• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
26
0
0

Teljes szövegt

(1)

volume 6, issue 4, article 106, 2005.

Received 16 September, 2005;

accepted 23 September, 2005.

Communicated by:A. Lupa¸s

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

RATE OF CONVERGENCE OF CHLODOWSKY TYPE DURRMEYER OPERATORS

ERTAN IBIKLI AND HARUN KARSLI

Ankara University, Faculty of Sciences, Department of Mathematics,

06100 Tandogan - Ankara/Turkey.

EMail:ibikli@science.ankara.edu.tr EMail:karsli@science.ankara.edu.tr

c

2000Victoria University ISSN (electronic): 1443-5756 276-05

(2)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Abstract

In the present paper, we estimate the rate of pointwise convergence of the Chlodowsky type Durrmeyer OperatorsDn(f, x)for functions, defined on the interval[0, bn],(bn→ ∞), extending infinity, of bounded variation. To prove our main result, we have used some methods and techniques of probability theory.

2000 Mathematics Subject Classification:41A25, 41A35, 41A36.

Key words: Approximation, Bounded variation, Chlodowsky polynomials, Durrmeyer Operators, Chanturiya’s modulus of variation, Rate of convergence.

Contents

1 Introduction. . . 3 2 Auxiliary Results . . . 6 3 Proof Of The Main Result . . . 11

References

(3)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

1. Introduction

Very recently, some authors studied some linear positive operators and obtained the rate of convergence for functions of bounded variation. For example, Bo- janic R. and Vuilleumier M. [3] estimated the rate of convergence of Fourier Legendre series of functions of bounded variation on the interval [0,1], Cheng F. [4] estimated the rate of convergence of Bernstein polynomials of functions bounded variation on the interval[0,1], Zeng and Chen [9] estimated the rate of convergence of Durrmeyer type operators for functions of bounded variation on the interval[0,1].

Durrmeyer operatorsMnintroduced by Durrmeyer [1]. Also let us note that these operators were introduced by Lupa¸s [2]. The polynomialMnfdefined by

Mn(f;x) = (n+ 1)

n

X

k=0

Pn,k(x) Z 1

0

f(t)Pn,k(t)dt, 0≤x≤1, where

Pn,k(x) = n

k

(x)k(1−x)n−k.

These operators are the integral modification of Bernstein polynomials so as to approximate Lebesgue integrable functions on the interval [0,1].The oper- ators Mn were studied by several authors. Also, Guo S. [5] investigated Dur- rmeyer operatorsMnand estimated the rate of convergence of operatorsMnfor functions of bounded variation on the interval[0,1].

Chlodowsky polynomials are given [6] by Cn(f;x) =

n

X

k=0

f k

nbn n k

x bn

k 1− x

bn n−k

, 0≤x≤bn,

(4)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

where (bn) is a positive increasing sequence with the properties lim

n→∞bn = ∞ and lim

n→∞

bn

n = 0.

Works on Chlodowsky operators are fewer, since they are defined on an un- bounded interval[0,∞).

This paper generalizes Chlodowsky polynomials by incorporating Durrmeyer operators, hence the name Chlodowsky-Durrmeyer operators:Dn:BV[0,∞)→P,

Dn(f;x) = (n+ 1) bn

n

X

k=0

Pn,k x

bn Z bn

0

f(t)Pn,k t

bn

dt, 0≤x≤bn whereP :={P : [0,∞)→R}, is a polynomial functions set,(bn)is a positive increasing sequence with the properties,

n→∞lim bn =∞ and lim

n→∞

bn n = 0 and

Pn,k(x) = n

k

(x)k(1−x)n−k is the Bernstein basis.

In this paper, by means of the techniques of probability theory, we shall estimate the rate of convergence of operators Dn, for functions of bounded variation in terms of the Chanturiya’s modulus of variation. At the points which one sided limit exist, we shall prove that operators Dn converge to the limit 12[f(x+) +f(x−)] on the interval [0, bn], (n → ∞) extending infinity, for functions of bounded variation on the interval[0,∞).

(5)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

For the sake of brevity, let the auxiliary functiongxbe defined by

gx(t) =









f(t)−f(x+), x < t≤bn;

0, t=x;

f(t)−f(x+), 0≤t < x.

The main theorem of this paper is as follows.

Theorem 1.1. Let f be a function of bounded variation on every finite subin- terval of[0,∞).Then for everyx∈(0,∞),andnsufficiently large, we have, (1.1)

Dn(f;x)−1

2(f(x+) +f(x−))

≤ 3An(x)b2n x2(bn−x)2





n

X

k=1 x+bn−x

k

_

x−x

k

(gx)





+ 2

qnx

bn(1−bx

n)

|{f(x+)−f(x−)}|,

whereAn(x) = h

2n x(bn−x)+2b2n n2

i and

b

W

a

(gx)is the total variation ofgxon[a, b].

(6)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

2. Auxiliary Results

In this section we give certain results, which are necessary to prove our main theorem.

Lemma 2.1. Ifs∈Nands≤n,then Dn(ts;x) = (n+ 1)!bsn

(n+s+ 1)!

s

X

r=0

s r

s!

r! · n!

(n−r)!(xbn)r. Proof.

Dn(ts;x) = n+ 1 bn

n

X

k=0

Pn,k x

bn

Z bn

0

Pn,k t

bn

tsdt

= n+ 1 bn

n

X

k=0

Pn,k x

bn "

Z bn

0

n k

t bn

k 1− t

bn n−k

tsdt

#

= n+ 1 bn

n

X

k=0

Pn,k x

bn

bs+1n n

k Z 1

0

(u)k+s(1−u)n−kdu, set u= t bn

= n+ 1 bn

n

X

k=0

Pn,k x

bn

bs+1n (k+s)!

k! · n!

(n+s+ 1)!. Thus

Dn(ts;x) = (n+ 1)!bsn (n+s+ 1)!

n

X

k=0

Pn,k

x bn

(k+s)!

k! .

(7)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Fors≤n,we have

s

∂xs x

bn s

x+y bn

n

= 1 bsn

n

X

k=0

n k

x bn

k y bn

n−k

(k+s)!

k!

and from the Leibnitz formula

s

∂xs x

bn s

x+y bn

n

=

s

X

r=0

s r

s!

r! · n!

(n−r)!(xbn)r

x+y bn

n−r

1 bsn

= 1 bsn

s

X

r=0

s r

s!

r! · n!

(n−r)!(xbn)r

x+y bn

n−r

Letx+y =bn,we have

n

X

k=0

n k

x bn

k y bn

n−k

(k+s)!

k! =

s

X

r=0

s r

s!

r!· n!

(n−r)!(xbn)r

x+y bn

n−r

Thus the proof is complete.

By the Lemma2.1, we get Dn(1;x) = 1 (2.1)

Dn(t;x) = x+bn−2x n+ 2

Dn(t2;x) = x2+[4nbn−6(n+ 1)x]

(n+ 2)(n+ 3) x+ 2b2n (n+ 2)(n+ 3).

(8)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

By direct computation, we get

Dn((t−x)2;x) = 2(n−3)(bn−x)x

(n+ 2)(n+ 3) + 2b2n (n+ 2)(n+ 3) and hence,

(2.2) Dn((t−x)2;x)≤ 2nx(bn−x) + 2b2n

n2 .

Lemma 2.2. For allx∈(0,∞),we have λn

x bn, t

bn

= Z t

0

Kn x

bn, u bn

du

≤ 1

(x−t)2 · 2nx(bn−x) + 2b2n

n2 ,

(2.3) where

Kn x

bn, u bn

= n+ 1 bn

n

X

k=0

Pn,k x

bn

Pn,k u

bn

. Proof.

λn x

bn

, t bn

= Z t

0

Kn x

bn

, u bn

du

≤ Z t

0

Kn x

bn

, u bn

x−u x−t

2

du

(9)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

= 1

(x−t)2 Z t

0

Kn x

bn, u bn

(x−u)2du

= 1

(x−t)2Dn((u−x)2;x) By the (2.2), we have,

λn x

bn, t bn

≤ 1

(x−t)2 ·2(n−3)(bn−x)x

(n+ 2)(n+ 3) + 2b2n (n+ 2)(n+ 3)

≤ 1

(x−t)2 ·2nx(bn−x) + 2b2n

n2 .

Set

(2.4) Jn,jα x

bn

=

n

X

k=j

Pn,k

x bn

!α

,

Jn,n+1α x

bn

= 0

,

whereα≥1.

Lemma 2.3. For allx∈(0,1)andj = 0,1,2, . . . , n,we have Jn,jα (x)−Jn+1,j+1α (x)

≤ 2α pnx(1−x) and

Jn,jα (x)−Jn+1,jα (x)

≤ 2α pnx(1−x).

(10)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Proof. The proof of this lemma is given in [9].

Forα= 1,replacing the variablexwith bx

n in Lemma2.3we get the follow- ing lemma:

Lemma 2.4. For allx∈(0, bn)andj = 0,1,2, . . . , n,we have

Jn,j x

bn

−Jn+1,j+1 x

bn

≤ 2

r nbx

n

1−bx

n

and (2.5)

Jn,j x

bn

−Jn+1,j x

bn

≤ 2

r nbx

n

1− bx

n

.

(11)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

3. Proof Of The Main Result

Now, we can prove the Theorem1.1.

Proof. For any f ∈ BV[0,∞),we can decompose f into four parts on[0, bn] for sufficiently largen,

(3.1) f(t) = 1

2(f(x+) +f(x−))

+gx(t) + f(x+)−f(x−)

2 sgn(t−x) +δx(t)

f(x)− 1

2(f(x+) +f(x−))

where

(3.2) δx(t) =

( 1, x=t 0, x6=t.

If we applying the operatorDnthe both side of equality (3.1), we have Dn(f;x) = 1

2(f(x+) +f(x−))Dn(1;x) +Dn(gx;x) + f(x+)−f(x−)

2 Dn(sgn(t−x);x) +

f(x)− 1

2(f(x+) +f(x−))

Dnx;x).

(12)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Hence, since (2.1)Dn(1;x) = 1,we get,

Dn(f;x)− 1

2(f(x+) +f(x−))

≤ |Dn(gx;x)|+

f(x+)−f(x−) 2

|Dn(sgn(t−x);x)|

+

f(x)− 1

2(f(x+) +f(x−))

|Dnx;x)|. For operatorsDn, using (3.2) we can see thatDnx;x) = 0.

Hence we have

Dn(f;x)− 1

2(f(x+) +f(x−))

≤ |Dn(gx;x)|+

f(x+)−f(x−) 2

|Dn(sgn(t−x);x)|

In order to prove above inequality, we need the estimates forDn(gx;x)and Dn(sgn(t−x);x).

We first estimate|Dn(gx;x)|as follows:

|Dn(gx;x)|=

n+ 1 bn

n

X

k=0

Pn,k

x bn

Z bn

0

Pn,k

t bn

gx(t)dt

(13)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

=

n+ 1 bn

n

X

k=0

Pn,k x

bn

"

Z x−x

n

0

+

Z x+bn−xn x−x

n

+ Z bn

x+bn−xn

! Pn,k

t bn

gx(t)dt

#

n+ 1 bn

n

X

k=0

Pn,k x

bn

Z x−x

n

0

Pn,k t

bn

gx(t)dt +

n+ 1 bn

n

X

k=0

Pn,k x

bn

Z x+bn−xn x−x

n

Pn,k t

bn

gx(t)dt +

n+ 1 bn

n

X

k=0

Pn,k x

bn

Z bn

x+bn−xn

Pn,k t

bn

gx(t)dt

=|I1(n, x)|+|I2(n, x)|+|I3(n, x)|

We shall evaluateI1(n, x), I2(n, x)andI3(n, x).To do this we first observe thatI1(n, x), I2(n, x)andI3(n, x)can be written as Lebesque-Stieltjes integral,

|I1(n, x)|=

Z x−x

n

0

gx(t)dt

λn

x bn, t

bn

|I2(n, x)|=

Z x+bn−xn x−x

n

gx(t)dt

λn x

bn, t bn

|I3(n, x)|=

Z bn

x+bn−xn

gx(t)dt

λn x

bn

, t bn

, where

λn x

bn, t bn

= Z t

0

Kn x

bn, u bn

du

(14)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

and

Kn x

bn, t bn

= n+ 1 bn

n

X

k=0

Pn,k x

bn

Pn,k t

bn

.

First we estimateI2(n, x).Fort∈h

x− xn, x+ bn−xn i

,we have

|I2(n, x)|=

Z x+bn−xn x−x

n

(gx(t)−gx(x))dt

λn

x bn, t

bn

Z x+bn−xn x−x

n

|gx(t)−gx(x)|

dt

λn x

bn

, t bn

x+bn−xn

_

x−x

n

(gx)≤ 1 n−1

n

X

k=2 x+bn−xn

_

x−x

n

(gx).

(3.3)

Next, we estimateI1(n, x).Using partial Lebesque-Stieltjes integration, we obtain

I1(n, x) =

Z x−x

n

0

gx(t)dt

λn x

bn, t bn

=gx

x− x

√n

λn x

bn,x−xn bn

−gx(0)λn

x bn,0

Z x−x

n

0

λn

x bn, t

bn

dt(gx(t)).

(15)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Since

gx

x− x

√n

=

gx

x− x

√n

−gx(x)

x

_

x−x

n

(gx),

it follows that

|I1(n, x)| ≤

x

_

x−x

n

(gx)

λn x

bn

,x−xn bn

+ Z x−x

n

0

λn x

bn

, t bn

dt

x

_

t

(gx)

! .

From (2.3), it is clear that λn

x bn

,x− xn bn

≤ 1 x

n

2

2n x(bn−x) + 2b2n n2

.

It follows that

|I1(n, x)| ≤

x

_

x−x

n

(gx) 1 x

n

2

2nx(bn−x) + 2b2n n2

+

Z x−x

n

0

1 (x−t)2

2nx(bn−x) + 2b2n n2

dt

x

_

t

(gx)

!

=

x

_

x−x

n

(gx)An(x) x

n

2 +An(x)

Z x−x

n

0

1

(x−t)2dt

x

_

t

(gx)

! .

(16)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Furthermore, since Z x−x

n

0

1

(x−t)2dt −

x

_

t

(gx)

!

=− 1

(x−t)2

x

_

t

(gx)

x−x

n

0

+

Z x−x

n

0

2 (x−t)3

x

_

t

(gx)dt

=− 1 (xn)2

x

_

x−x

n

(gx) + 1 x2

x

_

0

(gx) +

Z x−x

n

0

2 (x−t)3

x

_

t

(gx)dt.

Puttingt=x− xu in the last integral, we get Z x−x

n

0

2 (x−t)3

x

_

t

(gx)dt= 1 x2

Z n 1

x

_

x−x

u

(gx)du= 1 x2

n

X

k=1 x

_

x−x

k

(gx).

Consequently,

|I1(n, x)| ≤

x

_

x−x

n

(gx)An(x) (xn)2

+An(x)

− 1 (xn)2

x

_

x−x

n

(gx) + 1 x2

x

_

0

(gx) + 1 x2

n

X

k=1 x

_

x−x

k

(gx)

(17)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

=An(x)

 1 x2

x

_

0

(gx) + 1 x2

n

X

k=1 x

_

x−x

k

(gx)

= An(x) x2

bn

_

0

(gx) +

n

X

k=1 x

_

x−x

k

(gx)

 . (3.4)

Using the similar method for estimating|I3(n, x)|,we get

|I3(n, x)| ≤ An(x) (bn−x)2





bn

_

x

(gx) +

n

X

k=1

x+bn−x

k

_

x

(gx)





≤ An(x) (bn−x)2





bn

_

0

(gx) +

n

X

k=1

x+bn−x

k

_

x−x

k

(gx)



 . (3.5)

Hence from (3.3), (3.4) and (3.5), it follows that

|Dn(gx;x)| ≤ |I1(n, x)|+|I2(n, x)|+|I3(n, x)|

≤ An(x) x2

bn

_

0

(gx) +

n

X

k=1 x

_

x−x

k

(gx)

+ An(x) (bn−x)2





bn

_

0

(gx) +

n

X

k=1 x+bn−x

k

_

x−x

k

(gx)





+ 1

n−1

n

X

k=2

x+bn−xn

_

x−x

k

(gx).

(18)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Obviously,

1

x2 + 1

(bn−x)2 = b2n x2(bn−x)2, for bx

n ∈[0,1]and

x

_

x−x

k

(gx)≤

x+bn−x

k

_

x−x

k

(gx).

Hence,

|Dn(gx;x)| ≤

An(x)

x2 + An(x) (bn−x)2





bn

_

0

(gx) +

n

X

k=1 x+bn−x

k

_

x−x

k

(gx)





+ 1

n−1

n

X

k=2 x+bn−x

k

_

x−x

k

(gx)

= An(x)b2n x2(bn−x)2





bn

_

0

(gx) +

n

X

k=1 x+bn−x

k

_

x−x

k

(gx)





+ 1

n−1

n

X

k=2

x+bn−x

k

_

x−x

k

(gx)

= An(x)b2n x2(bn−x)2





bn

_

0

(gx) +

n

X

k=1 x+bn−x

k

_

x−x

k

(gx)





+ 1

n−1

n

X

k=2

x+bn−x

k

_

x−x

k

(gx).

(19)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

On the other hand, note that

bn

_

0

(gx)≤

n

X

k=1

x+bn−x

k

_

x−x

k

(gx).

By(2.3), we have

|Dn(gx;x)| ≤ 2An(x)b2n x2(bn−x)2





n

X

k=1 x+bn−x

k

_

x−x

k

(gx)





+ 1

n−1

n

X

k=2 x+bn−x

k

_

x−x

k

(gx).

Note that n−11xA2(bn(x)n−x)b2n2, forn >1, bx

n ∈[0,1].Consequently (3.6) |Dn(gx;x)| ≤ 3An(x)b2n

x2(bn−x)2





n

X

k=1

x+bn−x

k

_

x−x

k

(gx)



 .

Now secondly, we can estimateDn(sgn(t−x);x).If we apply operatorDn to the signum function, we get

Dn(sgn(t−x);x)

= n+ 1 bn

n

X

k=0

Pn,k x

bn

Z bn

x

Pn,k t

bn

dt−

Z x 0

Pn,k t

bn

dt

= n+ 1 bn

n

X

k=0

Pn,k

x bn

Z bn

0

Pn,k

t bn

dt−2

Z x 0

Pn,k

t bn

dt

(20)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

using (2.1), we have

(3.7) Dn(sgn(t−x);x) = 1−2n+ 1 bn

n

X

k=0

Pn,k x

bn

Z x 0

Pn,k t

bn

dt.

Now, we differentiate both side of the following equality Jn+1,k+1

x bn

=

n+1

X

j=k+1

Pn+1,j x

bn

.

Fork = 0,1,2, . . . , nwe get, d

dxJn+1,k+1 x

bn

= d dx

n+1

X

j=k+1

Pn+1,j x

bn

= d

dxPn+1,k+1 x

bn

+ d

dxPn+1,k+2 x

bn

+· · ·+ d

dxPn+1,n+1 x

bn

d

dxJn+1,k+1 x

bn

= (n+ 1) bn

Pn,k

x bn

−Pn,k+1 x

bn

+

Pn,k+1 x

bn

−Pn,k+2 x

bn

+· · ·+

Pn,n−1

x bn

−Pn,n x

bn

+

Pn,n x

bn

(21)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

= (n+ 1) bn

n+1

X

j=k+1

Pn,j−1

x bn

−Pn,j x

bn

= (n+ 1) bn Pn,k

x bn

andJn+1,k+1(0) = 0.Taking the integral from zero tox, we have (n+ 1)

bn Z x

0

Pn,k

t bn

dt=Jn+1,k+1

x bn

and therefore from (2.4) Jn+1,k+1

x bn

=

n+1

X

j=k+1

Pn+1,j x

bn

=

n+1

X

j=0

Pn+1,j x

bn

k

X

j=0

Pn+1,j x

bn

= 1−

k

X

j=0

Pn+1,j x

bn

.

Hence

(n+ 1) bn

Z x 0

Pn,k t

bn

dt= 1−

k

X

j=0

Pn+1,j x

bn

.

From (3.7), we get Dn(sgn(t−x);x) = 1−2

n

X

k=0

Pn,k x

bn "

1−

k

X

j=0

Pn+1,j x

bn #

(22)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

= 1−2

n

X

k=0

Pn,k x

bn

+ 2

n

X

k=0

Pn,k x

bn k

X

j=0

Pn+1,j x

bn

=−1 + 2

n

X

k=0

Pn,k x

bn k

X

j=0

Pn+1,j x

bn

.

Set

Q(2)n+1,j x

bn

=Jn+1,j2 x

bn

−Jn+1,j+12 x

bn

. Also note that

n

X

k=0 k

X

j=0

∗=

n

X

j=0 n

X

k=j

∗,

n+1

X

k=j

Q(2)n+1,k x

bn

=Jn+1,j2 x

bn

and Jn,n+1 x

bn

= 0, we have

Dn(sgn(t−x);x) =−1 + 2

n

X

j=0

Pn+1,j x

bn n

X

k=j

Pn,k x

bn

=−1 + 2

n

X

j=0

Pn+1,j x

bn

Jn,j x

bn

=−1 + 2

n+1

X

j=0

Pn+1,j x

bn

Jn,j x

bn

(23)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

= 2

n+1

X

j=0

Pn+1,j x

bn

Jn,j x

bn

−1.

Since

n+1

P

j=0

Q(2)n+1,j

x bn

= 1, thus

Dn(sgn(t−x);x) = 2

n+1

X

j=0

Pn+1,j x

bn

Jn,j x

bn

n+1

X

j=0

Q(2)n+1,j x

bn

.

By the mean value theorem, we have Q(2)n+1,j

x bn

=Jn+1,j2 x

bn

−Jn+1,j+12 x

bn

= 2Pn+1,j x

bn

γn,j x

bn

where

Jn+1,j+1 x

bn

< γn,j x

bn

< Jn+1,j x

bn

.

Hence it follows from (2.5) that

|Dn(sgn(t−x);x)|= 2

n+1

X

j=0

Pn+1,j x

bn Jn,j x

bn

−γn,j x

bn

≤2

n+1

X

j=0

Pn+1,j x

bn

Jn,j x

bn

−γn,j x

bn

(24)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

Jn,j x

bn

−Jn+1,j+1 x

bn x bn

=

Jn,j x

bn

−γn,j x

bn

n,j x

bn

−Jn+1,j+1 x

bn

,

sinceγn,j

x bn

−Jn+1,j+1

x bn

>0,then we have

Jn,j x

bn

−γn,j x

bn

Jn,j x

bn

−Jn+1,j+1 x

bn

.

Hence

|Dn(sgn(t−x);x)| ≤2

n+1

X

j=0

Pn+1,j x

bn

Jn,j x

bn

−Jn+1,j+1 x

bn

≤2

n+1

X

j=0

Pn+1,j

x bn

2 qnbx

n(1− bx

n)

= 4

q nbx

n(1− bx

n) . (3.8)

Combining (3.6) and (3.8) we get (1.1). Thus, the proof of the theorem is completed.

(25)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

References

[1] J.L. DURRMEYER, Une formule d’inversion de la ransformee de Laplace: Applicationsa la theorie de moments , these de 3e cycle, Fac- ulte des sciences de 1’universite de Paris,1971.

[2] A. LUPA ¸S, Die Folge Der Betaoperatoren, Dissertation, Stuttgart Univer- sität, 1972.

[3] R. BOJANIC AND M. VUILLEUMIER, On the rate of convergence of Fourier Legendre series of functions of bounded variation, J. Approx. The- ory, 31 (1981), 67–79.

[4] F. CHENG, On the rate of convergence of Bernstein polynomials of func- tions of bounded variation, J. Approx. Theory, 39 (1983), 259–274.

[5] S. GUO, On the rate of convergence of Durrmeyer operator for functions of bounded variation, J. Approx. Theory, 51 (1987), 183–197.

[6] I. CHLODOWSKY, Sur le d˘eveloppment des fonctions d˘efines dans un interval infinien s˘eries de polyn˘omes de S.N. Bernstein, Compositio Math., 4 (1937), 380–392.

[7] XIAO-MING ZENG, Bounds for Bernstein basis functions and Meyer- König-Zeller basis functions, J. Math. Anal. Appl., 219 (1998), 364–376.

[8] XIAO-MING ZENGANDA. PIRIOU, On the rate of convergence of two Bernstein-Bezier type operators for bounded variation functions, J. Ap- prox. Theory, 95 (1998), 369–387.

(26)

Rate of Convergence of Chlodowsky Type Durrmeyer

Operators Ertan Ibikli and Harun Karsli

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of26

J. Ineq. Pure and Appl. Math. 6(4) Art. 106, 2005

http://jipam.vu.edu.au

[9] XIAO-MING ZENG AND W. CHEN, On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation, J. Approx. Theory, 102 (2000), 1–12.

[10] A.N. SHIRYAYEV, Probability, Springer-Verlag, New York, 1984.

[11] G.G. LORENTZ, Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953.

[12] Z.A. CHANTURIYA, Modulus of variation of function and its application in the theory of Fourier series, Dokl. Akad. Nauk. SSSR, 214 (1974), 63–

66.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic formula, Error estimate, Local direct results, K-functional, Modulus

Key words and phrases: Linear positive operators, Summation-integral type operators, Rate of convergence, Asymptotic for- mula, Error estimate, Local direct results,

BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl.. DITZIAN, Direct estimate for Bernstein

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded derivative..

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded deriv- ative..

In the present paper we introduce a certain family of linear positive operators and study some direct results which include a pointwise convergence, asymp- totic formula and

In the present paper we introduce a certain family of linear positive operators and study some direct results which include a pointwise convergence, asymptotic formula and an

Waterman [3] have introduced the class ϕ ∧ BV (I) of functions of ϕ∧-bounded variation over I and have studied suffi- ciency conditions for the absolute convergence of Fourier series