionwasdeterminedinadrymethodwitha Sciroccodrypowderfeeder;airwasusedasthedispersionagent.

Atleastthreerepeatedmeasurementswereperformedoneach sampleandthemeanvaluewascalculated.Thetableswiththe resultscontaind(0.5)(definedasthediameterwherehalfofthe populationliesbelowthisvalue)andD[4,3](themeandiameter overvolume,alsoreferredtoastheDeBroukeremean).

2.9.Determinationofresidualsolventcontent

Theresidualsolventcontentwasanalysedbyaheadspacegas chromatographicmethod,withanAgilent7890A gaschromato- graph(AgilentTechnologiesInc.,SantaClara,CA,USA)withaDB- 624capillary column(60m0.25mm1.4

m

m,nominal)equipped withanAgilentGCSampler80andaflameionizationdetector.The conditionsofthegaschromatographicanalysiswereasfollows:the oventemperaturewasinitiallymaintainedat40Cfor6min,and thenraisedatarateof7Cmin1to194C,whereitwasheldfor 0min. Thetemperatureoftheinjectorwassetat220Candthe detectortemperaturewassetat300C.Heliumwasusedascarrier gas at a pressure of 34.8psi.1mL samples were injected in split mode, withasplitratioof8:1.Theagitatortemperaturewas80Cwitha speed of 500rpm, and thesyringe temperaturewas 110C. The sampleequilibrationtimewas20min.Thehydrogengasandairflow rateswere30and350mLmin1,respectively.

The ethanol concentration of the standard solution was 100

m

gmL1. The blank sample contained 500mg of sodium sulfate dissolved in 1mL of water for injection in a 20mL headspacevial.Thestandardsamplecontainedthesamequantity ofsodiumsulfatedissolvedin1mLofstandardsolution,whilethe samplesolutioncontained500mgofsodiumsulfateand100mgof crystallizedglycinesampledissolvedin1mLofwaterforinjection.

Table3

CrystallizationresultsinseriesA.

Sample Linearvelocity(ms1) Postmixingtime(min) Roundness d(0.5)(mm) D[4,3](mm) Percentageyield

A1 1.41 0 2.977 15.792 21.497 62.84

A2 1.41 5 2.292 15.808 20.295 65.90

A3 1.41 10 2.089 31.222 37.498 67.22

A4 2.77 0 2.715 16.770 22.530 65.17

A5 2.77 5 2.251 26.057 31.610 64.14

A6 2.77 10 2.033 34.285 40.650 66.10

A7 4.06 0 2.116 14.029 17.175 64.97

A8 4.06 5 2.363 13.778 17.784 68.06

A9 4.06 10 1.961 31.948 38.076 68.72

Table4

CrystallizationresultsinseriesB.

Sample Temperaturedifference(C) Postmixingtime(min) Roundness d(0.5)(mm) D[4,3](mm) Percentageyield

B1 0 0 1.825 10.142 13.329 82.25

B2 0 5 2.429 9.249 11.241 81.11

B3 0 10 2.935 9.368 11.563 80.54

B4 12.5 0 2.851 8.335 10.889 81.54

B5 12.5 5 2.186 8.524 10.803 85.59

B6 12.5 10 2.292 9.664 12.662 82.34

B7 25 0 2.071 8.575 11.599 80.60

B8 25 5 2.166 10.204 13.849 85.73

B9 25 10 2.513 8.835 11.636 84.33

Fig.2.Lightmicroscopyimagesofglycinecrystals.

(left:originalcrystal;middle:crystallizedproductA8;right:crystallizedproductB7).

(5)

3.Resultsanddiscussion

Thecrystallizationresultsforthetwoseriesarepresentedin Tables 3 and 4. Each assay was repeated three times; the Tablesshowtheaverageresultsofroundness,d(0.5),D[4,3]and percentageyield.

Theapplicationoftheimpingingjetcrystallizationtechnique resultedinasmallerparticlesizeascomparedwiththepreviously investigated conventional crystallization methods. The parallel crystallizationprocesseswiththesameparametersproducedthe sameparticlesizedistribution,whichconfirmedthereproducibil- ityofthemethod.InseriesA, increaseofthepost-mixingtime improvedthe roundness, but increased theparticle sizeof the

product, which was in contrast with the announced goal. The averageparticlesizeincreasedtoagreaterextentparticularlyata post-mixingtimeof10min.Asthecrystallizationparametershad opposite effects on the particle size and roundness, it was favourable to applya post-mixing time reduction. In series B, neither the temperature difference nor the post-mixing time influenced the particle size or roundness of the crystallized products significantly, but each individual parameter setting resultedinsignificantlysmallerparticlesascomparedwithseries A.ThepercentageyieldinseriesBwashigherduetothelower Fig.3.SEMimagesofglycinecrystals.

(left:originalcrystal;middle:crystallizedproductA8;right:crystallizedproductB7).

Fig.5.DSCthermogramsoftheinitialmaterialandcrystallizedproducts.

(6)

solubilityof glycinein the1:2solvent–antisolventmixture.The filterabilityofallthecrystallizedproductswassatisfactory.

Thedifferencesin crystalsizeandmorphologicalparameters canbeseeninthelightmicroscopyandSEMimages(Figs.2and3).

Theoriginalglycinecontainedlargeisodimensionalcrystalswitha smooth surface. By contrast, the products with the smallest average particles in the two crystallization series consisted of small, irregular-shaped, needle-form crystals with a smooth surfaceandpoorerroundness.Thecrystallizedproductsexhibited aslighttendencytoaggregateduetothesmallparticlesize,but thisdidnotcauseanyproblemforthelaserdiffractionparticlesize analysismeasurements and allowed the application of the dry method.

Thepolymorphismoftheinitialmaterialandtheproductswas examined with a powder X-ray diffraction apparatus and compared with the structures in the Cambridge Structural Database (refcodes GLYCIN02 (

a

) and GLYCIN (

b

)) (Fig. 4). It wasfoundthatboththeinitialmaterialandtheseriesAproducts consistedofthepurestable

a

polymorph.Incontrast,theseriesB productscontained mostly theless stable

b

polymorph, and a smallamountofthe

a

polymorph.Accordingtotheliteraturedata (Weissbuchetal.,2005;Ferrarietal.,2003),theappearanceofthe

b

polymorphiscausedbythepresence(andtheconcentration)of ethanol in the crystallization process. While the 1:1 solvent– antisolventratiofavouredtheformationofthestable

a

form,the higherethanolratioresultedintheappearanceofthelessstable

b

polymorph.

Transformation of the

b

form intothe

a

polymorph began duringstorage.Thepure

b

formhadbeengeneratedasdescribed in the literature (Boldyreva et al., 2003a). Powder mixtures of variouscompositions(0+100,10+90,20+80

a

+

b

forms,andso on)werepreparedfromthetwopolymorphsandthecalibration curve was recorded. The calibration curve based on the

characteristic peak area of the

a

form (peaks at 29.225, 29.827and30.1722

u

)wasasfollows:y(

a

form%)=1.7465x (netarea)+158.25(R2=0.991).Theinitial

b

formcontentofthe seriesBsampleswasbetween72and96%.After1yearofstorage, the

b

formcontenthaddecreasedto13–17%.TheseriesAproducts didnotchangeduringthisstorageperiod.Itwasfoundthatthe 1:1solventratiousedinthecrystallizationprocesseswascrucial fortheformationofthestablepolymorphicform.

DSCstudiesconfirmedtheresultsofthepowderX-rayanalysis.

ThethermogramsoftheinitialmaterialandtheseriesAproducts contained oneendothermicpeak at about 257C, which corre- spondstothemeltingpointofthe

a

form(Srinivasan,2008).In contrast,thethermogramsoftheseriesBsamplesdisplayedtwo endothermicpeaks.Thelower-temperaturepeakcorrespondedto themeltingpointofthe

b

form,whilethesecondpeakwascaused bythemelting ofthe

a

form.Itwasnotpossibletospecifythe proportionofthepolymorphsbecausethetwoendothermicpeaks overlapped. Afterstorageforone year,thethermogramsof the seriesBsamplesweresimilartothepreviouslyrecordedones.It hasbeenreportedthatthephasetransitionofthe

g

formtothe

a

polymorph causes a small endothermic peak at about 179C (Srinivasan,2008).Ourresultsindicatedthatoursamplesdidnot containany

g

form(Fig.5).

Thegrowthofthecrystalsduringimpingingjetcrystallization israpid,duetothehomogeneousandhighdegreeofsupersatura- tion,sothatthechanceoftheoccurrenceofsolventinclusionis high. Ethanol (usedasantisolvent) belongs in theICH Q3C(R2) GuidelineClass3group(wheretheresidualsolventconcentration isatmost5000ppm),anditwasthereforenecessarytodetermine its concentration in the crystallized products (ICH, 2011). The residual solvent contents of the crystallized samples were determinedby headspacegaschromatography(Grodowskaand Parczewski,2010).Ourresultsindicatedthattheethanolcontentof theinitialsamplewaslessthanthelimitofquantification,andit was therefore assumed that ethanol was not used in the preparation of this material. The maximum residual solvent content ofthe seriesA samples was 9ppm, while thesamples in series B contained a maximum 145ppm of ethanol. The measuredresidualsolventcontentofthesampleswaslowrelative tothemaximumvaluesprescribedintheICHrequirements,which demonstratedtheapplicabilityoftheimpingingjetmethodinthe antisolventcrystallizationofglycinedespitetheextremelyrapid nucleation.

Statistical analysis results relating to the effects of the crystallization parameters on the roundness and particle size arepresentedinTable5,wherethestatisticallysignificantfactors areunderlined.

InthecaseofseriesA,onlythepost-mixingtimeexhibiteda significantlinear relationshipwiththechangesin roundness,d (0.5)andD[4,3]results(theresponsesurfacer2resultswere0.858, 0.937and0.943,respectively).Neitherthelinearnorthequadratic relationshipofthelinearvelocityandtheinteractioneffectofthe two independent variablesdisplayed a significanteffectonthe change in these dependent variables. An increase of the post- mixingtimeincreasedtheaverageparticlesize,butreducedthe roundness,andthepost-mixingtimethereforehadtobereduced toachievethedesiredsmallparticles.Weassumethatanincrease Table5

Factorialdesignresults(seriesA).

Dependentvariable Polynomialfunction r2

Roundness y=2.320.31x10.58x2+0.04x210.01x22+0.37x1x2 0.858

d(0.5) y=22.191.02x1+16.94x2+5.29x215.46x22+1.25x1x2 0.937

D[4,3] y=27.472.09x1+18.32x2+6.24x216.34x22+2.45x1x2 0.943

Fig.6.Particlesize distributionand average particlesizerangeproduced by differentcrystallizationmethods.

(top:particlesizedistributionoftheproductwiththesmallestaverageparticlesize achievedwiththegivenmethod;bottom:averageparticlesizeranges(d(0.5)) attainedwiththegivenmethod).

(7)

ofthelinearvelocitywouldcauseafurtherparticlesizereduction, butthepumpcapacitywaslimited,sothatthevelocitycouldnot beincreasedascomparedwiththeoriginalparametersdescribed inthecrystallizationstudies.Theinvestigatedparametersdidnot causesignificantchanges in the particlesize and roundnessin seriesB.

Fig.6depictstheparticlesizedistributionsoftheproductswith the smallest particles and the average particle size ranges produced by impinging jet crystallization and the previously investigatedcrystallizationmethods(Aigneretal., 2012).Those studieshad shown that the largestparticles were achievedby conventionalcoolingcrystallization.Thereverseantisolventand antisolventmethodswiththeapplicationofultrasoundwerealso abletoachieve slightreductionsin theaverageparticlesize of glycine.Theimpingingjet technologyresulted ina furtherone orderofmagnitudereductioninparticlesize.

4.Conclusions

Glycinecrystalsgrowrapidlyandthecrystalsizeistypically quitelarge,andglycineisthereforeanidealmodelmaterialfor particlesizereductionexperiments.Applicationoftheimpinging jet method in antisolvent crystallization led to a reproducible decreaseintheaverageparticlesizeofglycine,withsuitablelow residualorganicsolventquantityandroundness.Afactorialdesign wasappliedtochoosetherelevantcrystallizationfactors,andthe results were analysed by means of a statistical program. The average particle size was an order of magnitude smaller (d (0.5)=8–35

m

m) as compared withthe results of several other crystallization methods (cooling, reverse antisolvent and anti- solventcrystallizationwiththeapplicationofultrasound,whered (0.5) was between 82 and 680

m

m). Production of the stable polymorphicformrequiredtheapplicationofa1:1water–ethanol ratio.

The impingingjetcrystallizationmethodhasprovedtobea good tool for optimizing and controlling the nucleation and crystallizationoforganicmaterialssuchasglycine.Furthermore,it canbeusedasaveryeffectivesizereductionmethodtoattaina final product with suitable crystal morphology and a narrow particlesizedistribution.

Acknowledgements

TheauthorswishtothankRitaAmbrusforhercontributionto theSEManalysis.WearegratefulforthesupportofDAAD-MÖB projectNo.39349.

References

Aigner,Z.,Szegedi,Á.,Szabadi,V.,Ambrus,R.,Sovány,T.,Szabó-Révész,P.,2012.

Comparativestudyofcrystallizationprocessesincaseofglycinecrystallization.

ActaPharmaceuticaHungarica82,61–68.

Bauer-Brandl,A.,1996a.Polymorphictransitionsofcimetidineduringmanufacture ofsoliddosageforms.Int.J.Pharm.140,195–206.

Bauer-Brandl,A.,1996b.Erratumtopolymorphictransitionsofcimetidineduring manufactureofsoliddosageforms.Int.J.Pharm.145,253.

Boldyreva,E.V.,Drebushchak,V.A.,Drebushchak,T.N.,Paukov,I.E.,Kovalevskaya,Y.

A.,Shutova,E.S.,2003a.Polymorphismofglycine.Thermodynamicaspects.Part I.Relativestabilityofthepolymorphs.J.Therm.Anal.Calorim.73,409–418.

Boldyreva,E.V.,Drebushchak,V.A.,Drebushchak,T.N.,Paukov,I.E.,Kovalevskaya,Y.

A.,Shutova,E.S.,2003b.Polymorphismofglycine.Thermodynamicaspects.Part II.Polymorphictransitions.J.Therm.Anal.Calorim.73,419–428.

Calvignac,B.,Boutin,O.,2009.Theimpingingjetstechnology:acontactingdevice usingaSASprocesstype.PowderTechnol.191,200–205.

D’Addio,S.M.,Prud’homme,R.K.,2011.Controllingdrugnanoparticleformationby rapidprecipitation.Adv.Drug.Deliv.Rev.63,417–426.

Dong,Y.,Ng,W.K.,Shen,S.,Kim,S.,Tan,R.B.H.,2011.Controlledantisolvent precipitationofspironolactonenanoparticlesbyimpingementmixing.Int.J.

Pharm.410,175–179.

Dubbini,A.,Censi,R.,Martena,V.,Hoti,E.,Ricciutelli,M.,Malaj,L.,Martino,P.D., 2014.InfluenceofpHandmethodofcrystallizationonthesolidphysicalformof indomethacin.Int.J.Pharm.473,536–544.

amEnde,D.J.,Brenek,S.J.,2004.Strategiestocontrolparticlesizeduring crystallizationprocesses.Am.Pharm.Rev.7,98–104.

Ferrari,E.S.,Davey,R.J.,Cross,W.I.,Gillon,A.M.,Towler,C.S.,2003.Crystallizationin polymorphicsystems:thesolution-mediatedtransformationofbtoaglycine.

Cryst.GrowthDes.3,53–60.

Goryainov,S.V.,Boldyreva,E.V.,Kolesnik,E.N.,2006.Ramanobservationofanew(z) polymorphofglycine?Chem.Phys.Lett.419,496–500.

Grodowska,K.,Parczewski,A.,2010.Organicsolventsinthepharmaceutical industry.ActaPol.Pharm.DrugRes.67,3–12.

Hacherl,J.M.,Paul,E.L.,Buettner,H.M.,2003.Investigationofimpinging-jet crystallizationwithacalciumoxalatemodelsystem.AIChEJ.49,2352–2362.

ICHInternationalConferenceonHarmonisationofTechnicalRequirementsfor RegistrationofPharmaceuticalsforHumanUse,ICHharmonisedtripartite guidelinevalidationofImpurities:GuidelineforresidualsolventsQ3C(R5), (February2011).

Lin,C.H.,Gabas,N.,Canselier,J.P.,Pèpe,G.,1998.Predictionofthegrowth morphologyofaminoacidcrystalsinsolution:I.è-glycine.J.Cryst.Growth191, 791–802.

Liu,L.X.,Marziano,I.,Bentham,A.C.,Litster,J.D.,White,E.T.,Howes,T.,2013.

Influenceofparticlesizeonthedirectcompressionofibuprofenanditsbinary mixtures.PowderTechnol.240,66–73.

Liu,Y.,Cheng,C.,Liu,Y.,Prud’homme,R.K.,Fox,R.O.,2008.Mixinginamulti-inlet vortexmixer(MIVM)forflashnano-precipitation.Chem.Eng.Sci.63,2829–

2842.

Louhi-Kultanen,M.,Karjalainen,M.,Rantanen,J.,Huhtanen,M.,Kallas,J.,2006.

Crystallizationofglycinewithultrasound.Int.J.Pharm.320,23–29.

Lung-Somarriba,B.L.M.,Moscosa-Santillan,M.,Porte,C.,Delacroix,A.,2004.Effect ofseededsurfaceareaoncrystalsizedistributioninglycinebatchcooling crystallization:aseedingmethodology.J.Cryst.Growth270,624–632.

McCausland,L.J.,Cains,P.W.,2003.Ultrasoundtomakecrystals.Chem.Indust.5, 15–

16.

McCausland,L.J.,Cains,P.W.,Martin,P.D.,2001.Usethepowerofsonocrystallization forimprovedproperties.Chem.Eng.Prog.97,56–61.

Midler,M.,Paul,E.L.,Whittington,E.F.,Futran,M.,Liu,P.D.,Hsu,J.,Pan,S.H.,1994.

Crystallizationmethodtoimprovecrystalstructureandsize.PatentUS 5,314,506.

Rabesiaka,M.,Sghaier,M.,Fraisse,B.,Porte,C.,Havet,J.-L.,Dichi,E.,2010.

Preparationofglycinepolymorphscrystallizedinwaterandphysicochemical characterizations.J.Cryst.Growth312,1860–1865.

Srinivasan,K.,2008.Crystalgrowthofaandgglycinepolymorphsandtheir polymorphicphasetransformations.J.Cryst.Growth311,156–162.

Srinivasan,K.,Devi,K.R.,Azhagan,S.A.,2011.Characterizationofaandg polymorphsofglycinecrystallizedfromwater-ammoniasolution.Cryst.Res.

Technol.46,159–165.

Tung,H.-H.,Paul,E.L.,Midler,M.,McCauley,J.A.,2009.CrystallizationofOrganic CompoundsAnIndustrialPerspective.JohnWiley&SonsInc.,NewJersey,pp.

196–204.

Weissbuch,I.,Torbeev,V.Y.,Leiserowitz,L.,Lahav,M.,2005.Solventeffectoncrystal polymorphism:whyadditionofmethanolorethanoltoaqueoussolutions inducestheprecipitationoftheleaststablebformofglycine.Angew.Chem.Int.

Ed.117,3290–3293.

Woo,X.Y.,Tan,R.B.H.,Braatz,R.D.,2009.Modelingandcomputationalfluid dynamicspopulationbalanceequationmicromixingsimulationof impingingjetcrystallizers.Cryst.GrowthDes.9,156–164.

Woo,W.Y.,Tan,R.B.H.,Braatz,R.D.,2011.Precisetailoringofthecrystalsize distributionbycontrolledgrowthandcontinuousseedingfromimpingingjet crystallizers.Cryst.Eng.Comm.13,2006–2014.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this research particle size distribution was carried out to compare the differences in particle sizes of raw fly ash and fine, coarse products obtained after separation

Our aim was to produce cilostazol crystals with small average particle size; besides suitable roundness, narrow particle size distribution and stable polymorphic form to increase

 Physical characterisation of the developed apigenin containing pellets with modified drug release, such as particle shape and size, particle size distribution,

Furthermore, our investigations verified the key importance of suitable and stable particle size distribution followed by examples of colloid based

In addition, Figure 7b indicates that the Raman enhancement depends on the ratio of particle separation/particle size (marked as r/D) as well, and the lower the average

Influence of the sand particle shape on particle size distribution measured by laser diffraction

Particle-size measurements of ablated drug particles (ibuprofen, niflumic acid and meloxicam). a) Mode values of the particle size distributions at various laser fluences; b)

XRPD patterns of the NIF samples produced by solvent evaporation (NIF-SE), anti-solvent crystallization (NIF-AC) and electrospray crystallization (NIF-NANO), compared with