• Nem Talált Eredményt

Digital holographic microscopy for single-shot,  volumetric and fluorescent measurements

Márton Kiss

(Supervisor: Dr. Szabolcs Tőkés) kisma1@digitus.itk.ppke.hu

137 Abstract—A single-shot, volumetric and fluorescent digital

holographic microscope setup is introduced here. The aim is to develop a microscope that is able to detect fluorescent and freely flowing microscopical objects. This is why single-shot exposure is needed. The presented setup is based on a Hariharan-Sen interferometer. In this presentation the relation between the place of the target and the quality of the hologram is introduced.

Keywords: Incoherent  or  self  referenced  Digital  Holographic Microscope, single-shot exposure, bifocal optical system, Hariharan-Sen interferometer, volumetric imaging

I. INTRODUCTION

Nowadays  it  is  a frequently  asked  question  whether the  water  we  use  for  drinking  and  swimming is  clean  enough  or  not.  The  quality  of  water can  be  measured  physically,  chemically  and  biologically.  After  the  first  impression  that  comes from the water's physical properties we usually ask that  what  kinds  of  living  organisms are  in  it?  Because  the  living  organisms are  indicators  of  the  quality  of the water, in many  cases their presence gives enough information about the water and chemical measurement is not needed. The main indicators  in  the  water  are  the  living bacteria,  algae,  cells, worms and  other  micro-organisms that  usually  can  be  seen  only  with  microscope. The living cells can also be detected by the help of their fluorescence capability, and also it helps to separate them  from  the  debris. Measurement without any preparation of the  sample and volumetric imaging can supports fast, real time and  automatic  measurements.  This  is  the  background  of  our  aim, which  is  to  build  a  microscope  for  real  time  water  measurements and monitoring.

The self-referenced digital holographic microscopy is a type  of  microscopes that  can  have  the  advantage  of  volumetric  viewing  and  fluorescent  imaging.  The  first  holographic  setup [1] that was invented used a (color and spatial filtered lamp's  light as) coherent light, and its theoretical background was also based  on  the  attribute  of  the  coherent  light.  At  the  self-referenced  or  in  other  name  incoherent  holography  the  theoretical  basis is  the  same:  with  two  beams  (reference  and  target),  which are  coherent  with  each  other,  an  interference 

fringe system called hologram is created. If we illuminate the  hologram with the known beam (the reference one), the target  beam that can draw the image of the target can be produced. At self-referenced holography the reference and target beams light  sources  are  the  same  target  point, which is  self-luminous or  just reflects the light that has a short coherent length. That is  why the optical path difference of the self-referenced setup has to be smaller than the coherent length of the used light. In self  -referenced  holography  color  filter  is  usually  used,  because  decreasing the bandwidth of the scattered or emitted light the  coherent length can be increased, and also if many lights with  different  wavelength  create hologram  from  the  same  object  point to the same plane their interference fringes may disturb  each  other. And  also  one  hologram  is  reconstructed  numerically with one wavelength. 

At the beginning of the self-referenced holography the main  idea  was  to  create  Fresnel  zone-plate (FZP) from  the  interference  fringes,  which  is  the  coherent  summation of two  beams with different radius emitted by the same object point. If  this  FZP  is back lighted, it will focus the light. They used it  for  example  in  astronomy  [2]. There are mainly two kinds of  methods to separate the light, modulate it in different way and  interfere them. The first one when an interferometer is used for  example  Linnik  interferometer [3],  Hariharan-Sen  interferometer [4], and the second one when a bifocal lens [5]

or a spatial light modulator is used [6]. The setup with bifocal  lens  is  more  compact and stable  than  the  setup  with other interferometers.

Digital holography has the degree of freedom to numerically  modulate and modify the hologram and also the reconstruction  beam,  and  the  advantage  to  automatically  evaluate  the  hologram that contains the needed information from the viewed volume. This  is  why  at  3D  incoherent  holographic imaging  could grow up. In these new techniques incoherent holographic imaging can be assisted with tomography [7] or scanning [8]. 

FINCH  is  a mature technique of nowadays that ignores these  possibilities  to  create  a  fast  setup  but  also  it  gives  a  high  quality  image  [9].  Because  FINCH  uses three  exposures to  retrieve  the  complex  hologram through phase  shifting, this  method  is  not  able  to  create  images  from  freely  moving  samples.

Digital holographic microscopy for single-shot,  volumetric and fluorescent measurements

Márton Kiss

(Supervisor: Dr. Szabolcs Tőkés) kisma1@digitus.itk.ppke.hu

M. Kiss, “Digital holographic microscopy for single-shot, volumetric and fluorescent measurements,”

in Proceedings of the Interdisciplinary Doctoral School in the 2012-2013 Academic Year, T. Roska, G. Prószéky, P. Szolgay, Eds.

Faculty of Information Technology, Pázmány Péter Catholic University.

Budapest, Hungary: Pázmány University ePress, 2013, vol. 8, pp. 137-140.

Here  I  present  my  setup  that  is  based  on  a  Hariharan-Sen  interferometer.  It  uses only  one  exposure  to  get  an  intensity  hologram.  But  two  self-luminescence  points  that  are  not  coherent  with  each  other  could  be  reconstructed  from  their  own  holograms  that  were  captured  to  the  same  image by  a  CCD sensor.

II. SELF REFERENCED HOLOGRAPHY WITH AN INTERFEROMETER

A. self-referenced holographic setup based on a Hariharan-Sen interferometer

Hariharan-Sen  interferometer  is  a  triangular  shaped  optical  setup,  where  the  entrance  and  exit  gate  for  the  light  is  one  beam  splitter  cube.  This  cube  divides  the  incoming light and  then the separated lights go around in the optical path (that is  puckered to a triangular by two mirrors) on the same path, but  in  opposite  direction, and  than this cube combines them too. 

Because  the  beams  have  the  same  optical  path,  there  is  no  difference between them. If this triangular is made asymmetric by  properly  inserting  a  lens,  the  exiting  beams  will  have   different  wave  fronts. This  will  generate  interference  fringes.

Figure 1 shows this asymmetric interferometer completed with  an  objective  (olympus  LUCPLFLN  20X),  a  tube  lens  (Bi-Convex  lens,  f=100mm),  a  polarizer  filter  that  can  set  the  intensity  ratio  between  the  two  beams,  and  a  detector  (Lumenera).

Figure 1.  The built self-referenced holographic setup based on a Hariharan-Sen  type interferometer. At the way of "a" the beam is going throw an afocal optical 

system.

One  of  the  two  optical  ways  of  the  system  is  afocal.  The  afocal  system  has  the  advantages  that  the  magnification  is  independent  of  the  target  distance,  and  target  and  image  distance  has  a  linear  connection. These  are  different  in  a  common  focal  system.  Figure  3  displays  focal  and  afocal  system's characteristic.

B. Light Source

At the experiment a stabile target was needed. That is why the  target  points  were  fiber  ends  in  a  same  connector  with  a  distance of 128 µm. Light from one red LED was coupled into  these  fibers,  but  leaving  the  fibers  they  couldn't  create  any  interference  fringes,  because  their  coherent  length  was  small  enough. This target can be seen in figure 2. 

Figure 2.  Target was simulated with two fiber coupled red LED light. They  couldn't interfere with each other, they added only in intensity.

C. Holograms

In my measurement I was interested in the connection between  the target place and the created holograms, and I also wanted to know what kind of image can be reconstruct from them. All the  other  parameters  were  fixed.  The  target  was  moved  from  the  distance 5 mm from the focal plane of the objective to close to the  objective  that  was  4  mm  far  from  the  focal  plane.  The  detector was set after the beam splitter with 20mm, as close to  the beam splitter as it was possible. In this case and when the  target  was  in  the  objective's  focal  plane,  the  afocal  systems  image was before the detector and the focal systems image was  after  the  detector.  Moving  the  target through the  above  explained area, I founded six sub-areas separated with 5 times. 

These areas can be seen in figure 3. In the 1st and the 6th the  illumination was quite homogenous, because the beams radius  was nearly detector size. In this case the holograms were as big  as to overlap each other and that is why moiré effect could be  seen between the two interference fringes. In the 2nd and 3rd  the target is moving a bit, the interference fringes changed so  fast,  and  also  they  had  only  a  few  fringes.  At  the separating  points  III.  and  IV.  one  of  the  beams  was  focused  to  the  detector.  So  there  were  no  interference  fringes  and  around  those  separating  points the  high  intensity  level  disturbs  the  small holograms.

Figure 3.  The place of the target before the objective will define the images of  the same target point, and also the size and shape of the interference fringes.

In  the  area  of  4  and  5  we  got  nice  interference  fringes:  they  didn't  overlap  each  other  and  they  can  be  seen  clearly.  It  is  shown in figure 4.

Figure 4. Interference fringes from the 4th area. (See figure 3.)

The separating points II. and V. show that case when a target-point's two images are in the same image plane. In these cases  at the detector the curvature of the two beams are the same, so  the interference fringes are not concentric but parallel lines.

D. Reconstruction

Angular spectrum method, which is a plane wave propagation  method  is  used  to  reconstruct  the  holograms.  This  method  calculates the scalar electric field in this way:

{ }

{ }

1 2 ( , )

( , , ) ( , ,0)

i u v z

E x y z = F

F E x ye

π ω , where E is the electromagnetic field, F and F-1are the Fourier  and inverse Fourier transforms, ω is the transfer function and  the z is the propagating distance.

At  the  measurement, when  the hologram belonged to a target   that was at the separating points as it can be seen in figure 3, propagation  didn't  give  any  result. In  the  cases  of  II.  and  V. 

parallel  fringes  were  just  moving  across  the  plane  because  parallel fringes do not focus the plane wave, and in the I. and  the III. case the points were already in focus.

At  the  2nd  to  5th  areas  of  the  hologram's  reconstruction  the  problem  was  that  when there  were  some interference  fringes,  the  reconstructed  point  cannot  be  seen at  the  reconstructed  image, because the background intensity overruns it. It can be  also  possible  to  compensate  the  intensity  on  the  hologram  (before propagating) to get a higher contrast, but we should see  that the better the contrast of the hologram, the better the light  efficiency,  and  at  fluorescent  imaging,  what the  final  application will  be,  we  should  use  the  light  in  the  best  way  because it is few. 

In the 1st and 6th areas the reconstructed points can be clearly  seen  as  figure  5  and  figure  6  shows. When  the  two  point's  hologram  was  propagated  at  the  same  time  the  reconstructed  image  background  was  more  flat,  than  when the  points  hologram  were  captured  and  propagated  separately,  but  the  contrast  became  smaller.  It  also  can  be  seen  that  the  two  intensity  holograms  do  not  disturb  each  other,  they  don’t change  each other’s propagation  distance and  the place  and 

magnification  of the image.  The density of the moiré fringes   created by the two intensity hologram, gives information about  magnification.  The  closer  the  fringes  are  the  bigger  is  the  magnification.  Two  intensity  holograms  do  not  disturb  each  other.    It  is a question  that  without  any  phase  retrieves  how  many point sources can constitue a target. Comparing the 1st  and the 6th areas the later has the advantage that it is closer to  the  objective, so the optical setup can gather more light from  the object.

Figure 5. Here a reconstructed image can be seen, where the A and B points  that are in the same plane were in the 1st area (see figure 3.)

Figure 6. Here a reconstructed image can be seen, where the A and B points  that are in the same plane were in the 6th area (see figure 3.)

139 Here  I  present  my  setup  that  is  based  on  a  Hariharan-Sen 

interferometer.  It  uses only  one  exposure  to  get  an  intensity  hologram.  But  two  self-luminescence  points  that  are  not  coherent  with  each  other  could  be  reconstructed  from  their  own  holograms  that  were  captured  to  the  same  image by  a  CCD sensor.

II. SELF REFERENCED HOLOGRAPHY WITH AN INTERFEROMETER

A. self-referenced holographic setup based on a Hariharan-Sen interferometer

Hariharan-Sen  interferometer  is  a  triangular  shaped  optical  setup,  where  the  entrance  and  exit  gate  for  the  light  is  one  beam  splitter  cube.  This  cube  divides  the  incoming light and  then the separated lights go around in the optical path (that is  puckered to a triangular by two mirrors) on the same path, but  in  opposite  direction, and  than this cube combines them too. 

Because  the  beams  have  the  same  optical  path,  there  is  no  difference between them. If this triangular is made asymmetric by  properly  inserting  a  lens,  the  exiting  beams  will  have   different  wave  fronts. This  will  generate  interference  fringes.

Figure 1 shows this asymmetric interferometer completed with  an  objective  (olympus  LUCPLFLN  20X),  a  tube  lens  (Bi-Convex  lens,  f=100mm),  a  polarizer  filter  that  can  set  the  intensity  ratio  between  the  two  beams,  and  a  detector  (Lumenera).

Figure 1.  The built self-referenced holographic setup based on a Hariharan-Sen  type interferometer. At the way of "a" the beam is going throw an afocal optical 

system.

One  of  the  two  optical  ways  of  the  system  is  afocal.  The  afocal  system  has  the  advantages  that  the  magnification  is  independent  of  the  target  distance,  and  target  and  image  distance  has  a  linear  connection. These  are  different  in  a  common  focal  system.  Figure  3  displays  focal  and  afocal  system's characteristic.

B. Light Source

At the experiment a stabile target was needed. That is why the  target  points  were  fiber  ends  in  a  same  connector  with  a  distance of 128 µm. Light from one red LED was coupled into  these  fibers,  but  leaving  the  fibers  they  couldn't  create  any  interference  fringes,  because  their  coherent  length  was  small  enough. This target can be seen in figure 2. 

Figure 2.  Target was simulated with two fiber coupled red LED light. They  couldn't interfere with each other, they added only in intensity.

C. Holograms

In my measurement I was interested in the connection between  the target place and the created holograms, and I also wanted to know what kind of image can be reconstruct from them. All the  other  parameters  were  fixed.  The  target  was  moved  from  the  distance 5 mm from the focal plane of the objective to close to the  objective  that  was  4  mm  far  from  the  focal  plane.  The  detector was set after the beam splitter with 20mm, as close to  the beam splitter as it was possible. In this case and when the  target  was  in  the  objective's  focal  plane,  the  afocal  systems  image was before the detector and the focal systems image was  after  the  detector.  Moving  the  target through the  above  explained area, I founded six sub-areas separated with 5 times. 

These areas can be seen in figure 3. In the 1st and the 6th the  illumination was quite homogenous, because the beams radius  was nearly detector size. In this case the holograms were as big  as to overlap each other and that is why moiré effect could be  seen between the two interference fringes. In the 2nd and 3rd  the target is moving a bit, the interference fringes changed so  fast,  and  also  they  had  only  a  few  fringes.  At  the separating  points  III.  and  IV.  one  of  the  beams  was  focused  to  the  detector.  So  there  were  no  interference  fringes  and  around  those  separating  points the  high  intensity  level  disturbs  the  small holograms.

Figure 3.  The place of the target before the objective will define the images of  the same target point, and also the size and shape of the interference fringes.

In  the  area  of  4  and  5  we  got  nice  interference  fringes:  they  didn't  overlap  each  other  and  they  can  be  seen  clearly.  It  is  shown in figure 4.

Figure 4. Interference fringes from the 4th area. (See figure 3.)

The separating points II. and V. show that case when a target-point's two images are in the same image plane. In these cases  at the detector the curvature of the two beams are the same, so  the interference fringes are not concentric but parallel lines.

D. Reconstruction

Angular spectrum method, which is a plane wave propagation  method  is  used  to  reconstruct  the  holograms.  This  method  calculates the scalar electric field in this way:

{ }

{ }

1 2 ( , )

( , , ) ( , ,0)

i u v z

E x y z = F

F E x ye

π ω , where E is the electromagnetic field, F and F-1are the Fourier  and inverse Fourier transforms, ω is the transfer function and  the z is the propagating distance.

At  the  measurement, when  the hologram belonged to a target   that was at the separating points as it can be seen in figure 3, propagation  didn't  give  any  result. In  the  cases  of  II.  and  V. 

parallel  fringes  were  just  moving  across  the  plane  because  parallel fringes do not focus the plane wave, and in the I. and  the III. case the points were already in focus.

At  the  2nd  to  5th  areas  of  the  hologram's  reconstruction  the  problem  was  that  when there  were  some interference  fringes,  the  reconstructed  point  cannot  be  seen at  the  reconstructed  image, because the background intensity overruns it. It can be  also  possible  to  compensate  the  intensity  on  the  hologram  (before propagating) to get a higher contrast, but we should see  that the better the contrast of the hologram, the better the light  efficiency,  and  at  fluorescent  imaging,  what the  final  application will  be,  we  should  use  the  light  in  the  best  way  because it is few. 

In the 1st and 6th areas the reconstructed points can be clearly  seen  as  figure  5  and  figure  6  shows. When  the  two  point's  hologram  was  propagated  at  the  same  time  the  reconstructed  image  background  was  more  flat,  than  when the  points  hologram  were  captured  and  propagated  separately,  but  the  contrast  became  smaller.  It  also  can  be  seen  that  the  two  intensity  holograms  do  not  disturb  each  other,  they  don’t change  each other’s propagation  distance and  the place  and 

magnification  of the image.  The density of the moiré fringes   created by the two intensity hologram, gives information about  magnification.  The  closer  the  fringes  are  the  bigger  is  the  magnification.  Two  intensity  holograms  do  not  disturb  each  other.    It  is a question  that  without  any  phase  retrieves  how  many point sources can constitue a target. Comparing the 1st  and the 6th areas the later has the advantage that it is closer to  the  objective, so the optical setup can gather more light from  the object.

Figure 5. Here a reconstructed image can be seen, where the A and B points  that are in the same plane were in the 1st area (see figure 3.)

Figure 6. Here a reconstructed image can be seen, where the A and B points  that are in the same plane were in the 6th area (see figure 3.)

III. CONCLUSION

A  self-referenced  digital  holographic  microscopy  was  created  with  a  modified  Hariharan-Sen  interferometer.  The  tests  showed  that  this  setup  is  able  to  create  the  hologram  from a  target that is in a large volume and illuminating an incoherent 

A  self-referenced  digital  holographic  microscopy  was  created  with  a  modified  Hariharan-Sen  interferometer.  The  tests  showed  that  this  setup  is  able  to  create  the  hologram  from a  target that is in a large volume and illuminating an incoherent 

Outline

KAPCSOLÓDÓ DOKUMENTUMOK