• Nem Talált Eredményt

Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization"

Copied!
7
0
0

Teljes szövegt

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Analysis of submicron-sized niflumic acid crystals prepared by electrospray crystallization

Rita Ambrus

a

, Norbert Radacsi

b

, Tímea Szunyogh

a

, Antoine E.D.M. van der Heijden

b,c

, Joop H. ter Horst

b

, Piroska Szabó-Révész

a,∗

aDepartmentofPharmaceuticalTechnology,UniversityofSzeged,Eötvös6,H-6720Szeged,Hungary

bProcess&EnergyLaboratory,DelftUniversityofTechnology,Leeghwaterstraat44,2628CADelft,Netherlands

cTechnicalSciences,TNO,2280AARijswijk,Netherlands

a r t i c l e i n f o

Articlehistory:

Received26June2012

Receivedinrevisedform31October2012 Accepted2December2012

Available online xxx

Keywords:

Nanoparticles

Electrospraycrystallization Anti-solventcrystallization Solventevaporation Niflumicacid

Physico-chemicalanalysis

a b s t r a c t

Interestinsubmicron-sizeddrugparticleshasemergedfrombothlaboratoryandindustrialperspectives inthelastdecade.Productionofcrystalsinthenanosizescaleoffersanovelwaytoparticlesfordrug formulationsolvingformulationproblemsofdrugswithlowsolubilityinclassIIoftheBiopharmaceutical ClassificationSystem.Inthisworkniflumicacidnanoparticleswithasizerangeof200–800nmwerepro- ducedbythenovelcrystallizationmethod,electrospraycrystallization.Theirpropertieswerecompared tothosefromevaporativeandanti-solventcrystallizations,usingthesameorganicsolvent,acetone.

Thereisaremarkabledifferenceintheproductcrystalsizedependingontheappliedmethods.Thesize andmorphologywereanalyzedbyscanningelectronmicroscopyandlaserdiffraction.Thestructureof thesampleswasinvestigatedusingdifferentialscanningcalorimetry,Fourier-transformedinfraredspec- troscopyandX-raypowderdiffraction.Theparticlesproducedusingelectrospraycrystallizationprocess wereprobablychangingfromamorphoustocrystallinestateaftertheprocedure.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Niflumicacid(NIF)isanimportantanti-inflammatorydrugand hasaweakanalgesiceffect.Itisprimarilyusedtotreatdifferent formsofrheumatism,likerheumatoid arthritisorarthrosis,and tocureotherinflammatorydiseases[1].However,itspooraque- oussolubilityanddissolutionratearedisadvantages[2].Toachieve optimalpharmacodynamicpropertiessuchasarapidonsetofthe drugeffect,fastdissolutionisimportantforthistypeofdrug.Inour earlierstudies,theaimwastoimprovethesolubilityanddissolu- tionrate,viathepreparationofternarysystemsofNIF,cyclodextrin (CD)andpolyvinylpirrolidone(PVPK-25)indifferentNIFtoCDto PVPratiosbyphysicalmixing,kneading,microwaveirradiationand micronization[3–6].

The interest for nano/micron particles in pharmaceutical research hasemerged recently,since studies have proven that particlesizereductioncaninfluencethemechanismsofdrugdeliv- eryinmanyways[7–14].Thedifferentmethodsusedforparticle sizereductioncanbedividedintotwomaincategories:top–down method,where theraw material is subsequently broken down byusingmillingmethodsuntilmicro-ornanosizedparticlesare

Correspondingauthor.Tel.:+3662545575;fax:+3662545571.

E-mailaddress:revesz@pharm.u-szeged.hu(P.Szabó-Révész).

producedandthebottom–upapproach(crystallizationprocedure), thebasicprincipleofwhichinvolvingdissolutionofthedrugina solvent,followedbyadditionofthesolutiontoanon-solvent,asa consequenceofwhichthedrugprecipitates.Thenanosuspension engineeringprocessescurrentlyusedincludeprecipitationusing high-pressurehomogenizationinwater,inmixturesofwaterand water-miscibleliquids,orinnon-aqueousmedia[15–19].Electro- spraycrystallizationasanovelpossibilityinbottom–upprocedure, hasthepotentialtobecomeanefficient,cost-effectivemethodfor theproductionofsubmicron-sizedorganiccrystals[20],offeringa simpleformulationwayofpharmaceuticalingredientswithbene- ficialproperties[21–23].

Inelectrospraycrystallizationahigh,constantpotentialdiffer- enceisappliedtoanozzle,throughwhichaconductivesolution ispumped(Fig.1).Ifthepotentialdifferenceissufficientlyhigh, electrostaticforcesovercomethesurfacetensionandajetofliq- uidisemittedfromtheso-calledTaylor-coneformedatthenozzle.

Atsomedistancefromthenozzle,thejetbecomesunstableand breaksintodroplets,whichareacceleratedtowardthegrounded platebytheelectricfield.Coalescenceofthedropletsisprevented becauseoftheunipolarcharge[21](whichenablesproductionof nano-sizedcrystals).Uponusingasufficientlyvolatilesolventsuch asacetone,solventevaporationoccurs,whichincreasesthespecific surfacechargedensitybecauseofthedecreaseindropletvolume andsurfacearea.Asthesurfacechargedensityreachesacritical 0731-7085/$seefrontmatter© 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jpba.2012.12.001

(2)

Fig.1.Schematicsoftheelectrospraycrystallizationprocess.Usingasmallnozzle diameter(d),alowconstantflowrate(ϕ),relativelylowsoluteconcentration(c) ajetofhighlychargedsmalldropletswillbeemittedfromtheconeappearingat thenozzletipwhenapplyingahighenoughpotentialdifference(U)atacertain workingdistance(D).

value(Rayleigh-limit)[24]electrostaticforcesovercomethesur- facetensionandthedropletdisruptsintosmallerdropletstoreduce thesurfacechargedensitybycreatingmoresurfacearea.Thisdis- ruptionprocessiscalledCoulomb-fission.Atsomepointduringthis processofdropletevaporationanddisruption,thedrivingforcefor crystallizationbecomessufficientlylargeforcrystalnucleationand growthtooccur.Itisassumedthatcrystallizationisconfinedtothe volumeofthedroplet[25].Therefore,ifthedropletsaresufficiently small,typicallyonecrystalperdropletisformed.Thesecharged submicroncrystalsaccumulateatthegroundedsurfacewherethey losetheirsurfacecharge.

ItisknownthattheelectrospraycrystallizationresultsinNIF particleswithsignificantlyimproveddissolutionrate[26],andthis paperismeanttocharacterizetheproducedsubmicroncrystals.

Thegoalofthisresearchwastoprepareandanalyzesubmicron- sizedNIFcrystals.Herebyelectrospraycrystallizationisintroduced asapotentialinexpensiveandsimplemethodfortheproduction of such submicron-sized drug crystals and compared to con- ventionalevaporative anti-solvent crystallizations.The effectof three differentcrystallizationmethods (electrospray crystalliza- tion,anti-solventcrystallizationandevaporativecrystallization)on

thecrystalstructure,productandsizemicrometricpropertiesis investigatedandcomparedwiththeconventionalNIF.

2. Materialsandmethods

2.1. Materials

Conventional niflumic acid (NIF) (2-[[3-(trifluoromethyl) phenyl]amino]-3-pyridinecarboxylicacid)withbroadcrystalsize distributionandameansizeofaround80␮mwaspurchasedfrom G.RichterPharmaceuticalFactory,Budapest,Hungary.Forallthe crystallization processes thesolution was prepared with99.8%

acetone,purchasedfromMerck.

2.2. Methods

2.2.1. Preparationprocedure

2.2.1.1. Electrospray crystallization. An eight-nozzle electrospray crystallizationsetupwithdifferentNIFconcentrations(10,20and 30mgml−1)wasusedtoproducethesubmicron-sizedNIF.The setupconsistedofeightnozzles,anozzleholder,agroundedstain- lesssteelcollectorplate,aMeredosTL-EADperistalticpump,which providedanequaldistributionofthesolutionflowoverthenoz- zles,andaWallis±10kVDCpowersupplythatwasusedinpositive DCmodetoprovidethepotentialdifferencebetweenthetipofthe nozzlesandthegroundedplate.Theusednozzleshadalengthof 25.4mmandtheinnerdiameterof0.33mm.Theywerepurchased fromEFD,USA.TheproductdesignatedinthetextasNIF-NANO referstothesampleafter2weeksstorage.

2.2.1.2. Anti-solventcrystallization(AC). Inthismethod,asolution of500mgofNIFin5mlofacetonewasaddedto25mlofanaqueous mediaat roomtemperature (25C)that wasacting asan anti- solvent(Fig.2).Duetotheanti-solventeffect(acetoneismiscible withwater,and wateractsasananti-solventforNIF),thedriv- ingforceforcrystallizationwasreachedrapidly,andasuspension ofprecipitatedcrystalswasproducedinwater.Thisprocesswas carriedoutbyusingaT-25typeofUltra-Turraxdispersersimul- taneously(IKA, Staufen,Germany) at 24,000rpm for 10min,as energyinputforsizedecreasing(thegrowthoftheprecipitated crystalcouldbecontrolled).Thisveryhighstirringrateresultsina slighttemperatureincrease(upto33C)andenhancestheevapora- tionrateoftheacetonefromthemixture.Theproductwasfiltered anddriedatroomtemperature,theninvestigatedimmediately.The productislabeledasNIF-ACinthepaper.

2.2.1.3. Preparation ofthe sampleby solventevaporation(SE). An amountof250mgNIFwasdissolvedin5mlacetone,andthenthe solventwasevaporatedwiththehelpofacolddryer(HM3Dryer,

Fig.2.Schematicdrawingoftheanti-solventcrystallizationmethod.

(3)

MH9150201,Siemens,Germany)at20Cuntilalltheacetoneevap- orated. Thenthedry powderwaspulverized and homogenized manuallyinamortartoensureanarrowcrystalsizedistribution.

Thentheproductwasinvestigatedimmediately.TheNIFproduced byevaporativecrystallizationislabeledinthetextasNIF-SEinthe paper.

2.3. Analysis

2.3.1. Scanningelectronmicroscopy(SEM)

Thecrystalsizeand shapewereexaminedbyscanningelec- tronmicroscopy(HitachiS4700,HitachiScientific Ltd.,Japan).A sputtercoatingapparatus(Bio-RadSC502,VGMicrotech,England) wasappliedtoinduceelectricconductivityonthesurfaceofthe samples.Theairpressurewas1.3–13.0mPa.Sampleswerefixed ontoametallicstubwithdouble-sidedconductivetape(diame- ter12mm,Oxon,OxfordInstruments,UK).Imagesweretakenin secondaryelectronimagemodeat10kVaccelerationvoltage.The particlediameterdistributionswereobtainedbyanalyzingseveral SEMimageswiththeImageJsoftwareenvironment[27].Over150 individualparticlemeasurementsweremadeusingatleastfive differentimagesinordertodeterminetheparticlesizedistribution.

2.3.2. Particlesizeanalysis

TheparticlesizedistributionoftheconventionalNIFwasmea- suredbyalaserdiffractometer(MastersizerS,MalvernInstruments Ltd.,Worcestershire,UK)withthefollowingparameters:300RF lens, small volume dispersion unit rotated at 2000rpm, 1.510 refractiveindexfordispersedparticles,and1.330refractiveindex forthedispersionmedium.

2.3.3. Differentialscanningcalorimetry(DSC)

DSCwasemployedtoinvestigatethecrystallizationbehavior andthemeltingbehavioroftheconventionalandsubmicron-sized NIF. The DSCmeasurements weremade witha Mettler Toledo DSC821ethermalanalysissystemwiththeSTARethermalanalysis programV9.1(MettlerInc.,Schwerzenbach,Switzerland).Approx- imately2–5mgofproductwasexaminedinthetemperaturerange between25Cand300C.Theheatingratewas5Cmin−1.Argon wasusedasacarriergas,ataflowrateof10lh−1duringtheDSC investigation.

ThecrystallinityindexofthedifferentNIFsampleswascalcu- latedfromtheheatsoffusion:theratiobetweenthenormalized enthalpyoftheNIFsamplesandthenormalizedenthalpyofthe conventionalNIFindicatestheproductcrystallinity[28].

2.3.4. X-raypowderdiffraction(XRPD)

XRPDwascarriedoutinordertodeterminethecrystallineform and crystallinityoftheproducedmaterials.Samplesweremea- suredwithaBrukerD8Advancediffractometer(BrukerAXSGmbH, Karlsruhe,Germany).Datacollectionwascarriedoutatroomtem- peratureusingmonochromaticCuK˛1radiation(˛=0.154060nm) inthe2regionbetween3 and50.Formeasurementsdirectly afterelectrospraycrystallization,about10 milligramsofsample wasdirectlydepositedonazerobackgroundholder(Sisinglecrys- tal<510>wafer)andplacedintotheXRDdirectlyafterproduction.

Therecording of thepatternwas relativelyfast,it lasted180s.

Diffractionpatternswererecordedfrom15mintill20hafterpro- ductionatdifferenttimeintervals.

2.3.5. Fouriertransforminfraredspectroscopy(FT-IR)

FT-IRspectroscopywasusedtoinvestigatethechemical sta- bilityof thedrug.FT-IR spectraweremeasuredonan AVATAR 330 FT-IR apparatus (Thermo Nicolet, USA), in the interval 400–4000cm1,at4cm1opticalresolution.StandardKBrpellets

Fig.3.Therelationbetweenworkingdistance(D)andpotentialdifference(U).

werepreparedfrom150mgofKBrpressedwith10tonandsamples containing0.5mgofNIFwereused.

3. Resultsanddiscussion

3.1. Electrospraycrystallizationprocessparameters

Theelectrospraycrystallizationprocessparametersweredeter- minedfortheproductionofthedesiredsubmicronproduct.Three processparameterswereidentifiedtohaveamajoreffectonthe product:initialsoluteconcentration(c),potentialdifference(U) and nozzlediameter(d).Theflowrate(ϕ)couldnot beinvesti- gated,sincetheoperationwindowoftheflowratewastoolow,and changesinflowrateresultedininstablejet.Theworkingdistance (D)stronglydepends ontheappliedpotentialdifference:larger distancesdemandhigherpotentialdifference.Fig.3showstherela- tionshipbetweenworkingdistanceDandpotentialdifferenceU.

Whenhigherinitialconcentrationswereused,theaveragecrys- talsizeincreased:thesamedropletwithahigherconcentration containsmoresolutethatcancrystallize,resultinginlargercrystals (Fig.4).Thecrystalshapealsodependsontheinitialconcentra- tion.Athigher concentrations,theobtainedcrystalsweremore needle-like,whileatlowerconcentrationsthecrystalshadsome- whatsphericalshape(Fig.4).

Alowerpotentialdifferenceresultedinagglomerationofcrys- tals.Theincreaseofthenozzlediameteralsoresultsinagglomerate

Fig.4.Therelationshipbetweenthecrystalsizeandshapeandusedsolutioncon- centrationofNIFcrystals,producedbyelectrospraycrystallization.

(4)

Fig.5.SEMimagesof(a)conventionalNIF,(b)NIFproducedbyelectrospraycrystallization(NIF-NANO),(c)NIFproducedbyanti-solventcrystallization(NIF-AC)and(d)NIF producedbysolventevaporation(NIF-SE).

formation[26].Alowerpotentialdifferenceorlargernozzlediam- eter results in a lower charge density at the Taylor-cone and thereforeatthedropletsurface.Atalowersurfacechargedensity Coulomb-fissionisoccurringlaterorisabsentandcrystallization mightoccurinlargerdroplets,resultinginagglomeratedcrystals.

Theoptimalprocessparametersforproducingsubmicron-sized NIFcrystals(NIF-NANO)withacompactshape withoutagglom- erationwerefoundtobe:solutionconcentrationof20mgml1, apotentialdifferenceof+4.7kV,anozzlediameterof0.33mm,a workingdistanceof17mmandaflowrateof1.8mlh1.Withthese parameterssomewhatprismaticshapeNIFcrystalswithamean sizeofaround500nmwereproduced.Theproductionrateunder theseconditionswas150mgh−1.

3.2. Productsizeandshape

TheconventionalNIFcrystalshadasmoothsurfacewithpris- maticshapewitharound80␮mmeansizeandabroadcrystalsize distribution(Fig.5A).ThisshapewasalsoseenfortheNIF-SEcrys- tals(Fig.5D).Thecrystalshape ofNIF-SEwasprismaticaswell, anditssizedistributionwasverybroadwithanestimatemean sizeofaround46␮m,probablyduetotheappliedhomogenization bymanualpulverization.Byusingtheanti-solventcrystallization method(NIF-AC), needle-likeNIF crystalsin thesize ofaround 10␮mwereproduced(Fig.5C).Thiscrystallizationmethodcom- bined withhighshear mixing isan effectiveprocedure forthe particlesizedecreasingtowardthemicronrange.Theelectrospray crystallizationprocedurecausedthemostremarkablealterations

from allthe used crystallization methods. Afterthe procedure, somewhatsphericalshapedNIFparticleswerefoundwithamean sizeof500nm(Fig.5B).Thesesubmicronparticlesareclustered intoaggregatesupto20␮minsize,possiblyduetothestrongcohe- siveinteractionsbetweenthehydrophobiccrystalsurfaceswiththe increasedspecificsurfacearea.

Table1presentsthemeanparticlesizeofNIFdeterminedusing aSEMimagesanalysis.Itcanbeseenthatthesolventevaporation withpulverizationofthecrystals(NIF-SE)decreased thecrystal sizetonearlyhalfthatoftheconventionalNIFsize(80␮m)deter- mined.Theproductproduced bytheanti-solventcrystallization process(AC)resultedincrystalsaround7␮m.Electrospraycrystal- lizationresultedinnano-sizedparticles,around500nm.Itseems thattheincreaseinsupersaturationintheanti-solventcrystalliza- tionprocessisnotenoughtoobtainsubmicroncrystals.Alsothe crystallizationvolumeshouldbedecreased,asinelectrospraycrys- tallizationthemainreasonofsizedecreasingisthatmicron-sized dropletsarecreatedintheprocess,andcrystallizationcommences inthesmall,confinedvolumeofferedbythedroplets.

Table1

ThecalculatedmeancrystalsizeoftheconventionalNIFandtheproducedcrystals.

Sample Meansize(␮m)±SD

NIF 80±22.6

NIF-NANO 0.5±0.2

NIF-AC 7.4±3.9

NIF-SE 46.2±26.0

(5)

Fig.6. DSCcurveoftheconventionalNIFcomparedwiththerecrystallizedNIFobtainedfromthesolventevaporation(NIF-SE),therecrystallizedNIFobtainedfromthe antisolventcrystallization(NIF-AC)andthesubmicron-sizedNIFfromelectrospraycrystallization(NIF-NANO).

3.3. Structuralanalysis(DSC,XRPDandFT-IR)

The presence of amorphous fraction could be expected by spraying crystallization techniques,since the driving forces for crystallizationarehigh[29,30].Thepresenceofamorphousfrac- tionhasaneffectonthestabilityofthesamplesaswell.Dueto therapidevaporationofthesolventinelectrospraycrystallization, thecrystalstructure might notbuildupcompletely(kinetically formedmoreslowly)duringthecrystallizationprocess[31].Thus structural characterizations wereperformed to checkthe crys- tallinestateoftheproducedNIFcrystals.

3.3.1. Differentialscanningcalorimetry

DSCwasusedtomeasurethemeltingpoint(T)andtheheatof melting.TheonsetToftheconventionalNIFat202.49Creflected itsmeltingpoint(Fig.6).TheNIF-ACandNIF-SEsamplespresented similar DSCcurves with a melting point at around 202C. The submicron-sizedNIF (NIF-NANO)had awelldetectablemelting pointatalowertemperature(198.93C).Thelowermeltingpoint andbroaderpeakofthesubmicron-sizeddrugcanbeexplainedby therelativelylargeproportionofsurfacemoleculescomparedto thebulk.Thevibrationalandpositionalenthalpyandentropyof surfacemoleculesofsubmicron-sizedmaterialsaredifferentfrom thatofmoleculesinsidethebulkofthecrystals,whichcanalter physicalproperties,includingthermalproperties[32].Onewayto testthecrystallinityofthesamplesistodeterminethenormalized heatofmelting,sincethereisarelationbetweentheheatofmelting andthecrystallinefractionofthesample[28].

ThecrystallinityindexofNIFwascalculatedfromthenormal- izedheatofmelting ofthesamples(Table2).Theconventional NIF sample wasassumed to have 100% crystallinity. The sam- pleproducedbysolventevaporation(NIF-SE)showedhigherheat of meltingthan theconventional NIF,probably due tothepul- verizationimpactduringthepreparationprocedure.Thesample fromtheanti-solventcrystallizationmethod(NIF-AC)showed97%

crystallinity.Theelectrospraycrystallizationproduct(NIF-NANO) showedthelowestcrystallinityfromalltheproducedsamples,88%

ofthematerialwasmeasuredtobecrystalline,whichimpliesthat 12%ofthesampleisamorphous.Thecrystallinityindexwasalso

Table2

Thecrystallinityindex(CI)ofthesamplesaccordingtotheDSCmeasurements.

Sample Normalizedintegral(Jg−1) CI(%)

NIF 129.57±0.23 100

NIF-SE 131.22±0.45 100

NIF-AC 125.99±0.36 97

NIF-NANO(2weeksafter preparation)

114.15±0.82 88

ElectrosprayedNIF(15min aftertheprocedure)

105.32±0.39 81

calculatedforasamplethatwasmeasured15minafterthepro- ductionbytheelectrospraycrystallizationprocess.Itscrystallinity indexwas81%,7%lessthantheelectrosprayedsampleafter2weeks (NIF-NANO).ThisshowsthatapartofNIFchangedfromamorphous phasetocrystallinephaseduringthestorage.

TosummarizetheDSCresults,thereasonofmeltingdepression isapartofamorphousstateandparticlessizedecreaseofNIF.

3.3.2. X-raypowderdiffraction

XRPDanalysiswasusedtoexaminethecrystalstructureandit wasalsousedtoassessthecrystallinityoftheproducts.Thechar- acteristicintensityvaluesoftheNIFcanbefoundat8.2,12.9,16.2, 23.2, 25.72 values.Alltheproducedsamplesshowedpeaksat thesamepositionsastheconventionalNIF,buttheirintensitywas lower(Fig.7).Whenthethreeproducedsamplesarecomparedwith eachother,itcanbeseenthattheNIF-SEsamplehasmoreintense peaks,thantheNIF-ACorNIF-NANOsamples,indicatingthatthe NIF-SEsamplehashighercrystallinitythantheothertwoproducts.

ThepeakintensityoftheNIF-ACsampleisinbetweentheNIF-SE andtheNIF-NANOsamples.Fromthethreeproducedmaterials,the NIF-NANOsamplepresentsthelowestpeakintensities,indicating thelowestcrystallinefractionfromthemeasuredproducts.Sincein generaltheevaporativecrystallizationresultsinhighlycrystalline product,itwasassumedthattheNIF-ACandNIF-NANOsamples arepartiallyamorphous.TheparticlesizedecreaseoftheNIF-AC andNIF-NANOsamplesalsocanbethereasonforthemeasured lowerintensitiesintheXRPDpatterns.

(6)

Fig.7.XRPDpatternsoftheNIFsamplesproducedbysolventevaporation(NIF-SE), anti-solventcrystallization(NIF-AC)andelectrospraycrystallization(NIF-NANO), comparedwiththeconventionalNIF(NIF).

Fig.8.XRPDpatternoftheproducedNIF-NANOsampletill20haftertheprocedure.

Toinvestigatea possibletransitionbetweenamorphous and crystallinestateoftheNIF-NANOsample,diffractionpatternsof thesamplewasrecordeddirectlyaftersprayingfor20h.Thecrys- tallinitydidnotchangeinthefirst20h(Fig.8).SincetheXRPD patternoftheNIF-NANOsample(whichmeansthenanoparticles 2weeksafterelectrospraycrystallization)showedhigherintensi- tiesthancanbeseenonthe20hdiffractionpattern,probablythe crystallinityincreasedfurtherinthefollowingtwoweeks.

3.3.3. FT-IRanalysis

IR spectroscopy was used to study the chemical stability of the NIF samples. The IR spectrum of NIF displays strong

Fig.9.FT-IRspectraofconventionalNIF,theelectroprayedNIF-NANO,NIF-ACby anti-solventcrystallizationandNIF-SEbysolventevaporationmethods.

absorptionat1607cm−1thatisduetothecharacteristicas(COO) ands(COO)stretchingmodesofcarboxylgroups.Amiddle-strong peakat3163cm–1canbeascribedtotheN–Hvibrationofimine [33,34],andthestrongabsorptionpeakat1523cm–1isowingto theframeworkvibrationofthephenylandpyridinerings.TheFT-IR spectra(Fig.9)of NIF-SEand NIF-NANOdidnot presentdiffer- encescomparedwithNIF.Newbondswerenotdevelopedandold bondsdidnotdisappear.AccordingtotheFT-IRanalysisnochem- icalchangeinthestructurewasdetected,whichmeansthatthe producedsamplesdidnotshowpolymorphictransitionorchemical decomposition.ThisimpliesthattheproducedNIF-NANOcrystals arechemicallystablebeforeandaftertheprocedure.

4. Conclusions

Thisstudyhasshownthatelectrospraycrystallizationasanon- conventionalmethodcanbeusedtoformulatesubmicron-sized NIFcrystalswithameansizeofaround500nm.Carefulselection ofpreparationparametersiscriticaltoachievethesuitablesizeand shape.Lowerinitialsolutionconcentrationsleadtocompact,some- whatsphericalcrystalshape,whilehigherconcentrationsresult in needle-like crystals.The crystallization procedurewas com- paredtotwoconventionalcrystallizationmethods,evaporativeand anti-solventcrystallization,wheremacro-andmicro-sizedcrystals wereprepared.XRPDmeasurementsoftheimmediatelyproduced NIFcrystalsshowedthatbyevaporativeandanti-solventcrystal- lizationtheproductswerehighlycrystallinerightafterproduction andalsoafter2weeks.Howevertheelectrosprayedproductwas partlyamorphousrightaftertheproduction,andonly81%ofthe samplewascrystalline.Thecrystallinityoftheelectrosprayedsam- plehasincreasedduringstorage,accordingtotheDSCresultsthe two-week-old electrosprayedNIFsampleswere88% crystalline.

AccordingtotheFT-IRmeasurementstheNIFcrystalswerechem- icallystablebeforeandaftertheprocedure.

Acknowledgement

The publication/presentation is supported by the European UnionandcofundedbytheEuropeanSocialFund.Projectnumber:

TÁMOP-4.2.2/B-10/1-2010-2012.

Projecttitle:“Broadeningtheknowledgebaseandsupporting thelongtermprofessionalsustainabilityoftheResearchUniversity CenterofExcellenceattheUniversityofSzegedbyensuringthe risinggenerationofexcellentscientists.”

References

[1]The Merck Index, 14th ed., Merck & Co. Inc., Rahway, NJ, 2012 (http://themerckindex.chemfinder.com).

[2]Martindale,TheExtraPharmacopoeia,37thed.,TheRoyalPharm.Society,Lon- don,2011,pp234-282.

[3]R.Ambrus,Z.Aigner,C.Dehelean,C.Soica,P.Szabó-Révész,Physico-chemical studiesonsoliddispersionsofniflumicacidpreparedwithPVP,Rev.Chim.58 (2007)60–64.

[4]R.Ambrus,Z.Aigner,C.Soica,C.Peev,P.Szabó-Révész,Amorphisationofnif- lumicacidwithpolyvinylpyrrolidonepreparedsoliddispersiontoreachrapid drugrelease,Rev.Chim.58(2007)206–209.

[5]M.Kata,R.Ambrus,Z.Aigner,Preparationandinvestigationofinclusioncom- plexescontainingniflumicacidandcyclodextrins,J.Inc.Phenom.44(2002) 123–126.

[6]T.Szunyogh,R.Ambrus,P.Szabó-Révész,Importanceofparticlesizedecrease inthepreformulation,ActaPharm.Hung.81(2011)29–36.

[7]J.Kanzer,S.Hupfeld,T.Vasskog,I.Tho,P.Hölig,M.Mägerlein,G.Fricker,M.

Brandl,Insituformationofnanoparticlesupondispersionofmeltextrudate formulationsinaqueousmediumassessedbyasymmetricalflowfield-flow fractionation,J.Pharm.Biomed.Anal.53(2010)359–365.

[8]J.Zhang,H.Lv,K.Jiang,Y.Gao,Enhancedbioavailabilityafteroralandpul- monaryadministrationofbaicaleinnanocrystal,Int.J.Pharm. 420(2011) 180–188.

[9] T.W. Prow, J.E. Grice, L.L. Lin, R. Faye, M. Butler, W. Becker, E.M.T.

Wurm,C. Yoong,T.A. Robertson, H.P.Soyer, M.S. Roberts, Nanoparticles

(7)

andmicroparticlesforskindrugdelivery,Adv.DrugDeliv.Rev.63(2011) 470–491.

[10]H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Shape- and size-dependent refractive index sensitivity of gold nanoparticles, Langmuir 24 (2008) 5233–5237.

[11]D.Missirlis,N.Tirelli,J.A.Hubbel,Amphiphilichydrogelnanoparticlesprepa- rationcharacterizationandpreliminaryassessment asnewcolloidaldrug carriers,Langmuir21(2005)2605–2613.

[12]J.-W.Kim,M.-S.Shin,J.-K.Kim,H.-S.Kim,K.-K.Koo,Evaporationcrystallization ofRDXbyultrasonicspray,Ind.Eng.Chem.Res.50(2011)12186–12193.

[13]R.Ambrus,P.Kocbek,J.Kristl,R.Sibanc,R.Rajkó,P.Szabó-Révész,Investigation ofpreparationparameterstoimprovethedissolutionrateofpoorlysoluble meloxicam,Int.J.Pharm.318(2)(2009)153–159.

[14] V.A.Saharan,V.Kukkar,M.Kataria,M.Gera,P.M.Choudhury,Dissolution enhancementofdrugs.PartI:technologiesandeffectofcarriers,Int.J.Health Res.2(2009)107–124.

[15]G.G.Liversidge,P.Conzentino,Drugparticlesizereductionfordecreasinggas- tricirritancyandenhancingabsorptionofnaproxeninrats,Int.J.Pharm.125 (1995)309–313.

[16] P.Liu,X.Rong,J.Laru,B.vonVeen,J.Kiesvaara,J.Hiruonen,T.Laaksonen,L.Pel- tonen,Nanosuspensionsofpoorlysolubledrugs:preparationanddevelopment bywetmilling,Int.J.Pharm.411(2011)215–222.

[17]R.H.Müller,A.Akkar,Drugnanocrystalsofpoorlysolubledrugs,Encyclop.

Nanosci.Nanotechnol.2(2004)627–638.

[18]P.Kocbek,S.Baumgartner,J.Kristl,Preparationandevaluationofnanosuspen- sionforenhancingthedissolutionofpoorlysolubledrugs,Int.J.Pharm.312 (2006)179–186.

[19]T.Yasuji,H.Takeuchi,Y.Kawashima,Particledesignofpoorlywater-soluble substancesusingsupercriticalfluidtechnologies,Adv.Drug.Dev.Rev.60(2008) 388–398.

[20]N.Radacsi,A.I.Stankiewicz,Y.L.M.Creyghton,A.E.D.M.vanderHeijden,J.H.ter Horst,Electrospraycrystallizationforhigh-qualitysubmicron-sizedcrystals, Chem.Eng.Technol.34(2011)624–630.

[21]C.U.Yurteri,R.P.A.Hartman,J.C.M. Marijnissen,Producingpharmaceutical particlesviaelectrosprayingwithanemphasisonnanoandnanostructure particles– areview,KONAPowderParticleJ.28(2010)91–115.

[22]A.Jaworek,Micro-andnanoparticleproductionbyelectrospraying,Powder Technol.176(2007)18–35.

[23]B.Almería,W.Deng,T.M.Fahmy,A.Gomez,Controllingthemorphologyof electrospray-generatedPLGAmicroparticlesfordrugdelivery,J.ColloidInterf.

Sci.343(2010)125–133.

[24]L.Rayleigh,Comparisonofmethodsforthedeterminationofresistancesin absolutemeasure,Phil.Mag.14(1882)184–186.

[25] E.Revalor,Z.Hammadi,J.P.Astier,R.Grossier,E.Garcia,C.Hoff,K.Furuta,T.

Okutsu,R.Morin,S.Veesler,Usualandunusualcrystallizationfromsolution,J.

Cryst.Growth312(2010)939–946.

[26]N.Radacsi,R.Ambrus,T.Szunyogh,P.Szabó-Révész,A.I.Stankiewicz,A.E.D.M.

vanderHeijden,J.H.terHorst,Electrospraycrystallizationfornano-sized pharmaceuticalswith improved properties,Cryst. GrowthDes.12(2012) 3514–3520.

[27]M.D.Abramoff,P.J.Magelhaes,S.J.Ram,Imageprocessingwithimage,J.Bio- photon.Int.11(2004)36–42.

[28]M.Wagner,Thermalanalysisinpractice,in:DSCevaluations,MettlerToledo, Schwerzenbach,2009,pp.90–141.

[29]M.J.Arias-Blanco,J.R.Moyano,J.I.Perez-Martinez,J.M.Gines,Studyoftheinclu- sionofgliclazidein␣-cyclodextrin,J.Pharm.Biomed.Anal.18(1998)275–279.

[30] H.A.Crisp,J.C.Clayton,L.G.Elliott,E.M.Wilson,Preparationofahighlypure substantiallyamorphousformofcefuroximeaxetil,U.S.Patent4,820,1833, (1989).

[31]S.Nakayamaa,T.Watanabec,M.Sennaa,Rapidamorphizationofmolecular crystalsbyabsorptionofsolventmoleculesinthepresenceofhydrophilic matrices,J.Alloy.Compd.483(2009)217–221.

[32]G.C.Yang,F.D.Nie,J.S.Li,Preparationandcharacterizationofnano-NTOexplo- sive,J.Energ.Mater.25(2007)35–47.

[33]K.Takács-Novák,A.Avdeef,K.J.Box,B.Podányi,GySzász,Determinationof protonationmacro-andmicroconstantsandoctanol/waterpartitioncoeffi- cientofantiinflammatorydrugniflumicacid,J.Pharm.Biomed.Anal.12(1994) 1369–1377.

[34]H.M.K. Murthy, M. Vijayan, 2[[3-(Trifluoromethyl)phenyl]amino]-3- pyridinecarboxylic acid (niflumic acid), Acta Crystallogr. 35 (1979) 262–263.

Ábra

Fig. 1. Schematics of the electrospray crystallization process. Using a small nozzle diameter (d), a low constant flow rate (ϕ), relatively low solute concentration (c) a jet of highly charged small droplets will be emitted from the cone appearing at the no
Fig. 4. The relationship between the crystal size and shape and used solution con- con-centration of NIF crystals, produced by electrospray crystallization.
Fig. 5. SEM images of (a) conventional NIF, (b) NIF produced by electrospray crystallization (NIF-NANO), (c) NIF produced by anti-solvent crystallization (NIF-AC) and (d) NIF produced by solvent evaporation (NIF-SE).
Fig. 6. DSC curve of the conventional NIF compared with the recrystallized NIF obtained from the solvent evaporation (NIF-SE), the recrystallized NIF obtained from the antisolvent crystallization (NIF-AC) and the submicron-sized NIF from electrospray cryst
+2

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A 15-fold increase in the dissolution rate of the produced amorphous niflumic acid nanofiber mats was observed compared to the dissolution rate of the original

As the mean particle size, aspect ratio, and roundness were key parameters for our work, all of these values for the initial material and the target product are shown in Table 1..

The aim of sugar production from sweet sorghum juice enlightened the problems of crystallization, because the starch and aconitic acid content of juice inhibited crys-

Comparison of patterns of old and new samples (for TPS films with the same composition) suggests that in the case of samples prepared by melt mixing, the addition

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

Initial crystallization from solution directly onto the site of scale formation requires three simultaneous factors: supersaturation of the solution locally, nucleation sites,

A two-dimensional population balance model of continuous cooling crystallization, involving nucleation, growth of the two characteristic crystal facets and random binary

Figure 10 presents the temporal evolution of the nuclea- tion rate if different seeding temperatures are applied. Three order of magnitude differences exist in