• Nem Talált Eredményt

CONCLUSION

In document Doktoranduszok Fóruma (Pldal 91-94)

(shown below) - in which the sum of the virtual power produced by the external forces, at each instant, is equal to zero [16]:

𝑃 = ∑  

𝑛𝑐

𝑖=1

𝑓𝑖𝑞̇𝑖 ≡ 𝑞̇𝑖∗𝑇𝑓 = 0, (13)

where the vector of all the forces that produce virtual power f expressed by:

𝑓 = 𝑀𝑞̈ − 𝑔. (14)

Knowing that 𝑀𝑞̈ representing the vector of inertial forces, M is the global mass matrix, 𝑞̈ is the vector of generalized accelerations, 𝑔 is the vector of generalized applied forces. The internal forces do not produce virtual power since the internal forces are associated in action-reaction pairs, and thus are not represented in equation (13). However, it is possible to calculate them through the method of Lagrange's mul-tiplier:

𝑔Φ = ΦqT𝜆, (15)

where 𝑔Φ is the generalized forces vector, and 𝜆 is the column vector of Lagrange multipliers. The magnitude of the internal constraint forces is obtained through these multipliers, while the direction of these forces is given by the lines of the Jacobian matrix. The equation of the virtual power is obtained from the combination of equa-tions 13 to 15:

𝑃 = 𝑞̇∗𝑇(𝑀𝑞̈ − 𝑔 + Φ𝑞𝑇𝜆) = 0. (16) The complete equation of motion is shown below and is solved so as to obtain the unknowns of the system:

{𝑀𝑞̈ + Φ𝑞𝑇𝜆 = 𝑔

Φ𝑞𝑞̈ = 𝛾 . (17)

This methodology assembles and solves the equations of motion (17) of the bio-mechanical system. Through the different ways of getting the solutions of equations (17), one will then have Forward Dynamic Analysis (Simulation) or Inverse Dynamic Analysis (Analysis). This problem (inverse dynamic analysis) can then be used to determine the external forces (that produce the observed motion), and the external and internal forces previously unknown are the results that could be obtained [23].

meth-prospects.Orthotists and engineers may benefit from the information obtained from this review article. The information obtained may be applied to understand the bio-mechanics mathematically behind the ankle-foot orthoses models, and moreover to develop new models.

REFERENCES

[1] DARYABOR, A., ARAZPOUR, M., AMINIAN, G., BANIASAD, M., YAMAMOTO, S.: Design and Evaluation of an Articulated Ankle Foot Orthosis with Plantarflexion Resistance on the Gait: a Case Series of 2 Patients with Hemiplegia. J Biomed Phys Eng, vol. 10, no. 1, 2020. pp. 119–

128.

[2] DARWICH, A., NAZHA, H., SLIMAN, A., ABBAS, W.: Ankle–foot orthosis design between the tradition and the computerized perspectives. The International Journal of Artificial Organs, vol. 43, no. 5, 2020. pp. 354–361.

[3] CHEN, B., ZI, B., ZENG, Y., QIN, L., LIAO, W. H.: Ankle-foot orthoses for rehabilitation and reducing metabolic cost of walking: Possibilities and challenges. Mechatronics, vol. 53, 2018. pp. 241–250.

[4] DARWICH, A., NAZHA, H., DAOUD, M.: Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis. Journal of Applied and Computational Mechanics. vol. 6, no. 2, 2020.

pp. 284–295.

[5] CAMPOS, M., CALADO, M.: Approaches to human arm movement control-A review. control-Annual Reviews in Control, vol. 33, no. 1, 2009. pp. 69–77.

[6] ZAJAC, E., NEPTUNE, R., KAUTZ, A.: Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait & Posture, vol. 17, no. 1, 2003. pp. 1–7.

[7] RAJA, B., NEPTUNE, R., KAUTZ, A.: Quantifiable patterns of limb loading and unloading during hemiparetic gait: Relation to kinetic and kinematic parameters. Journal of Rehabilitation Research and Development, vol. 49, no. 9.

2012. pp. 1293–1304.

[8] OTTEN, E.: Inverse and forward dynamics: models of multi–body systems.

Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 358, no. 1437, 2003. pp. 1493–1500.

[9] CLEATHER, J., BULL, M.: Influence of inverse dynamics methods on the calculation of inter-segmental moments in vertical jumping and weightlifting. Biomedical engineering online. 2010 Dec;9(1):1-1.

[10] KARATSIDIS, A., BELLUSCI, G., SCHEPERS, M., DE ZEE M., ANDERSEN, S., VELTINK, H.: Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors. vol. 17, no.

1, 2017. Art. No. 75.

[11] BUCHANAN, S., LLOYD, G., MANAL, K., BESIER, F.:

Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. Journal of Applied Biomechanics, vol. 20, no. 4, 2004. pp. 367–395.

[12] LUGRÍS, U., CARLÍN, J., PÀMIES-VILÀ, R., FONT-LLAGUNES, M., CUADRADO, J.: Solution methods for the double-support indeterminacy in human gait. Multibody System Dynamics, vol. 30, no. 3, 2013. pp. 247–263.

[13] LIU, L., COOPER, L., BALLARD, H.: Computational Modeling: Human Dynamic Model. BioRxiv. 2021 Jan 1:2020-08.

[14] ISLER, K., PAYNE, C., GÜNTHER, M., THORPE, K., LI, Y., SAVAGE, R., CROMPTON, H.: Inertial properties of hominoid limb segments. Journal of Anatomy, vol. 209, no. 2, 2006. pp. 201–218.

[15] AMBRÓSIO, A., KECSKEMÉTHY, A.: Multibody Dynamics of Biomechanical Models for Human Motion via Optimization. Multibody Dynamics. Computational Methods in Applied Sciences , vol. 4, 2007. pp. 245–

272.

[16] NEVES, C.: Design of Ankle Foot Orthoses using Subject Specific Biomechanical Data and Optimization Tools. Master thesis. 2014; 20.

[17] RUGGIERO, A., SICILIA, A.: A Novel Explicit Analytical Multibody Approach for the Analysis of Upper Limb Dynamics and Joint Reactions Calculation Considering Muscle Wrapping. Applied Sciences, vol. 10, no. 21, 2020. Art. No. 7760.

[18] WELCH, B., MANDUCA, A., GRIMM, C., WARD, A., JACK, R.: Spherical navigator echoes for full 3D rigid body motion measurement in MRI.

Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 47, no. 1, 2002. pp. 32–41.

[19] MILICA L, NĂSTASE A, ANDREI G. A novel algorithm for the absorbed power estimation of HEXA parallel mechanism using an extended inverse dynamic model. Proceedings of the Institution of Mechanical Engineers, Part K:

Journal of Multi-body Dynamics, vol. 234, no. 1, 2020. pp. 185–197.

[20] SELLERS, I., CROMPTON, H.: A system for 2-and 3D kinematic and kinetic analysis of locomotion, and its application to analysis of the energetic efficiency of jumping locomotion. Zeitschrift für Morphologie und Anthropologie. 1994. pp. 99–108.

[21] WOJTYRA, M., FRĄCZEK, J.: Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody System Dynamics, vol. 30, no. 2, 2013. pp. 153–171.

[22] VILÀ, P.: Application of multibody dynamics techniques to the analysis of human gait. Doctoral dissertation, Universitat Politècnica de Catalunya (UPC), 2012.

[23] ERDEMIR, A., MCLEAN, S., HERZOG, W., BOGERT, J.: Model-based estimation of muscle forces exerted during movements. Clinical biomechanics, vol. 22, no. 2, 2007. pp. 131–154.

JÁRATTERVEZÉSI FELADATOK ÉS IRÁNYZATOK AZ INTELLIGENS ELOSZTÁSI LOGISZTIKA MEGVALÓSÍTÁSÁRA

Szabó Adél Anett1, Illés Béla2, Bányainé Tóth Ágota3

1PhD hallgató, 2PhD, habil, egyetemi tanár, 3PhD, egyetemi docens

1,2,3Logisztikai Intézet, Gépészmérnöki és Informatikai Kar

1adel.szabo1@gmail.com, 2altilles@uni-miskolc.hu, 3altagota@uni-miskolc.hu

ABSZTRAKT

A cikk alapvető célja egy kellő részletességű és a lényeges területekre kiterjedő, de átfogó összefoglaló készítése a kapcsolódó vállalkozások részére a járattervezési alapfogalmak, logikák, valamint a napjainkat jellemző trendek és lehetőségek köréről. Erőforráshiány, a stratégiai szemlélet hiánya vagy egyéb tényezők miatt gyakran marad el a szektorban tevékenykedő kis- és középvállalkozások esetében ezen tényezők vizsgálata, amely jelentős versenyhátrányt okozhat a stratégiai tervezés és látásmód tekintetében. Ha nem látjuk jól át az operáció által teljesítendő feladatokat, az esetleges fejlesztendő területeket, akkor jóval nehezebb és bizonytalanabb a döntéshozatal ezzel kapcsolatban. Mindezek ismeretében azonban könnyebben kerülhet meghatározásra egy esetleges rendszer bevezetés vagy fejlesztés esetén a kívánatos stratégia – magában foglalva a módszereket és a lehetséges eszközöket is.

In document Doktoranduszok Fóruma (Pldal 91-94)