• Nem Talált Eredményt

Aggregation liposomes of PEGylated driven by hydrophobic forces Colloids and Surfaces B: Biointerfaces

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Aggregation liposomes of PEGylated driven by hydrophobic forces Colloids and Surfaces B: Biointerfaces"

Copied!
8
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Colloids and Surfaces B: Biointerfaces

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Aggregation of PEGylated liposomes driven by hydrophobic forces

Tamás Bozó

a,∗,1

, Tamás Mészáros

b,c,1

, Judith Mihály

d

, Attila Bóta

d

, Miklós S.Z. Kellermayer

a,e

, János Szebeni

b,c

, Benedek Kálmán

b

aDepartmentofBiophysicsandRadiationBiology,SemmelweisUniversity,1094Budapest,T ˝uzoltóStr.37-47,Hungary

bNanomedicineResearchandEducationCenter,SemmelweisUniversity,1089Budapest,NagyváradSquare4,Hungary

cSeroScienceLtd.,1089Budapest,NagyváradSquare4,Hungary

dBiologicalNanochemistryResearchGroup,InstituteofMaterialsandEnvironmentalChemistry,ResearchCentreforNaturalSciences,HungarianAcademy ofSciences,1117Budapest,Magyartudósokkörútja2,Hungary

eMTA-SEMolecularBiophysicsResearchGroup,SemmelweisUniversity,1094Budapest,T ˝uzoltóStr.37-47,Hungary

a r t i c l e i n f o

Articlehistory:

Received4November2015 Receivedinrevisedform23June2016 Accepted27June2016

Availableonline28June2016

DedicatedtothememoryofBerci(Benedek Kálmán),agreatcolleagueandfriend.

Keywords:

Liposome PEG Aggregation Fusion

Hydrophobiceffect Ammoniumsulfate Kosmotropicsalt

a b s t r a c t

Polyethyleneglycol(PEG)iswidelyusedtostericallystabilizeliposomesandimprovethepharmacoki- neticprofileofdrugs,peptidesandnanoparticles.Herewereportthatammoniumsulfate(AS)canevoke theaggregationofPEGylatedvesiclesinaconcentration-dependentmanner.Liposomeswith5mol%

PEGwerecolloidally stableatASconcentrationsupto0.7mM,abovewhichtheyprecipitatedand formedmicron-sizeaggregateswithirregularshape.Whileaggregationwasreversibleupto0.9Mof AS,above1Mfusionoccurred,whichirreversiblydistortedthesizedistribution.Zetapotentialoflipo- somesmarkedlyincreasedfrom−71±2.5mVto2±0.5mVuponraisingtheASconcentrationfrom0 to0.1M,butnoconsiderableincreasewasseenduringfurtherASaddition,showingthattheaggrega- tionisindependentofsurfacecharge.TherewasnoaggregationintheabsenceofthePEGchains,and increasingPEGmolar%shiftedtheaggregationthresholdtolowerASconcentrations.Changesinthe FTIRspectralfeaturesofPEGylatedvesiclessuggestthatASdehydratesPEGchains.Otherkosmotropic saltsalsoledtoaggregation,whilechaotropicsaltsdidnot,whichindicatesageneralkosmotropicphe- nomenon.Thedrivingforcebehindaggregationislikelytobethehydrophobiceffectduetosaltingout thepolymersimilarlytowhathappensduringproteinpurificationorHydrophobicInteractionChro- matography.Sinceliposomeaggregationandfusionmayresultindifficultiesduringformulationand adversereactionuponapplication,thephenomenadetailedinthispapermayhavebothtechnological andtherapeuticalconsequences.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Polyethyleneglycol(PEG),alinearpolymerof[–CH2–CH2–O]

units,iscommonlyusedindrugdeliverytomodifypharmacoki- neticproperties ofactiveagents. AttachingPEGchainstosmall molecules, peptides, proteins, oligonucleotides or nanoparticles may effectively reduce their enzymatic degradation and pro- longtheircirculationtimeinblood[1].Animportantexampleis liposomePEGylation,whichprovides“stealth”characteristicsto liposomeshelpingthemtoevadephagocytosisbymacrophages,

Correspondingauthor.

E-mailaddresses:bozo.tamas@med.semmelweis-univ.hu(T.Bozó), tmeszaros@seroscience.com(T.Mészáros),mihaly.judith@ttk.mta.hu(J.Mihály), bota.attila@ttk.mta.hu(A.Bóta),miklos.kellermayer@med.semmelweis-univ.hu (M.S.Z.Kellermayer),jszebeni2@gmail.com(J.Szebeni).

1 Theseauthorscontributedequallytothiswork.

which extends their lifetime in the body and results in dose- independentpharmacokinetics(exceptforverylowdoses)[2,3].

Liposometherapymadeitpossibletoincreasethebioavailability ofdrugsthatarepoorlyabsorbed(likeamphotericin-B),toreduce sideeffectsofhighlycytotoxicanti-canceragents(suchasdoxoru- bicin)andtoopennewroutestogeneratesite-selectiveeffect(e.g.:

photodynamictherapyinmaculardegeneration)[4].However,new benefitsmaybeaccompaniedbynewrisks:e.g.,itturnedoutthat liposomes can inducecomplement activation related pseudoal- lergy(CARPA),anewtypeofdrug-inducedacuteimmunetoxicity [5].Itissuspectedthatoneofitscausescouldbethepresenceof liposomalaggregatesintheformulatedproduct[6].

Here we reportthat ammoniumsulfate (AS) andother kos- motropicagentsmayelicittheaggregationandeventhefusionof PEGylatedliposomes.Theaggregatesareformedbyhydrophobic interactionsduetothesolvophobiceffectofincreasingsaltconcen- tration[7].Thisphenomenonissimilartothesalting-outmethod http://dx.doi.org/10.1016/j.colsurfb.2016.06.056

0927-7765/©2016ElsevierB.V.Allrightsreserved.

(2)

Table1

Liposomecompositions.

PEGmolar% molarratio(Cholesterol:mPEG:HSPC)

0 38.4:0:61.6

2 38.7:2:59.3

5 38.4:5:56.6

10 38.4:10:51.6

regularlyusedinproteinfractionationand purification[8,9].An understandingofthemechanismofaggregateformationcouldpro- videinvaluableinformationforsuccessfuldrugformulationswhere liposomeaggregationcouldbeeitherpreventedorcontrolled.

2. Materialsandmethods 2.1. Materials

Cholesterol, mono PEGylated 1, 2-distearoyl-glycero-3- phophoethanolamine (mPEG-2000-DSPE), and hydrogenated soybeanphosphatidylcholine(HSPC)wereobtainedfromLipoid GmbH(Ludwigshafen,Germany).Ethanol,isopropanol,histidine, sucrose, ammonium sulfate (AS), sodium sulfate, magnesium sulfate,sodiumcitrate, magnesiumchloride,guanidine chloride (GdmCl) were purchased from Sigma Aldrich Kft. (Budapest, Hungary).Salsolinfusion(TEVAHungaryZrt.,Debrecen,Hungary) wasobtainedfromtheUniversityPharmacy,andpurified water wasproducedbyaMilli-QIntegral3WaterProductionUnit(Merck Millipore,Billerica,MA,USA).

2.2. Liposomepreparation

Liposomesuspensionwithalipidandbuffercompositionsim- ilartotheFDA-approvedandmarketedDoxil®waspreparedwith theextrusionmethod[10].Thelipidcompositionwascholesterol, mPEGandHSPC(seemolarratiosinTable1).Thelipidsweresolubi- lizedinethanol-isopropanolmixture(50:50),thenthesolutionwas addeddropwiseto0.25MAScontaining0.9%saline(SALSOL)solu- tion.Large,heterogeneouslipidparticleswereextrudedfourtimes through80nm WhatmanNuclepore (Track-EtchedMembranes) membranefilters(Whatman,Maidstone,UK)bymeansofaLipexTM Extruder(NorthernLipidsInc.,Burnaby,B.C.Canada)at50barand 70Ctoachieveuniformparticlesizedistribution.Theliposomes werethendialyzedagainst10mMhistidinebuffer(pH=7.5)con- taining10w/w%sucrosetoremoveASandorganicsolvents.The totalphospholipidconcentrationwasapproximately15.9mg/ml (cca.21.4mM).Theliposomalstocksolutionswerestoredat4C protectedfromlightandusedwithin2weeks.Thestocksolution wasfurtherdilutedasdictatedbytheexperiments.Thedegreeof dilutionandcorrespondinglipidconcentrationsaregiveninthe textandfigurecaptions.

2.3. MixingPEGylatedliposomeswithdifferentsalts

For turbidimetry, light scattering and zeta potential experi- ments20␮lofPEGylatedliposomesweremixedwith980␮lsalt solutionof appropriate concentration(50x dilution). For phase contrastandatomicforcemicroscopyexperimentsPEGylatedlipo- somes were diluted either 200x or 500x with salt solution of appropriate concentration. For 0M concentration physiological salinesolution(Salsol)wasusedfordilution.Theactualsaltand lipidconcentrationsaregiveninthetextandfigurecaptions.

2.4. Dilutionofprecipitatesforfusionand aggregation-reversibilitystudies

500␮lofPEGylatedliposomesweremixedwith500␮lofAS solutiontoproduceastockofprecipitatedsamplesofthedesired ASconcentration(from 0.8Mto2.0M).After15minincubation time,20␮lofthesestockswasmixedto980␮lASsolutionsof appropriateconcentrations(down to0.1M).Theactualsalt and lipidconcentrationsaregiveninthetextandfigurecaptions.

2.5. Turbidimetry

TheaggregationofPEGylatedliposomeswasfollowedbymea- suring the apparent optical density of the solution. Briefly, a 4␮lsampleofthewell-vortexedsolutionwaspipettedontothe pedestalofaNanoDrop2000UV–visspectrophotometer(Thermo Scientific Ltd., Wilmington, DE), and the optical density was recordedat250nm.Becausethelipidconcentrationwaskeptcon- stant,anincreaseinopticaldensitycorrespondstoanincreasein lightscattercausedbytheappearanceoflargerparticlesdueto aggregation.Forcomparability,identicallipidconcentrationswere usedinthedifferentsamples.

2.6. Dynamiclightscatteringmeasurement

Thesizedistributionofliposomesandaggregates werechar- acterizedbydynamic lightscattering(DLS)onaZetasizerNano Sinstrument (MalvernInstrumentsLtd,Malvern,UK). Fromthe intensityfluctuationsofa633-nmlaserlightscatteredathighangle fromthefreelymovingsuspendedparticlestheirdiffusionconstant wasobtained.SizedistributionwascalculatedbyusingtheStokes- Einsteinequationbythebuilt-in algorithmsoftheinstrument’s software.Light scatteringwas measuredat25±1C. Z-average valuesaredisplayedthroughoutthearticle,whichrepresentthe primaryandmoststableparameterproducedbyDLStechnique[11]

andrecommendedforqualitycontrolreports(ISO22412:2008).Z- averagevaluesrepresentagoodapproximationofhydrodynamic diameterofwelldispersedparticleswithmonomodalsizedistri- bution(indexofpolydispersitytypicallylowerthan0.1)andthus arewellapplicableforPEGylatedvesicles.TheZ-average,however, doesnotreflecttherealsizeofprecipitatedsamplesthatareoften heterogeneousinsizeandmaybeirregularlyshaped.Inthelatter caseZ-averagewasusedonlyforroughestimationofparticlesize, whichenabledustofollowliposomeaggregationwithoutexact determinationofaggregatedimensions.Sincedifferentbatchesof PEGylatedliposomeswereusedinthedifferentexperiments,minor variationsareseenintheaveragesizeofcontrolvesicles.

2.7. Zetapotentialmeasurements

PEGylatedliposomesweredilutedwithASsolution,and750␮l ofthismixturewasinjectedcarefullyintofoldedcapillarycells(PCT Kft.,Mosonmagyaróvár,Hungary)toavoidbubbleformation.Zeta potentialmeasurementswereperformedbyusingaZetasizerNano ZSequipment(MalvernInstrumentsLtd.,Worcestershire,UK)in whichparticlevelocityismeasuredaccordingtoalightscattering techniquebasedonDopplereffectevokedbyapairofmutually coherentlaserbeams (4mW,He-Nelaser at633nm).Fromthe autocorrelationfunctionofthescatteredlightintensitytheelec- trophoreticmobilityand,viatheHenryequation,thezetapotential are calculated.Measurements werecarried out in triplicates at 25C.

(3)

2.8. Analysisofzetapotentialdata

Bindingofionstoliposomalsurfaceandtheconcomitantchange ofsurfacepotentialcanbedescribedwellbyLangmuir-Freundlich isotherm[12].

=0+max· (K·c)n 1+(K·c)n

where␨isthemeasuredzetapotential,␨0isthezetapotentialat zeroASconcentration,␨maxisthemaximalchangeofzetapoten- tial,Kisthebindingconstant,cistheligandconcentrationandn istheindexofheterogeneitydescribingthecooperativityofion binding.

2.9. Atomicforcemicroscopyandimageanalysis

Atomic forcemicroscope (AFM) images were recorded with a Cypher instrument (Asylum Research, Santa Barbara, CA) by scanningthesamplesinfluid witha gold-coatedsilicon nitride cantilever (Olympus Biolever, A lever, typical spring constant:

30pN/nm).100␮lsamplewasappliedona cleanedborosilicate glasscoverslipandincubatedinavaporchamberat23±1C.Non- contact-modeimageswererecordedatalinescanrateof0.5–1Hz.

Allmeasurementswerecarriedoutat28±1C.Imageswereana- lyzedbyusingthebuilt-inalgorithmsoftheAFMdrivingsoftware (IgorPro,WaveMetrics,Inc.,LakeOswego,OR).

2.10. Phasecontrastmicroscopy

MicrographswererecordedwithaNikonEclipseTi-Uinverted microscope(Auro-ScienceKft.,Budapest,Hungary)equippedwith auEyeUI1220LEdigitalcamera(IDSImagingDevelopmentSys- temsGmbH,Obersulm,Germany)usinga40xNikonSPlanfluor phasecontrastobjective.

2.11. Infraredspectroscopy

ATR-FTIRspectrawerecollectedwithaVarian2000FTIRScimi- tarSeries(VarianInc.,PaoloAlto,CA)spectrometerequippedwith a‘GoldenGate’(SpecacLtd.,London,UK)singlereflectiondiamond ATRaccessory.Themeasurementswereperformedatroomtem- perature:3␮lsamplewasmountedonthetopofthediamondATR crystalandacapwasusedtoavoidsampledrying;128scanswere collectedataresolutionof2cm1.ATRcorrectionwasexecuted aftereachdatacollection.Allspectralmanipulations,includingsub- tractionsand spectraldeconvolutionswere performedbyusing theGRAMS/32softwarepackage(GalacticIndustriesIncorporation, USA).Bandpositionsforcurvefittingweredeterminedusingthe secondderivative.BandshapeswereapproximatedbyLorentzian functions.Theintensitiesandthebandwidthofeachcomponent wereallowedtovaryuntiltheminimal␹2parameterwasreached.

Afterthefittingprocedure,therelativecontributionofa partic- ularcomponentwascalculatedfromtheintegratedareasofthe individualcomponents.

3. Resultsanddiscussion

3.1. PEGylatedliposomescanbeprecipitatedbyammonium sulfate

TheadditionofAStoPEGylatedliposomesinfewmolarcon- centrationinitiated therapidincreaseof opacityofthesample.

Toassessthemagnitudeofliposomeprecipitation,wemeasured theturbidityofliposomalsuspensionsat0–2MASconcentration.

Accordingtothe turbidityvs. ammonium-sulfateconcentration

Fig.1.Turbidity(blackline)andaverageparticlediameter(redline)ofliposomal suspensionsasafunctionofammoniumsulfate(AS)concentration.Average±SD valuesofthreeindependentmeasurementsareshown.Lipidconcentrationwaskept constantthroughoutthemeasurement(50xdilution,0.318mg/ml).(Forinterpre- tationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

curve(Fig.1),noprecipitationoccursbelowanASconcentrationof 0.75M.Above0.75M,turbidityrisesabruptlythenlevelsoffabove 1Mtoavalueanorderofmagnitudegreaterthanintheabsenceof AS.Fromthiscurveweconcludedthatprecipitationbegansome- wherebetween0.75and0.8MASconcentration.Thefallofthe turbidimetrycurveabove1MASconcentrationmaybeexplained byincreasingheterogenityofthesystem,i.e.theformationofa lipid-richprecipitateandalipid-pooraqeousphase.

Wehypothesizedthattheabruptriseinturbiditywasrelatedto asizeincreaseduetotheaggregationofthevesicles.Toassessthe sizeoftheprecipitatesasafunctionofASconcentration,dynamic light scattering measurements werecarried out (Fig.1).Below a concentrationof0.8Mthemeanparticlesize variedbetween 83.2nmand91.5nmindependentlyoftheASconcentration.Upon increasingtheASconcentrationfurther,however,sizeincreased abruptlyto∼2000nmintherangeof0.8–1Mthenmoreslowly above1M.UponreachinganASconcentrationof2Mthemeanpar- ticlesizeexceeded5000nm.Notably,particlesizeisapproximated withtheZ-averagevaluewhichiscalculatedbyassumingspherical geometryandmonomodalsizedistribution.Incaseofaggregation, particleshapeislikelytodeviatefromspherical,which,together withgrowingpolydispersity indices measuredabove0.75MAS (datanotshown)meansthattheZ-averageparametermaycor- respondonlytoanapproximation,withinanorderofmagnitude, oftheaverageparticlediameter.Theresultsoftheturbidimetryand dynamiclightscatteringmeasurementsleadtosimilarconclusion:

precipitationbeginsuponreachinganASconcentrationthreshold (0.7–0.8M),thenprogressivelylargeraggregatesareformedupon incerasingtheASconcentrationfurther.Sinceprecipitationtakes placeinstantenouslyuponmixingthePEGylatedliposomeswith AS,itisratherdifficulttofollowaggregationkinetics.Sizeincreases rapidlyandconsiderablyinthefirstminuteneededtosetupaDLS measurement.Afterthislagtimeafurthercontinousincreaseof sizewasobservable(Fig.S1),butexactrateandkineticscouldnot beendetermined.

Torevealthemicroscopicdetailsoftheprecipitationprocessand assesswhethervesicleaggregationtakesplaceindeed,morpholog- icalmeasurementswerecarriedout.Phasecontrastmicroscopyof precipitatedsamplesshowedbranchingobjectsofirregularshapes apparently formedofsmallerclusters(Fig.2)which resembled electronmicrographsofliposomalaggregatesseenearlier[13].

Toresolvetheultrastructureofaggregatesandtofollowtheir formation we imaged liposomes withatomic forcemicroscopy (AFM) at various ASconcentrations (Fig.3). At0 and 0.7M AS

(4)

Fig.2.Phasecontrastmicrographofliposomalaggregatesin1MAS.Largebranching objectsandsmalleraggregatesareseen(200xdilution,0.0795mg/mllipidconcen- tration).

individual, interaction-free liposomes were observed. At an AS concentrationof0.8Mmany liposomeswereobservedinlinear assemblies,pointingattheonsetofaggregation.AtanASconcen- trationof0.9M,largeaggregates wereclearlyseen.In0.8MAS (Fig.3C),besidesthevesiclesflatpatcheswithasmoothsurfaceand atopographicalheightof5–7nmwereobserved.Weidentifythem asbilayers,althoughtheyaresomewhatthinnerthanalipidbilayer

coveredwithaPEGpolymerbrushonbothsides(approx.12nm) calculated withadifferent method[14,15]. Thebilayerpatches probablyemergebecauseasosmolalityincreases,vesiclesexhibit agreaterpropensitytoburstonthesubstrate[16,17].Patchforma- tionisageneralphenomenoncharacteristictoliposomalsamples.

Patchesofvarying sizesarefoundin almostallliposomal AFM imagesthroughoutthecorrespondingliterature[18–20]andalsoin Fig.4.Interestingly,patchformationappearstodependontheAS concentrationasevidencedbyourresultsshowninFig.3.While patchformation is only sporadicatlower ASconcentrations, it becomespronouncedabove0.8M(Fig.3C),andat0.9Mmostofthe substrateiscoveredwithaconfluentsupportedlipidbilayer(see thebackgroundofclustersandvesiclesinFig.3D).Liposomeclus- tersobservedin0.9MAS(Fig.3D–F)havediversesizesvaryingfrom fewhundrednmtofew␮m,whichisinanorder-of-magnitudecor- relationwiththeDLSdata(seeFig.1).Notethattheirregularvesicle shapemightbetheresultofimagingartifactsandnotexquisitely ofliposomalshapetransformations.UponraisingtheASconcen- trationabove0.8Mimagingbecamedifficult,whichismostlikely duetothepresenceoflarge,softaggregatesincompletelyimmo- bilizedonthesurface.Severalattemptshavebeenmadetoimage samplesatevenhigherASconcentrationstofindlargeraggregates, butunsuccessfully.

3.2. Aggregationmaypromotevesiclefusion

Totestwhetherliposomeaggregationisfollowedbyfusionand todeterminethethresholdconcentrationoffusion,liposomalsam- pleswereprecipitatedinvariousconcentrationsofAS,then15min laterdilutedto0.1MAS.DLSdatashowednoconsiderablechange ofaveragesizeat0.8and0.9Mprecipitatingconcentration.Aslight increasewasobservedat1.0and1.1Mfollowedbyamoresignif-

Fig.3.Amplitude-contrastAFMimagesofliposomesat(A)0M,(B)0.7M,(C)0.8M,(D)0.9MASconcentration.Sampleswerediluted1to500withtheircorresponding solution(0.0318mg/mllipidconcentration).Figure(E)showstheheight-contrastAFMimageoffigure(D)color-coded,while(F)representstheheightsectionprofiletaken alongsidethethickredlinein(E).Thewhiteandredtrianglesin(E)and(F),respectively,pointatthehighestpointoftheliposomecluster.Thecolorbarinthelowerright cornerdisplaystheheightscaleoffigure(E).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

(5)

Fig.4.(A)Sizeofliposomes(Z-average±SD)dilutedfromvariousprecipitatingASconcentrations(indicatedonxaxis)to0.1M.Reddottedlineshowsthesizeofcontrol liposomes.(B)Amplitude-contrastAFMimageoftheliposomalsuspensioninphysiologicalsalinesolution.(C)and(D)Amplitude-contrastAFMimagesofa1Mand2M AS-aggregatedsampledilutedbackto0.1MASconcentration.WhitearrowheadindicatesalargervesicleinpanelC.InpanelDfewofthelargervesiclesrupturedduring thescantoformbilayerpatchesonthesurface.Lipidconcentrationwasidenticalinthesamples(200xdilution,0.0795mg/mllipidconcentration).(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

icantandmonotonousincreasefrom1.2M(Fig.4A).AFMimages ofthesesamplesrevealedthattheincreaseofaveragesizemaybe attributedtotheoccurrenceoffusedliposomes.Boththesizeand relativeamountoffusedvesiclesincreasedwithASconcentration:

at1Mliposomeslargerthan theaverageappeared sporadically (Fig.4C),whileat2Mevenlargervesicleswithanirregularshape becamedominant(Fig.4D).Thefindingsareinaccordwithsize distributionshowninFig.S2,theaveragesofwhichareshownin Fig.4A.Upto1.1Mamoderate,thenfrom1.2Mamoresignificant upwardshiftisseenduetotheappearanceoflargerobjects.Inaddi- tion,from1.5Maminorpopulationof several-micron-diameter particlesappearedwhichwasnotobservedinAFMimagespossibly duetotheirsmallnumber.

Takentogether,PEGylatedliposomesmaynotonlyaggregate butalsofuseuponASaddition.Therateoffusionisconcentration dependent,andthethresholdconcentrationis1Mattheemployed incubation time.This alsomeansthat AS-drivenaggregationof thevesiclescanbereverseddependingonASconcentrationand incubationtime.Todisruptaggregatedliposomestheyshouldbe dilutedwellbelowtheASconcentrationatwhichtheystartedto precipitate(Fig.S3).

3.3. Precipitationdoesnotdependonsurface-chargeproperties

Physicalstabilityofcolloidalvesiclesdependslargelyontheir surfacechargedensity,which isapproximatedwiththeelectric potentialdifference(orzetapotential)betweenthebulksolution andtheslippingplaneofionsassociatedtothevesicularsurface.

Itiswidelyacceptedthatazetapotentiallowerthan30mVmakes colloidaldispersionspronetoaggregation[21].Sincethesurface chargepropertiesandthusphysicalstabilityofliposomalvesicles canbelargelyaffectedbyions[22],modificationoftheliposomes’

zetapotentialbyASadditionmightbeakeyfactorinevokingaggre- gation.Toassessthecharge-modulatingeffectofASonPEGylated vesicles,zetapotentialmeasurementswerecarriedout.

Zetapotentialofthecontrolsamplewas−71.7±2.5mV,which impliesastrongnegativesurfacepotentialandcorrespondstoan extremelyhighcolloidalstability[21].AddingASledtoamassive increaseofthezetapotentialvalueatevenrelativelylowconcen- trations(Fig.5),whichmaybeexplainedbytheassociationofNH4+ ionstotheoriginallynegativevesicularsurface.Coordinationof NH4+ cationstotheetheroxygenswasproposedbyBaileyand Callard[23].Analternativeexplanationisthatstructuralmodifica- tionsofthecharge-alteringPEGchains(discussedlater)mayhave ledtotheobservedchargeincrease.

TheLangmuir-Freundlichisothermfitswelltothedatapoints suggestingmonolayerabsorptiontoaheterogeneoussurface.The adsorptionconstantof1001M−1pointsatoutstandingaffinityof NH4+ionstothePEG-coveredsurfaceand0.73asindexofhetero- genityindicatesnegativecooperativityoftheions.

Thepronouncedsurface-chargealteringeffectofASlevelsoff ataslowconcentrationasabout0.1M,whichisnearlyanorder ofmagnitudelowerthanthethresholdconcentrationforaggrega- tion.Furthermore,noconsiderablechangeofzetapotentialisseen reachingtheconcentrationregimeofaggregation(above0.75M,

(6)

Fig.5.ZetapotentialofPEGylatedliposomesasafunctionofASconcentration.Red lineshowstheLangmuir-Freundlichisotermfittedtothedata.Zetapotentialwas measuredintriplicates,errorbarscorrespondtostandarddeviation.Zetapotential at0ASconcentrationwas−71.7±2.5mV.Insetshowsthedataplottedonaloga- rithmicxaxis.Dilution:50x(0.318mg/mllipidconcentration).(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

Fig.6. EffectofPEGconcentrationontheASconcentrationdependenceofliposomal aggregation.Dilution:50x(0.318mg/mllipidconcentration).Brokenline:0%mPEG;

redline:2%mPEG;blueline:5%mPEG;blackline:10%mPEG.(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

seeFig.1).ThesetogethersuggestthattheASmediatedincreaseof zetapotentialisnotthemechanismbehindliposomeaggregation.

3.4. PrecipitationisPEG-related

ToelucidatetheroleofPEGchainsinliposomeaggregation,lipo- someswithdifferentamountsofPEGchainsontheirsurfacewere producedandmixedwithAS.DLSdatarevealedthatconventional liposomes(i.e.,oneswithoutPEGylation)showednosizeincrease upto2MAS(Fig.6).Thisindicatesthatnoprecipitationtakesplace intheabsenceofthePEGbrushontheliposomalsurfaceandhigh- lightsthattheaggregationevokingeffectofASismediatedviathe PEGpolymerlayer.UponincreasingthePEGcoveragefrom2to 10M%,theprecipitationcurvesshiftedtotheleft,meaningthat lowerconcentrationsofASwereenoughtoelicitaggregation.It againunderpinsthatprecipitationisPEG-related.Consideringthat modificationofsurfacechargedoesnotaffecttheaggregationof liposomes(seeabove),wehypothesizethatsomestructuraltran- sitionsofthesurfacepolymerchainsmusthaveledtothehigher propensityforaggregation.

3.5. ASdehydratesPEGchains

ConsideringthatprecipitationisrelatedtothepresenceofPEG, itisplausiblethatAS,whichisakosmotropicagent[24,25]dehy- dratedPEGpolymers,leadingtoaggregationofthePEG-covered vesiclesthroughhydrophobicinteractions.Toestimatethehydra- tion level of the PEG layer, attenuated total reflection Fourier transforminfraredspectroscopy(ATR-FTIR)combinedwithcurve fittingprocedurewasapplied.ThemethodwasproposedbyVarga etal.tocharacterizethePEG-layerofstealthliposomesbasedon theratiooftransandgaucheconformationsofC O CgroupsofPEG chain[26].ThecomplexstretchingvibrationC O Cbandaround 1100cm−1 ofthePEGchain canbedecomposed intofive band componentsduetonon-interactingvibrations.Thebandaround 1093cm1 is related to C O C groups of PEGin trans confor- mation,whiletheonearound1113cm−1 belongs tothegauche conformationrelativetoC Cbond[27].Thetwoextremecom- ponentswithsmallerintensitiesaround1139and1029cm1can beassignedto␦( CH2 )deformationand␯(C C)stretchingvibra- tions,respectively.Therelativelyintensebandcomponentaround 1068cm1mightberelatedtothe␯(C OH)bands.Ahigherextent ofintramolecularH-bondingoftheC O CgroupsofthePEGmoi- etytoaneighboringethericoxygenresultsinagreaterproportion ofthe moreconstrained gaucheconformer withan appropriate increaseofrelativeintensity.Thus,theratioofthetransandgauche conformationscanbeamarkertocharacterizethePEGlayerstruc- tureand,indirectly,thehydrationstate[26].

ATR-FTIRspectraofthePEG-liposomeswith1–2wt.%concen- trationaredominatedbythestrongwaterabsorptionbands;so,asa firststepofspectralevaluationthesubtractionofwaterbackground (ASsolution)wasperformed.Sincethe␯(C O C)vibrationbands overlapwiththephosphatestretchingvibrations(␯PO2)ofthe

Fig.7. Deconvolutionofthebandaround1100cm-1afterspectralsubtractions:A)PEGylatedliposomesinwater,B)PEGylatedliposomesin1MASsolution,C)PEGylated liposomesin2MASsolution.Emptycirclesdenotethemeasureddatapoints,solidlinesrepresentthefittedspectra,theindividualbandcomponentsandtheresiduals.

(7)

Fig.8.Thetrans/gaucheratioofthe␯(C O C)bandofPEGchainsforSSLsamples inwater,in1Mammoniumsulfateandin1Mguanidinechloride.Averages±SDs ofthreeindependentmeasurementsareshown.Thehighstandarddeviationfor guanidinechloridesamplesmightbecausedbythedifficultyinguanidinechloride backgroundsubtraction.

lipidcomponents,thereferencespectrumofpurehydratedHSPC (hydrogenatedsoyphosphatidylcholine,mainlipidcomponentfor PEGylatedliposomes)wascarefullysubtractedfromthespectraof PEGylatedliposomes.Typicaldeconvolutionsofthebandaround 1100cm1afterspectralsubtractionarepresentedinFig.7.

Thehighertherelativeintensityoftransconformers,thehigher thehydration levelofthePEGlayer.By addingammoniumsul- fatesalt (1Mconcentration)therelative intensityof ␯(C O C) ingaucheconformationincreases(Fig.8),indicatingthatthekos- motropicsaltreducesthehydrationofthePEGpolymerchains.As tothehigheramountofAS(2Mconcentration),however,anew bandcomponentat1068cm−1dominatesthespectrum.Thisband componentmightbeassignedto␯(C OH)groups.Interestingly,no bandcomponentbelongingto␯(C O C)transcomponentcould bedeconvoluted.Thismayindicateaconformationalchangemore pronouncedthanthetrans−gauchevariation.Similarphenomenon wasobservedalsoformicellesformedbypureDSPE-PEG2000lipid (∼10wt.%)inwater(unpublishedresults).

FTIRdatasupportthenotionthatthemechanismbehindaggre- gationofstealthvesiclesmightbethereductionofhydrationof PEGpolymerchainsduetokosmotropiceffectofAS.Thisisfurther underpinned by the observation that a chaotropic salt, guani- dinechloride(GdmCl)didnotaffectsignificantlythe␯(C O C) trans/gauche ratio and thus thehydration level of the polymer (Fig.8.,seespectrum,anddeconvolutionofthebandsinFig.S4.

andTableSI.).

3.6. Otherkosmotropicsaltsalsoleadtoprecipitationof PEGylatedliposomes

Westudiedtheeffectofvarioussaltsonstealthliposomesto testthehypothesisthatPEG-relatedprecipitationofliposomesis not specificfor ASbut ageneralkosmotropic phenomenon. All examinedkosmotropicsalts(sodiumcitrate,sodiumsulfate,mag- nesiumsulfate)ledtotheprecipitationof thevesicles (Fig.S5).

Bycontrast,chaotropicsalts(magnesiumchlorideandguanidine chloride)didnotaggregatetheliposomes(Fig.S6).Theprecipi- tatingeffectofkosmotropicsaltswasfoundtobeconcentration dependent, and theorder of theirthreshold concentrationwas thefollowing: sodiumcitrate<sodiumsulfate<magnesiumsul- fate<ammoniumsulfate(Fig.9).Thisorderisingoodaccordance withtwophaseformingcapacityofionsinPEG-salt-watersystems observedearlier[28].

Thesurfacechargemodifyingeffectofkosmotropicsaltslev- elled off at much lower concentrations than that needed for aggregation(Fig.S7),similarlytowhatwasobservedforAS(Fig.5).

Theadsorptionconstantsoftheionsdonotcorrelatewiththeir precipitatingability.Furthermorenotonlykosmotropic,butalso chaotropicsalts,whichdonotaggregatePEG-liposomes,shiftedthe

Fig.9. Turbidityofliposomalsuspensionsasafunctionofsaltconcentration.Aver- age±SDvaluesofthreeindependentmeasurementsareshown.PEGconcentration was5mol%andlipidconcentrationwaskeptconstantthroughoutthemeasurement (50xdilution,0.318mg/ml).

zetapotentialofliposomesfromstronglynegativevaluestoneutral regime(Fig.S7).Thesetogetherclearlysuggestthataggregation phenomenon isnot connected toionadsorption drivensurface chargealterationofthevesicles,buttokosmotropiceffect.

4. Conclusions

Here we demonstrated that ammonium sulfate and other kosmotropicsaltshavea precipitatingeffectonPEGylatedlipo- somes.Aggregationtakesplaceaboveathresholdconcentration (Figs.1,3,6and9)andleadstotheformationofirregular,micron- sizedaggregates(Figs.2and3D–F).AtcertainASconcentrations theprocessisreversible;aggregatescanbefullydisintegratedby dilution,buthigherASconcentrationsmayevoketheirreversible fusionofvesicles(Fig.4).Reductionofsurfacechargedoesnothave anyeffectonaggregationofvesicles(Fig.5).At0M%PEGcontentno aggregationoccurswhilethepropensityforprecipitationincreases withPEGcoverageintherangeof2–10M%(Fig.6),whichclearly showsthatAS-drivenaggregationofstealthvesiclesisrelatedto thePEGchains.ASleadstothedehydrationofPEGpolymerchains, whileGdmCldoesnotaffectit(Figs.7and8).Otherkosmotropic salts(suchasNa3citrate,Na2SO4,MgSO4,)alsoprecipitatePEGy- latedliposomes(Fig.9), whilechaotropicsalts(likeGdmCland MgCl2)do not. We propose thatkosmotropic saltsmay induce saltingout onthepolymerchainspromotingtheirhydrophobic interaction [9] and leading tothe separation of thePEG phase togetherwiththecoupledliposomes.Reversibilityofaggregation isthesimpleconsequenceofthereductionofconcentrationofthe kosmotropicagent,similarlytowhathappens incase ofprotein purificationorduringtheelutionphase ofhydrophobicinterac- tionchromatography.TheobservationthathighASconcentration resultsinrapidfusionofthevesiclesmaybeexplainedbyexces- sivestructuralalterationsofPEGchainsduetotheirhydrophobic modification.ModificationofstructureandhydrationofPEGchains mayleadtostericimbalanceofthevesiclesasitwasshownearlier [15,29].

SinceAS(andotherkosmotropicagents)maybeusedduring formulation of PEGylated nanoparticles(e.g., remote loadingof doxorubicin intoliposomes[14]), great careis neededtoavoid unwantedaggregationorfusionphenomena,whichmaytakeplace during eitherproduction or storage. Thereis a hypothesis that complementactivationrelatedpseudoallergy(CARPA),observed

(8)

intheclinicalpracticewhenPEGylatedliposomesareadministered intravenously,maybecausedbysporadicaggregationorfusionof liposomes[6].Theresultspresentedabovemayopentherouteto produceaggregatesorfusedvesiclesinacontrolledmannerand testtheirroleinpseudoallergicreactions.Reversibleaggregation mayalsobeusedtoseparatePEGylatedliposomes/nanoparticles fromtheirouteraqueousphaseduringformulation.

Acknowledgements

ZetapotentialexperimentswerecarriedoutatDepartmentof Pharmaceutics,SemmelweisUniversitywithsupportofDr.István AntalandtechnicalassistanceofDr.ViktorFülöp,forbothofwhich theauthorsaregrateful.WehighlyappreciateDr.PálGróf’shelpin analysisofzetapotentialdata.

ThisworkwassupportedbygrantsfromtheHungarian Sci- enceFoundation(OTKAK109480).Theresearchleadingtothese results has received funding from the European Union’s Sev- enthFrameworkProgram(FP7/2007-2013)undergrantagreement no HEALTH-F2-2011-278850 (INMiND)and NMP-2012-309820, (NanoAthero).Theauthorsalsoacknowledgethefinancialsupport bytheHungarian GovernmentNationalResearch, Development andInnovationFund(TÉT-13-IL-2-2014-0001).TheFTIRspectro- scopicpartwassupportedbytheJánosBolyaiResearchScholarship oftheHungarianAcademyofSciences(J.M.).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.colsurfb.2016.06.

056.

References

[1]F.M.Veronese,G.Pasut,PEGylation,successfulapproachtodrugdelivery, DrugDiscov.Today10(2005)1451–1458.

[2]D.Papahadjopoulos,T.M.Allen,A.Gabizon,E.Mayhew,K.Matthay,S.K.

Huang,K.D.Lee,M.C.Woodle,D.D.Lasic,C.Redemann,Stericallystabilized liposomes:improvementsinpharmacokineticsandantitumortherapeutic efficacy,Proc.Natl.Acad.Sci.88(1991)11460–11464.

[3]T.M.Allen,C.Hansen,Pharmacokineticsofstealthversusconventional liposomes:effectofdose,Biochim.Biophys.Acta(BBA)-Biomembr.1068 (1991)133–141.

[4]T.M.Allen,P.R.Cullis,Liposomaldrugdeliverysystems:fromconceptto clinicalapplications,Adv.DrugDeliv.Rev.65(2013)36–48.

[5]J.Szebeni,Complementactivation-relatedpseudoallergy:anewclassof drug-inducedacuteimmunetoxicity,Toxicology216(2005)106–121.

[6]J.Szebeni,P.Bedocs,Z.Rozsnyay,Z.Weiszhar,R.Urbanics,L.Rosivall,R.

Cohen,O.Garbuzenko,G.Bathori,M.Toth,R.Bunger,Y.Barenholz, Liposome-inducedcomplementactivationandrelatedcardiopulmonary distressinpigs:factorspromotingreactogenicityofDoxilandAmBisome, Nanomed.:Nanotechnol.Biol.Med.8(2012)176–184.

[7]P.Cummins,B.O’Connor,Hydrophobicinteractionchromatography,in:D.

Walls,S.T.Loughran(Eds.),ProteinChromatography,vol.681,HumanaPress, 2011,pp.431–437.

[8]Interactionsofnanoparticleswithplasmaproteins:implicationonclearance andtoxicityofdrugdeliverysystems,ExpertOpin.DrugDeliv.8(2011) 343–357.

[9]M.J.Hey,D.P.Jackson,H.Yan,Thesalting-outeffectandphaseseparationin aqueoussolutionsofelectrolytesandpoly(ethyleneglycol),Polymer46 (2005)2567–2572.

[10]R.C.MacDonald,R.I.MacDonald,B.P.Menco,K.Takeshita,N.K.Subbarao,L.R.

Hu,Small-volumeextrusionapparatusforpreparationoflarge,unilamellar vesicles,Biochim.Biophys.Acta1061(1991)297–303.

[11]Dynamiclightscatteringcommontermsdefined,in,vol.2015,www.

malvern.com.

[12]X.L.R.Iraolagoitia,M.F.Martini,Ca2+adsorptiontolipidmembranesandthe effectofcholesterolintheircomposition,ColloidsSurf.B:Biointerfaces76 (2010)215–220.

[13]G.Drin,V.Morello,J.-F.Casella,P.Gounon,B.Antonny,Asymmetrictethering offlatandcurvedlipidmembranesbyagolgin,Science(NewYork,N.Y.)320 (2008)670–673.

[14]Y.Barenholz,Liposomeapplication:problemsandprospects,Curr.Opin.

ColloidInterfaceSci.6(2001)66–77.

[15]O.Tirosh,Y.Barenholz,J.Katzhendler,A.Priev,Hydrationofpolyethylene glycol-graftedliposomes,Biophys.J.74(1998)1371–1379.

[16]E.Reimhult,F.Höök,B.Kasemo,Intactvesicleadsorptionandsupported biomembraneformationfromvesiclesinsolution:influenceofsurface chemistry,vesiclesize,temperature,andosmoticpressure,Langmuir19 (2003)1681–1691.

[17]B.Seantier,B.Kasemo,Influenceofmono-anddivalentionsontheformation ofsupportedphospholipidbilayersviavesicleadsorption,Langmuir25 (2009)5767–5772.

[18]J.Jass,T.Tjarnhage,G.Puu,Fromliposomestosupported,planarbilayer structuresonhydrophilicandhydrophobicsurfaces:anatomicforce microscopystudy,Biophys.J.79(2000)3153–3163.

[19]J.Jass,T.Tjärnhage,G.Puu,Atomicforcemicroscopyimagingofliposomes,in:

D.Nejat(Ed.),MethodsinEnzymology,vol.367,AcademicPress,2003,pp.

199–213.

[20]R.P.Richter,A.R.Brisson,Followingtheformationofsupportedlipidbilayers onmica:astudycombiningAFM,QCM-D,andellipsometry,Biophys.J.88 (2005)3422–3433.

[21]T.M.Riddick,ControlofColloidStabilityThroughZetaPotential,Zeta-Meter Inc.viaLivingstonPublishingCompany,Wynnewood,1968.

[22]L.Wu,J.Zhang,W.Watanabe,Physicalandchemicalstabilityofdrug nanoparticles,Adv.DrugDeliv.Rev.63(2011)456–469.

[23]F.E.Bailey,R.W.Callard,Somepropertiesofpoly(ethyleneoxide)1inaqueous solution,J.Appl.Polym.Sci.1(1959)56–62.

[24]M.G.Cacace,E.M.Landau,J.J.Ramsden,TheHofmeisterseries:saltand solventeffectsoninterfacialphenomena,Q.Rev.Biophys.30(1997)241–277.

[25]J.A.Queiroz,C.T.Tomaz,J.M.S.Cabral,Hydrophobicinteraction chromatographyofproteins,J.Biotechnol.87(2001)143–159.

[26]Z.Varga,J.Mihály,S.Berényi,A.Bóta,Structuralcharacterizationofthe poly(ethyleneglycol)layerofstericallystabilizedliposomesbymeansofFTIR spectroscopy,Eur.Polym.J.49(2013)2415–2421.

[27]M.Rozenberg,A.Loewenschuss,Y.Marcus,IRspectraandhydrationof short-chainpolyethyleneglycols,Spectrochim.ActaA:Mol.Biomol.Spectrosc.

54(1998)1819–1826.

[28]K.P.Ananthapadmanabhan,E.D.Goddard,Aqueousbiphaseformationin polyethyleneoxide-inorganicsaltsystems,Langmuir3(1987)25–31.

[29]A.Priev,A.Samuni,O.Tirosh,Y.Barenholz,Theroleofhydrationin stabilizationofliposomes:resistancetooxidativedamageofPEG-grafted liposomes,in:G.Gregoriadis,B.McCormack(Eds.),TargetingofDrugs6,vol.

300,Springer,US,1998,pp.147–167.

Ábra

Fig. 1. Turbidity (black line) and average particle diameter (red line) of liposomal suspensions as a function of ammonium sulfate (AS) concentration
Fig. 2. Phase contrast micrograph of liposomal aggregates in 1 M AS. Large branching objects and smaller aggregates are seen (200x dilution, 0.0795 mg/ml lipid  concen-tration).
Fig. 6. Effect of PEG concentration on the AS concentration dependence of liposomal aggregation
Fig. 8. The trans/gauche ratio of the ␯(C O C) band of PEG chains for SSL samples in water, in 1 M ammonium sulfate and in 1 M guanidine chloride

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Figure 3 ( 1) ) shows the segmentation output in the case of four images fusion (28th may, 26th August, 15th October and 19th December, while ( 2) ) is performed by the fusion of

• Presenting results in recognition of the extracted object classes, based on the combination of their shape and texture information, using a simple and fast approach based on

To probe the surface charge and aggregation behavior of the particles and to identify the predominating interparticle forces, the EPMs and stability ratios were measured in

Coverage includes drug aggregation in solution (sub-micellar, micellar, complexation), use of mass spectrometry to assess aggregation in saturated solutions, solid state

By in vivo and in vitro studies curcuma inhibited fibril and oligomer formation during amyloid aggregation in a variety of amyloid fibril-capable proteins such as

The aims of our study were to test whether telomere- related SNPs could modulate pancreatic cancer risk, and to use genetic markers of telomere length in order to understand

The ratio of the softening point results of the top sam- ples to bottom samples are seen in Fig. Thus, as the SBS content increased, storage stability of bitumen decreased. Similar

Aggregation of individual opinions into group consensus is performed by using fuzzy averaging method and Fuzzy Ordered Weighted Aggregation (FOWA,) Operator