• Nem Talált Eredményt

Using the Ostrowski type inequality for functions of bounded variation, an approx- imation of the finite Hilbert Transform is given

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Using the Ostrowski type inequality for functions of bounded variation, an approx- imation of the finite Hilbert Transform is given"

Copied!
19
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 3, Issue 4, Article 51, 2002

APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY FOR FUNCTIONS OF BOUNDED VARIATION

S.S. DRAGOMIR

SCHOOL OFCOMMUNICATIONS ANDINFORMATICS

VICTORIAUNIVERSITY OFTECHNOLOGY

PO BOX14428 MELBOURNECITYMC VICTORIA8001, AUSTRALIA. sever@matilda.vu.edu.au

URL:http://rgmia.vu.edu.au/SSDragomirWeb.html

Received 5 April, 2002; accepted 20 May, 2002 Communicated by B. Mond

ABSTRACT. Using the Ostrowski type inequality for functions of bounded variation, an approx- imation of the finite Hilbert Transform is given. Some numerical experiments are also provided.

Key words and phrases: Finite Hilbert Transform, Ostrowski’s Inequality.

2000 Mathematics Subject Classification. Primary 26D10, 26D15; Secondary 41A55, 47A99.

1. INTRODUCTION

Cauchy principal value integrals of the form (1.1) (T f) (a, b;t) =P V

Z b a

f(τ)

τ −tdτ := lim

ε→0+

Z t−ε a

f(τ) τ −tdτ +

Z b t+ε

f(τ) τ −tdτ

play an important role in fields like aerodynamics, the theory of elasticity and other areas of the engineering sciences. They are also helpful tools in some methods for the solution of differential equations (cf., e.g. [23]).

For different approaches in approximating the finite Hilbert transform (1.1) including: inter- polatory, noninterpolatory, Gaussian, Chebychevian and spline methods, see for example the papers [1] – [12], [14] – [22], [24] – [33] and the references therein.

In contrast with all these methods, we point out here a new method in approximating the finite Hilbert transform by the use of the Ostrowski inequality for functions of bounded variation established in [13].

For a comprehensive list of papers on Ostrowski’s inequality, visit the site http://rgmia.vu.edu.au.

ISSN (electronic): 1443-5756

c 2002 Victoria University. All rights reserved.

032-02

(2)

Estimates for the error bounds and some numerical examples for the obtained approximation are also presented.

2. SOME INEQUALITIES ON THEINTERVAL[a, b]

We start with the following lemma proved in [13] dealing with an Ostrowski type inequality for functions of bounded variation.

Lemma 2.1. Let u : [a, b] → R be a function of bounded variation on [a, b]. Then, for all x∈[a, b], we have the inequality:

(2.1)

u(x) (b−a)− Z b

a

u(t)dt

≤ 1

2(b−a) +

x− a+b 2

b _

a

(u), whereWb

a(u)denotes the total variation ofuon[a, b].

The constant 12 is the best possible one.

Proof. For the sake of completeness and since this result will be essentially used in what fol- lows, we give here a short proof.

Using the integration by parts formula for the Riemann-Stieltjes integral we have Z x

a

(t−a)du(t) =u(x) (x−a)− Z x

a

u(t)dt and

Z b x

(t−b)du(t) = u(x) (b−x)− Z b

x

u(t)dt.

If we add the above two equalities, we get (2.2) u(x) (b−a)−

Z b a

u(t)dt= Z x

a

(t−a)du(t) + Z b

x

(t−b)du(t) for anyx∈[a, b].

Ifp : [c, d] → Ris continuous on[c, d]andv : [c, d] → Ris of bounded variation on [c, d], then:

(2.3)

Z d c

p(x)dv(x)

≤ sup

x∈[c,d]

|p(x)|

d

_

c

(u). Using (2.2) and (2.3), we deduce

u(x) (b−a)− Z b

a

u(t)dt

Z x a

(t−a)du(t)

+

Z b x

(t−b)du(t)

≤(x−a)

x

_

a

(u) + (b−x)

b

_

x

(u)

≤max{x−a, b−x}

" x _

a

(u) +

b

_

x

(u)

#

= 1

2(b−a) +

x−a+b 2

b

_

a

(u) and the inequality (2.1) is proved.

(3)

Now, assume that the inequality (2.2) holds with a constantc >0, i.e., (2.4)

u(x) (b−a)− Z b

a

u(t)dt

c(b−a) +

x−a+b 2

b _

a

(u) for allx∈[a, b].

Consider the functionu0 : [a, b]→Rgiven by u0(x) =

0 if x∈[a, b]a+b

2

1 if x= a+b2 . Thenu0 is of bounded variation on[a, b]and

b

_

a

(u0) = 2, Z b

a

u0(t)dt= 0.

If we apply (2.4) for u0 and choosex = a+b2 , then we get 2c ≥ 1 which implies that c ≥ 12

showing that 12 is the best possible constant in (2.1).

The best inequality we can get from (2.1) is the following midpoint inequality.

Corollary 2.2. With the assumptions in Lemma 2.1, we have (2.5)

u

a+b 2

(b−a)− Z b

a

u(t)dt

≤ 1

2(b−a)

b

_

a

(u). The constant 12 is best possible.

Using the above Ostrowski type inequality we may point out the following result in estimating the finite Hilbert transform.

Theorem 2.3. Let f : [a, b] → R be a function such that its derivative f0 : [a, b] → R is of bounded variation on[a, b]. Then we have the inequality:

(2.6)

(T f) (a, b;t)−f(t) π ln

b−t t−a

−b−a

π [f;λt+ (1−λ)b, λt+ (1−λ)a]

≤ 1 π

1 2+

λ− 1 2

1

2(b−a) +

t− a+b 2

b

_

a

(f0), for anyt∈(a, b)andλ∈[0,1), where[f;α, β]is the divided difference, i.e.,

[f;α, β] := f(α)−f(β) α−β .

Proof. Sincef0is bounded on[a, b], it follows thatf is Lipschitzian on[a, b]and thus the finite Hilbert transform exists everywhere in(a, b).

As for the functionf0 : (a, b)→R,f0(t) = 1,t∈(a, b), we have (T f0) (a, b;t) = 1

πln

b−t t−a

, t∈(a, b), then obviously

(2.7) (T f) (a, b;t)−f(t) π ln

b−t t−a

= 1 πP V

Z b a

f(τ)−f(t) τ−t dτ.

(4)

Now, if we choose in (2.1),u=f0, x=λc+ (1−λ)d,λ∈[0,1], then we get

|f(d)−f(c)−(d−c)f0(λc+ (1−λ)d)|

≤ 1

2|d−c|+

λc+ (1−λ)d− c+d 2

d

_

c

(f0) wherec, d∈(a, b), which is equivalent to

(2.8)

f(d)−f(c)

d−c −f0(λc+ (1−λ)d)

≤ 1

2+

λ− 1 2

d

_

c

(f0) for anyc, d∈(a, b),c6=d.

Using (2.8), we may write

1 πP V

Z b a

f(τ)−f(t)

τ −t dτ − 1 πP V

Z b a

f0(λt+ (1−λ)τ)dτ (2.9)

≤ 1 π

1 2+

λ− 1 2

P V Z b

a

t

_

τ

(f0)

dt

= 1 π

1 2 +

λ− 1 2

"

Z t a

t

_

τ

(f0)

! dt+

Z b t

τ

_

t

(f0)

! dt

#

≤ 1 π

1 2+

λ− 1 2

"

(t−a)

t

_

a

(f0) + (b−t)

b

_

t

(f0)

#

≤ 1 π

1 2+

λ− 1 2

1

2(b−a) +

t− a+b 2

b _

a

(f0).

Since (forλ6= 1) 1

πP V Z b

a

f0(λt+ (1−λ)τ)dτ

= 1 π lim

ε→0+

Z t−ε a

+ Z b

t+ε

(f0(λt+ (1−λ)τ)dτ)

= 1 π lim

ε→0+

"

1

1−λf(λt+ (1−λ)τ)

t−ε

a

+ 1

1−λf(λt+ (1−λ)τ)

b

t+ε

#

= 1

π · f(t)−f(λt+ (1−λ)a) +f(λt+ (1−λ)b)−f(t) 1−λ

= b−a

π [f;λt+ (1−λ)b, λt+ (1−λ)a].

Using (2.9) and (2.7), we deduce the desired result (2.6).

It is obvious that the best inequality we can get from (2.6) is the one for λ = 12. Thus, we may state the following corollary.

(5)

Corollary 2.4. With the assumptions of Theorem 2.3, we have (2.10)

(T f) (a, b;t)−f(t) π ln

b−t t−a

−b−a π

f;t+b 2 ,a+t

2

≤ 1 2π

1

2(b−a) +

t− a+b 2

b _

a

(f0). The above Theorem 2.3 may be used to point out some interesting inequalities for the func- tions for which the finite Hilbert transforms (T f) (a, b;t)can be expressed in terms of special functions.

For instance, we have:

1) Assume thatf : [a, b]⊂(0,∞)→R,f(x) = x1. Then (T f) (a, b;t) = 1

πtln

(b−t)a (t−a)b

, t∈(a, b), b−a

π ·[f;λt+ (1−λ)b, λt+ (1−λ)a] =−1

π · b−a

[λt+ (1−λ)b] [λt+ (1−λ)a],

b

_

a

(f0) = Z b

a

|f00(t)|dt = b2 −a2 a2b2 . Using the inequality (2.6) we may write that

1 πtln

(b−t)a (t−a)b

− 1 πtln

b−t t−a

+ b−a

π[λt+ (1−λ)b] [λt+ (1−λ)a]

≤ 1 π

1 2+

λ− 1 2

1

2(b−a) +

t−a+b 2

· b2−a2 a2b2 which is equivalent to:

(2.11)

b−a

[λt+ (1−λ)b] [λt+ (1−λ)a] −1 t ln

b a

≤ 1

2+

λ− 1 2

1

2(b−a) +

t− a+b 2

· b2−a2 a2b2 . If we use the notations

L(a, b) := b−a

lnb−lna (the logarithmic mean)

Aλ(x, y) :=λx+ (1−λ)y (the weighted arithmetic mean) G(a, b) :=√

ab (the geometric mean)

A(a, b) := a+b

2 (the arithmetic mean)

then by (2.11) we deduce

1

Aλ(t, b)Aλ(t, a)− 1 tL(a, b)

≤ 1

2+

λ− 1 2

1

2(b−a) +|t−A(a, b)|

2A(a, b) G4(a, b), giving the following proposition:

(6)

Proposition 2.5. With the above assumption, we have

(2.12) |tL(a, b)−Aλ(t, b)Aλ(t, a)|

≤ 2A(a, b) G4(a, b)

1 2 +

λ− 1 2

1

2(b−a) +

t−a+b 2

tAλ(t, b)Aλ(t, a)L(a, b) for anyt∈(a, b),λ ∈[0,1).

In particular, fort=A(a, b)andλ= 12,we get (2.13)

A(a, b)L(a, b)−(A(a, b) +a) (A(a, b) +b) 4

≤ 1

2· A2(a, b)

G4(a, b) · (A(a, b) +a) (A(a, b) +b)

4 L(a, b).

2) Assume thatf : [a, b]⊂R→R,f(x) = exp (x). Then (T f) (a, b;t) = exp (t)

π [Ei(b−t)−Ei(a−t)], where

Ei(z) :=P V Z z

−∞

exp (t)

t dt, z ∈R. Also, we have:

b−a

π [exp;λt+ (1−λ)b, λt+ (1−λ)a]

= 1

π · exp (λt+ (1−λ)b)−exp (λt+ (1−λ)a)

1−λ ,

b

_

a

(f0) = Z b

a

|f00(t)|dt= exp (b)−exp (a). Using the inequality (2.6) we may write:

(2.14)

exp (t)

Ei(b−t)−Ei(a−t)−ln

b−t t−a

− exp (λt+ (1−λ)b)−exp (λt+ (1−λ)a) 1−λ

≤ 1

2+

λ− 1 2

1

2(b−a) +

t− a+b 2

[exp (b)−exp (a)]

for anyt∈(a, b).

If in (2.14) we makeλ = 12 andt= a+b2 , we get

exp

a+b 2

Ei

b−a 2

−2

exp

a+ 3b 4

−exp

3a+b 4

≤ 1

4(b−a) [exp (b)−exp (a)],

(7)

which is equivalent to:

Ei

b−a 2

−2

exp

b−a 4

−exp

−b−a 4

≤ 1

4(b−a)

exp

b−a 2

−exp

−b−a 2

. If in this inequality we make b−a2 =z >0, then we get

(2.15)

Ei(z)−2 h

exp z

2

−exp

−z 2

i ≤ 1

2z[exp (z)−exp (−z)]

for anyz >0.

Consequently, we may state the following proposition.

Proposition 2.6. With the above assumptions, we have (2.16)

Ei(z)−4 sinh 1

2z

≤zsinh (z) for anyz >0.

The reader may get other similar inequalities for special functions if appropriate examples of functionsf are chosen.

3. A QUADRATUREFORMULA FOR EQUIDISTANT DIVISIONS

The following lemma is of interest in itself.

Lemma 3.1. Letu: [a, b]→Rbe a function of bounded variation on[a, b]. Then for alln≥1, λi ∈[0,1) (i= 0, . . . , n−1)andt, τ ∈[a, b]witht6=τ, we have the inequality:

(3.1)

1 τ −t

Z τ t

u(s)ds− 1 n

n−1

X

i=0

u

t+ (i+ 1−λi)τ −t n

≤ 1 n

1

2+ max

i=0,n−1

λi− 1 2

τ

_

t

(u) . Proof. Consider the equidistant division of[t, τ](ift < τ) or[τ, t](ifτ < t) given by

(3.2) En:xi =t+i·τ −t

n , i= 0, n.

Then the pointsξi = λi

t+i· τ−tn

+ (1−λi)

t+ (i+ 1)· τ−tn

λi ∈[0,1], i= 0, n−1 are betweenxi andxi+1. We observe that we may write for simplicityξi =t+ (i+ 1−λi)τ−tn

i= 0, n−1

. We also have

ξi−xi+xi+1

2 = τ −t

2n (1−2λi), ξi−xi = (1−λi)τ −t

n and

xi+1−ξii· τ −t n for anyi= 0, n−1.

(8)

If we apply the inequality (2.1) on the interval[xi, xi+1]and the intermediate pointξi i= 0, n−1 , then we may write that

(3.3)

τ −t n u

t+ (i+ 1−λi)τ −t n

− Z xi+1

xi

u(s)ds

≤ 1

2 · |τ−t|

n +

τ−t

2n (1−2λi)

xi+1

_

xi

(u) . Summing, we get

Z τ t

u(s)ds− τ−t n

n−1

X

i=0

u

t+ (i+ 1−λi)τ−t n

≤ |τ −t|

2n

n−1

X

i=0

[1 +|1−2λi|]

xi+1

_

xi

(u)

= |τ −t|

n 1

2+ max

i=0,n−1

λi− 1 2

τ

_

t

(u) ,

which is equivalent to (3.1).

We may now state the following theorem in approximating the finite Hilbert transform of a differentiable function with the derivative of bounded variation on[a, b].

Theorem 3.2. Let f : [a, b] → R be a differentiable function such that its derivativef0 is of bounded variation on[a, b]. Ifλ= (λi)i=0,n−1,λi ∈[0,1) i= 0, n−1

and

(3.4) Sn(f;λ, t) := b−a πn

n−1

X

i=0

f; (i+ 1−λi)b−t

n +t,(i+ 1−λi)a−t n +t

, then we have the estimate:

(T f) (a, b;t)−f(t) π ln

b−t t−a

−Sn(f;λ, t) (3.5)

≤ b−a nπ

1

2 + max

i=0,n−1

λi− 1 2

1

2(b−a) +

t−a+b 2

b

_

a

(f0)

≤ b−a nπ

b

_

a

(f0).

Proof. Applying Lemma 3.1 for the functionf0, we may write that (3.6)

f(τ)−f(t) τ −t − 1

n

n−1

X

i=0

f0

t+ (i+ 1−λi)τ −t n

≤ 1 n

1

2+ max

i=0,n−1

λi− 1 2

τ

_

t

(f0) for anyt, τ ∈[a, b],t6=τ.

(9)

Consequently, we have

1 πP V

Z b a

f(τ)−f(t)

τ −t dτ − 1 πn

n−1

X

i=0

P V Z b

a

f0

t+ (i+ 1−λi)τ−t n

(3.7)

≤ 1 nπ

1

2+ max

i=0,n−1

λi− 1 2

P V Z b

a

τ

_

t

(f0)

≤ 1 nπ

1

2+ max

i=0,n−1

λi− 1 2

1

2(b−a) +

t− a+b 2

b _

a

(f0). On the other hand

P V Z b

a

f0

t+ (i+ 1−λi)τ −t n

dτ (3.8)

= lim

ε→0+

Z t−ε a

+ Z b

t+ε

f0

t+ (i+ 1−λi)τ −t n

= lim

ε→0+

"

n i+ 1−λif

t+ (i+ 1−λi)τ −t n

t−ε

a

+ n

i+ 1−λif

t+ (i+ 1−λi)τ−t n

b

t+ε

#

= n

i+ 1−λi

f

t+ (i+ 1−λi)b−t n

−f

t+ (i+ 1−λi)a−t n

= (b−a)

f;t+ (i+ 1−λi)b−t

n ,(i+ 1−λi)a−t n +t

. Since (see for example (2.7)),

(T f) (a, b;t) = 1 πP V

Z b a

f(τ)−f(t)

τ −t dτ + f(t) π ln

b−t t−a

fort ∈(a, b),then by (3.7) and (3.8) we deduce the desired estimate (3.5).

Remark 3.3. Forn= 1, we recapture the inequality (2.6).

Corollary 3.4. With the assumptions of Theorem 3.2, we have (3.9) (T f) (a, b;t) = f(t)

π ln

b−t t−a

+ lim

n→∞Sn(f;λ, t) uniformly by rapport oft∈(a, b)andλwithλi ∈[0,1) (i∈N).

Remark 3.5. If one needs to approximate the finite Hilbert Transform(T f) (a, b;t)in terms of f(t)

π ln

b−t t−a

+Sn(f;λ, t)

with the accuracyε >0(εsmall), then the theoretical minimal numbernεto be chosen is:

(3.10) nε :=

"

b−a επ

b

_

a

(f0)

# + 1 where[α]is the integer part ofα.

(10)

It is obvious that the best inequality we can get in (3.5) is forλi = 12 i= 0, n−1

obtaining the following corollary.

Corollary 3.6. Letf be as in Theorem 3.2. Define (3.11) Mn(f;t) := b−a

πn

n−1

X

i=0

f;

i+1

2

b−t n +t,

i+ 1

2

a−t n +t

. Then we have the estimate

(3.12)

(T f) (a, b;t)−f(t) π ln

b−t t−a

−Mn(f;t)

≤ b−a 2nπ

1

2(b−a) +

t− a+b 2

b _

a

(f0) for anyt∈(a, b).

This rule will be numerically implemented in Section 5 for different choices off andn.

4. A MOREGENERAL QUADRATUREFORMULA

We may state the following lemma.

Lemma 4.1. Letu : [a, b] → Rbe a function of bounded variation on[a, b], 0 = µ0 < µ1 <

· · ·< µn−1 < µn= 1andνi ∈[µi, µi+1],i= 0, n−1.Then for anyt, τ ∈[a, b]witht6=τ, we have the inequality:

(4.1)

1 τ −t

Z τ t

u(s)ds−

n−1

X

i=0

i+1−µi)u[(1−νi)t+νiτ]

≤ 1

2∆n(µ) + max

i=0,n−1

νi− µii+1 2

τ

_

t

(u) , wheren(µ) := max

i=0,n−1i+1−µi).

Proof. Consider the division of[t, τ](ift < τ) or[τ, t](ifτ < t) given by (4.2) In:xi := (1−µi)t+µiτ i= 0, n

. Then the pointsξi := (1−νi)t+νiτ i= 0, n−1

are betweenxiandxi+1. We have xi+1−xi = (µi+1−µi) (τ−t) i= 0, n−1

and

ξi− xi+xi+1

2 =

νi− µii+1 2

(τ−t) i= 0, n−1 .

Applying the inequality (2.1) on[xi, xi+1]with the intermediate pointsξi i= 0, n−1

, we get

Z xi+1

xi

u(s)ds−(µi+1−µi) (τ −t)u[(1−νi)t+νiτ]

≤ 1

2(µi+1−µi)|τ −t|+|τ −t|

νi− µii+1 2

xi+1

_

xi

(u)

(11)

for anyi= 0, n−1. Summing overi, using the generalised triangle inequality and dividing by

|t−τ|>0,we obtain

1 τ −t

Z b a

u(s)ds−

n−1

X

i=0

i+1−µi)u[(1−νi)t+νiτ]

n−1

X

i=0

1

2(µi+1−µi) +

νi− µii+1 2

xi+1

_

xi

(u)

≤ 1

2∆n(µ) + max

i=0,n−1

νi−µii+1 2

τ

_

t

(u)

and the inequality (4.1) is proved.

The following theorem holds.

Theorem 4.2. Let f : [a, b] → R be a differentiable function such that its derivativef0 is of bounded variation on [a, b]. If 0 = µ0 < µ1 < · · · < µn−1 < µn = 1 and νi ∈ [µi, µi+1],

i= 0, n−1 ,then

(4.3) (T f) (a, b;t) = f(t) π ln

b−t t−a

+ 1

πQn(µ, ν, t) +Wn(µ, ν, t) for anyt∈(a, b), where

(4.4) Qn(µ, ν, t) :=µ1f0(t) (b−a) + (b−a)

n−2

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia]

+ (1−µn−1) [f(b)−f(a)]

ifν0 = 0, νn−1 = 1,

(4.5) Qn(µ, ν, t) :=µ1f0(t) (b−a) + (b−a)

n−1

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia]

ifν0 = 0, νn−1 <1,

(4.6) Qn(µ, ν, t) := (b−a)

n−2

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia] + (1−µn−1) [f(b)−f(a)]

ifν0 >0, νn−1 = 1and

(4.7) Qn(µ, ν, t) := (b−a)

n−1

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia]

(12)

ifν0 >0, νn−1 <1.

In all cases, the remainder satisfies the estimate:

|Wn(µ, ν, t)| ≤ 1 π

1

2∆n(µ) + max

i=0,n−1

νi− µii+1 2

(4.8)

× 1

2(b−a) +

t− a+b 2

b _

a

(f0)

≤ 1

π∆n(µ) 1

2(b−a) +

t− a+b 2

b

_

a

(f0)

≤ 1

π∆n(µ) (b−a)

b

_

a

(f0).

Proof. If we apply Lemma 4.1 for the functionf0, we may write that

f(τ)−f(t)

τ −t −

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

≤ 1

2∆n(µ) + max

i=0,n−1

νi− µii+1

2

τ

_

t

(f0) for anyt, τ ∈[a, b], t6=τ.

Taking theP V in both sides, we may write that (4.9)

1 πP V

Z b a

f(τ)−f(t) τ −t dτ

−1 πP V

Z b a

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

≤ 1 π

1

2∆n(µ) + max

i=0,n−1

νi− µii+1 2

P V Z b

a

τ

_

t

(f0)

dτ.

Ifν0 = 0, νn−1 = 1,then P V

Z b a

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

=P V Z b

a

µ1f0(t)dτ +

n−2

X

i=1

i+1−µi)P V Z b

a

f0[(1−νi)t+νiτ]dτ

+ (1−µn−1)P V Z b

a

f0(τ)dτ

1f0(t) (b−a) + (b−a)

n−2

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia]

+ (1−µn−1) [f(b)−f(a)].

(13)

Ifν0 = 0, νn−1 <1,then P V

Z b a

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

1f0(t) (b−a) + (b−a)

n−1

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia]. Ifν0 >0, νn−1 = 1,then

P V Z b

a n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

= (b−a)

n−2

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia] + (1−µn−1) [f(b)−f(a)]. and, finally, ifν0 >0, νn−1 <1,then

P V Z b

a n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

= (b−a)

n−1

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia]. Since

P V Z b

a

τ

_

t

(f0)

dτ ≤ 1

2(b−a) +

t− a+b 2

b _

a

(f0) and

(T f) (a, b;t) = 1 πP V

Z b a

f(τ)−f(t)

τ−t dτ + f(t) π ln

b−t t−a

,

then by (4.9) we deduce (4.3).

5. NUMERICAL EXPERIMENTS

For a functionf : [a, b]→R,we may consider the quadrature formula En(f;a, b, t) := f(t)

π ln

b−t t−a

+Mn(f;t), t∈[a, b].

As shown above in Section 4, En(f;a, b, t) provides an approximation for the Finite Hilbert Transform(T f) (a, b;t)and the error estimate fulfils the bound described in(2.3).

If we consider the functionf : [−1,1] → R, f(x) = exp(x),then the exact value of the Hilbert transform is

(T f) (a, b;t) = exp(t)Ei(1−t)−exp(t)Ei(−1−t)

π , t∈[−1,1]

and the plot of this function is embodied in Figure 5.1.

If we implement the quadrature formula provided byEn(f;a, b, t)using Maple 6 and chose the value of n = 100, then the error Er(f;a, b, t) := (T f) (a, b;t)−En(f;a, b, t) has the variation described in the Figure 5.2.

Forn =1,000, the plot ofEr(f;a, b, t)is embodied in the following Figure 5.3.

(14)

Figure 5.1:

Figure 5.2:

Now, if we consider another function,f : [−1,1]→ R, f(x) = sinx,then the exact value of the Hilbert transform is

(T f) (a, b;t) = −Si(−1 +t) cos(t) +Ci(1−t) sin(t) π

+ Si(t+ 1) cos(t)−sin(t)Ci(t+ 1))

π , t∈[−1,1] ;

(15)

Figure 5.3:

where

Si(x) = Z x

0

sin(t)

t dt, Ci(x) = γ+ lnx+ Z x

0

cos(t)−1

t dt;

having the plot embodied in the following Figure 5.4.

Figure 5.4:

If we choose the value of n = 100, then the error Er(f;a, b, t) for the function f(x) = sinx, x∈[−1,1]has the variation described in the Figure 5.5 below.

(16)

Figure 5.5:

Figure 5.6:

Moreover, forn=100,000, the behaviour ofEr(f;a, b, t)is plotted in Figure 5.6.

Finally, if we choose the functionf : [−1,1] →R, f(x) = sin (x2),the Maple 6 is unable to produce an exact value of the finite Hilbert transform. If we use our formula

En(f;a, b, t) := f(t) π ln

b−t t−a

+Mn(f;t), t∈[a, b]

forn =1,000, then we can produce the plot in Figure 5.7.

(17)

Figure 5.7:

Taking into account the bound(3.12) we know that the accuracy of the plot in Figure 5.7 is at least of order10−5.

REFERENCES

[1] G. CRISCUOLO ANDG. MASTROIANNI, Formule gaussiane per il calcolo di integrali a valor principale secondo e Cauchy loro convergenza, Calcolo, 22 (1985), 391–411.

[2] G. CRISCUOLOANDG. MASTROIANNI, Sulla convergenza di alcune formule di quadratura per il calcolo di integrali a valor principale secondo Cauchy, Anal. Numér. Théor. Approx., 14 (1985), 109–116.

[3] G. CRISCUOLOAND G. MASTROIANNI, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp., 48 (1987), 725–735.

[4] G. CRISCUOLOANDG. MASTROIANNI, Mean and uniform convergence of quadrature rules for evaluating the finite Hilbert transform, in: A. Pinkus and P. Nevai, Eds., Progress in Approximation Theory (Academic Press, Orlando, 1991), 141–175.

[5] C. DAGNINO, V. DEMICHELIS AND E. SANTI, Numerical integration based on quasi- interpolating splines, Computing, 50 (1993), 149–163.

[6] C. DAGNINO, V. DEMICHELISANDE. SANTI, An algorithm for numerical integration based on quasi-interpolating splines, Numer. Algorithms, 5 (1993), 443–452.

[7] C. DAGNINO, V. DEMICHELISANDE. SANTI, Local spline approximation methods for singular product integration, Approx. Theory Appl., 12 (1996), 1–14.

[8] C. DAGNINOANDP. RABINOWITZ, Product integration of singular integrands based on quasi- interpolating splines, Comput. Math., to appear, special issue dedicated to 100th birthday of Cor- nelius Lanczos.

[9] P.J. DAVISANDP. RABINOWITZ, Methods of Numerical Integration, (Academic Press, Orlando, 2nd Ed., 1984).

(18)

[10] K. DIETHELM, Non-optimality of certain quadrature rules for Cauchy principal value integrals, Z.

Angew. Math. Mech, 74(6) (1994), T689–T690.

[11] K. DIETHELM, Peano kernels and bounds for the error constants of Gaussian and related quadra- ture rules for Cauchy principal value integrals, Numer. Math., to appear.

[12] K. DIETHELM, Uniform convergence to optimal order quadrature rules for Cauchy principal value integrals, J. Comput. Appl. Math., 56(3) (1994), 321–329.

[13] S.S. DRAGOMIR, On the Ostrowski integral inequality for mappings of bounded variation and applications, Math. Ineq.& Appl., 3(1) (2001), 59–66.

[14] D. ELLIOTT, On the convergence of Hunter’s quadrature rule for Cauchy principal value integrals, BIT, 19 (1979), 457–462.

[15] D. ELLIOTT AND D.F. PAGET, On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals, Numer. Math., 23 (1975), 311–319.

[16] D. ELLIOTT AND D.F. PAGET, On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals: An addendum, Numer. Math., 25 (1976), 287–289.

[17] D. ELLIOTTANDD.F. PAGET, Gauss type quadrature rules for Cauchy principal value integrals, Math. Comp., 33 (1979), 301–309.

[18] T. HASEGAWA AND T. TORII, An automatic quadrature for Cauchy principal value integrals, Math. Comp., 56 (1991), 741–754.

[19] T. HASEGAWAANDT. TORII, Hilbert and Hadamard transforms by generalised Chebychev ex- pansion, J. Comput. Appl. Math., 51 (1994), 71–83.

[20] D.B. HUNTER, Some Gauss type formulae for the evaluation of Cauchy principal value integrals, Numer. Math., 19 (1972), 419–424.

[21] N.I. IOAKIMIDIS, Further convergence results for two quadrature rules for Cauchy type principal value integrals, Apl. Mat., 27 (1982), 457–466.

[22] N.I. IOAKIMIDIS, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives, Math. Comp., 44 (1985), 191–198.

[23] A.I. KALANDIYA, Mathematical Methods of Two-Dimensional Elasticity, (Mir, Moscow, 1st Eng- lish ed., 1978).

[24] G. MONEGATO, The numerical evaluation of one-dimensional Cauchy principal value integrals, Computing, 29 (1982), 337–354.

[25] G. MONEGATO, On the weights of certain quadratures for the numerical evaluation of Cauchy principal value integrals and their derivatives, Numer. Math., 50 (1987), 273–281.

[26] D.F. PAGETANDD. ELLIOTT, An algorithm for the numerical evaluation of certain Cauchy prin- cipal value integrals, Numer. Math., 19 (1972), 373–385.

[27] P. RABINOWITZ, On an interpolatory product rule for evaluating Cauchy principal value integrals, BIT, 29 (1989), 347–355.

[28] P. RABINOWITZ, Numerical integration based on approximating splines, J. Comput. Appl. Math., 33 (1990), 73–83.

[29] P. RABINOWITZ, Application of approximating splines for the solution of Cauchy singular inte- gral equations, Appl. Numer. Math., 15 (1994), 285–297.

[30] P. RABINOWITZ, Numerical evaluation of Cauchy principal value integrals with singular inte- grands, Math. Comput., 55 (1990), 265–276.

(19)

[31] P. RABINOWITZANDE. SANTI, On the uniform convergence of Cauchy principle value of quasi- interpolating splines, Bit, 35 (1995), 277–290.

[32] M.S. SHESHKO, On the convergence of quadrature processes for a singular integral, Izv, Vyssh.

Uohebn. Zaved Mat., 20 (1976), 108–118.

[33] G. TSAMASPHYROSANDP.S. THEOCARIS, On the convergence of some quadrature rules for Cauchy principal-value and finite-part integrals, Computing, 31 (1983), 105–114.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and some numerical quadrature rules, Comput..

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

An inequality providing some bounds for the integral mean via Pompeiu’s mean value theorem and applications for quadrature rules and special means are given.. 2000 Mathematics

Very recently, some authors studied some linear positive operators and obtained the rate of convergence for functions of bounded variation. For example, Bo- janic R. [3] estimated

[4] estimated the rate of convergence of Bernstein polynomials of functions bounded variation on the interval [0, 1], Zeng and Chen [9] estimated the rate of convergence of

An Askey type inequality for the function λ p and the Grünbaum inequality for the modified Bessel functions of the first kind are derived in Section 3.. The lower and upper bounds