• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
25
0
0

Teljes szövegt

(1)

volume 7, issue 1, article 2, 2006.

Received 16 March, 2004;

accepted 15 December, 2005.

Communicated by:S.S. Dragomir

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

AN INEQUALITY FOR THE ASYMMETRY OF DISTRIBUTIONS AND A BERRY-ESSEEN THEOREM FOR RANDOM SUMMATION

HENDRIK KLÄVER AND NORBERT SCHMITZ

Institute of Mathematical Statistics University of Münster

Einsteinstr. 62

D-48149 Münster, Germany.

EMail:schmnor@math.uni-muenster.de

c

2000Victoria University ISSN (electronic): 1443-5756 056-04

(2)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

Abstract

We consider random numbersNnof independent, identically distributed (i.i.d.) random variablesXi and their sums PNn

i=1Xi. Whereas Blum, Hanson and Rosenblatt [3] proved a central limit theorem for such sums and Landers and Rogge [8] derived the corresponding approximation order, a Berry-Esseen type result seems to be missing. Using an inequality for the asymmetry of distribu- tions, which seems to be of its own interest, we prove, under the assumption E|Xi|2+δ <∞for someδ∈(0,1]andNn/n→τ (in an appropriate sense), a Berry-Esseen theorem for random summation.

2000 Mathematics Subject Classification:60E15, 60F05, 60G40.

Key words: Random number of i.i.d. random variables, Central limit theorem for ran- dom sums, Asymmetry of distributions, Berry-Esseen theorem for ran- dom sums.

Contents

1 Introduction. . . 3

2 An Inequality for the Asymmetry of Distributions . . . 6

3 Some Futher Inequalities . . . 15

4 A Berry-Esseen Theorem for Random Sums. . . 18 References

(3)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

1. Introduction

One of the milestones of probability theory is the famous theorem of Berry- Esseen which gives uniform upper bounds for the deviation from the normal distribution in the Central Limit Theorem:

Let{Xn, n≥1}be independent random variables such that EXn = 0, EXn2 =:σ2n, s2n :=

n

X

i=1

σi2 >0,

Γ2+δn :=

n

X

i=1

E|Xi|2+δ <∞

for someδ ∈ (0,1]and Sn = Pn

i=1Xi, n ≥ 1. Then there exists a universal constantCδsuch that

sup

x∈R

P

Sn sn ≤x

−Φ(x)

≤Cδ Γn

sn 2+δ

,

where Φ denotes the cumulative distribution function of a N(0,1)-(normal) distribution (see e.g. Chow and Teicher [5, p. 299]).

For the special case of identical distributions this leads to:

Let{Xn, n ≥1}be i.i.d. random variables withEXn = 0, EXn2 =:σ2 >

0, E|Xn|2+δ =: γ2+δ < ∞for some δ ∈ (0,1]. Then there exists a universal constantcδsuch that

sup

x∈R

P

Sn σ√

n ≤x

−Φ(x)

≤ cδ nδ/2

γ σ

2+δ

.

Van Beek [2] showed thatC1 ≤0.7975; bounds for other valuesCδare given by Tysiak [12], e.g.C0.8 ≤0.812; C0.6 ≤0.863, C0.4 ≤0.950, C0.2 ≤1.076.

(4)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

On the other hand, there exist also central limit theorems for random sum- mation, e.g. the theorem of Blum, Hanson and Rosenblatt [3] which generalizes previous results by Anscombe [1] and Renyi [11]:

Let {Xn, n ≥ 1} be i.i.d. random variables with EXn = 0, Var Xn = 1, Sn := Pn

i=1Xi and let {Nn, n ≥ 1} be N-valued random variables such thatNn/n−→P U whereU is a positive random variable. Then

PSNn/

Nn d

−→ N(0,1).

Therefore, the obvious question arises whether one can prove also Berry- Esseen type inequalities for random sums. A first result concerning the approx- imation order is due to Landers and Rogge [8] for random variables Xn with E|Xn|3 <∞; this was generalized by Callaert and Janssen [4] to the case that E|Xn|2+δ<∞for someδ ∈(0,1]:

Let {Xn, n ≥ 1} be i.i.d. random variables with E Xn = µ, Var Xn = σ2 > 0, and E|Xn|2+δ < ∞ for someδ > 0. Let {Nn, n ≥ 1}be N-valued random variables,n, n ≥1}positive real numbers withεn −→

n→∞ 0where, for n large,n−δ ≤ εn if δ ∈ (0,1]andn−1 ≤ εnif δ ≥ 1. If there exists a τ > 0 such that

P

Nn nτ −1

> εn

=O(√ εn), then

sup

x∈R

P

PNn

i=1(Xi−µ) σ√

nτ ≤x

!

−Φ(x)

=O(√ εn) and

sup

x∈R

P

PNn

i=1(Xi−µ) σ√

Nn ≤x

!

−Φ(x)

=O(√ εn).

(5)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

Moreover, there exist several further results on convergence rates for random sums (see e.g. [7] and the papers cited there); as applications, sequential analy- sis, random walk problems, Monte Carlo methods and Markov chains are men- tioned.

However, rates of convergence without any knowledge about the factors are of very limited importance for applications. Hence the aim of this paper is to prove a Berry-Esseen type result for random sums i.e. a uniform approximation with explicit constants. Obviously, due to the dependencies on the moments of theXnas well as on the asymptotic behaviour of the sequenceNnsuch a result will necessarily be more complex than the original Berry-Esseen theorem.

For the underlying random variablesXnwe make the same assumption as in the special version of the Berry-Esseen theorem:

(M) :

( Xn, n ≥1, are i.i.d. random variables with EXn = 0,

V ar Xn = 1andγ2+δ :=E|Xn|2+δ <∞for someδ ∈(0,1].

Similarly as Landers and Rogge [8] or Callaert and Janssen [4] resp. we assume on the random indices

(R) :





Nn, n≥1, are integer-valued random variables and ζn, n≥1, real numbers with limn→∞ζn = 0such that there exist

d, τ >0withP(|Nn −1|> ζn)≤d√ ζn.

As they are essential for applications, e.g. in sequential analysis, arbitrary de- pendencies between the indices and the summands are allowed.

(6)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

2. An Inequality for the Asymmetry of Distributions

A main tool for deriving explicit constants for the rate of convergence is an inequality which seems to be of its own interest. For a smooth formulation we use (for the different values of the moment parameter δ ∈ (0,1]) some (technical) notation: Forϑ:= 2/(1 +δ)andy≥1letgδ(y)be defined by

gδ(y) :=





























2y2−1 + 2yp

y2−1 ifδ = 1

minn

2ϑy−1 + 2ϑ+12 yp

2ϑ−1y−1, 2y−1 + 2yp

y−1o

ifδ ∈1

3,1 minn

2ϑy(2+2k−1 + 2ϑ+12 y(1+2k−1p

2ϑ−1y(2+2k−1, 2y(4+2k+1−1 + 2y(2+2kp

y(4+2k+1−1 o

ifδ∈

1

2k+1,2k−11+1

i

, k≥2 Theorem 2.1. Let X be a random variable with EX = 0, VarX = 1 and γ2+δ :=E|X|2+δ <∞for someδ∈(0,1]. Then

P(X <0)≤gδ2+δ)P(X >0)andP(X >0)≤gδ2+δ)P(X <0).

Proof. LetXbe a random variable as described above. LetX+ = max{X,0}, X = min{X,0}, E(X+) = E(X) = αandP(X >0) = p, P(X = 0) = r, P(X < 0) = 1−r−p. SinceE(X) = 0, Var(X) = 1it is obvious that

(7)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

p,1−r−p > 0. As α = pE(|X| ||X > 0), we have E(|X| ||X > 0) = αp; analogouslyE(|X| ||X <0) = 1−r−pα .

Applying Jensen’s inequality to the convex function f : [0,∞) → [0,∞), f(x) =x3+δ2 yields

E(|X|3+δ2 ||X >0)≥ α

p 3+δ2

andE(|X|3+δ2 ||X <0)≥

α 1−r−p

3+δ2 .

Definingβz :=E|X|z forz >0we get β3+δ

2 =pE

|X|3+δ2 ||X >0

+ (1−r−p)E

|X|3+δ2 |X <0

≥α3+δ2 (1−r−p)1+δ2 +p1+δ2 (p(1−r−p))1+δ2 and, therefore,

(i) α3+δ2 ≤β3+δ

2

(p(1−r−p))1+δ2 (1−r−p)1+δ2 +p1+δ2

Since γ2+δ < ∞,we can apply the Cauchy-Schwarz-inequality to |X|1/2 and

|X|1+δ/2 and obtain

E|X|3+δ2 2

≤E|X|E|X|2+δ = 2αγ2+δ; hence

(ii) α≥

β3+δ

2

2

2+δ .

(8)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

Combining (i) and (ii) we obtain

β3+δ

2

2

2+δ

3+δ 2

≤β3+δ 2

(p(1−r−p))1+δ2 p1+δ2 + (1−r−p)1+δ2 ; hence

x2 ≤ 1 4− 1

1−r 1

2 ϑ+1

a1

a2 1

2 +x 1ϑ

+ 1

2 −x ϑ1!ϑ

with

x= p 1−r −1

2, ϑ= 2

1 +δ, a1 = β3+δ

2

ϑ+2

, a2 = (γ2+δ)ϑ+1. Obviouslyx∈ −12,12

, ϑ ∈[1,2).

Since

(iii) xµ+yµ≥(x+y)µ ∀µ∈(0,1], x, y≥0 and0<1−r≤1it follows altogether that

(iv) |x| ≤ 1

2 s

1− 1

2 ϑ−1

a1

a2.

For large values of|x|this estimation is rather poor, so we notice, furthermore, that

1 2 +x

ϑ1 +

1 2 −x

1ϑ!ϑ

≥2ϑ−1(1−4x2)1/2;

(9)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

hence

(v) |x| ≤ 1

2 s

1− a1

a2 2

.

From (iv) and (v) it follows that

(vi) p

1−r−p ≤2ϑa2

a1 −1 + 2ϑ+12 s

a2 a1

2ϑ−1a2 a1 −1

and

(vii) p

1−r−p ≤2 a2

a1 2

−1 + 2a2 a1

s a2

a1 2

−1.

Now we estimateβ3+δ

2 . Due to Jensen’s inequality we have β3+δ

2

3+δ4

≤σ2 = 1. Let δ = 1. Thenβ3+δ

2 = σ2 = 1 and so aa2

1 = (γ3)2. Let δ ∈ 1

3,1 . Then

5−δ

2 ≤2 +δ, soβ5−δ

2 exists. Due to the Cauchy-Schwarz-inequality we have 1 = (σ2)2 ≤β3+δ

2 β5−δ

2 ; hence

β3+δ

2 ≥ 1

β5−δ

2

≥ 1

2+δ)

5−δ 2(2+δ)

.

altogether

a2

a1 ≤(γ2+δ).

(10)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

Letk ∈N, k≥2. Forδ ≥ 2k1+1 it follows that2 + 1−δ2k ≤2 +δ; henceβ2+1−δ

2k

exists. Due to the Cauchy-Schwarz-inequality we have 1 = (σ2)2 ≤β2+1−δ

2k β2−1−δ

2k

and

β2−1−δ

2j+1

2j

=

β2−1−δ

2j+1

22j−1

≤ β2−1−δ

2j β2

2j−1

forj ∈ {1, . . . , k−1}. This yields β3+δ

2

β2−1−δ

2k

2k−1

≥ 1

β2+1−δ

2k

2k−1 ≥ 1 (γ2+δ)2

k+1+1−δ 2(2+δ)

.

Altogether we get aa2

1 ≤(γ2+δ)(2k+2)ϑforδ ∈h

1

2k+1,2k−11+1

. Combining this with (vi) and (vii) we obtain the assertion.

Remark 1. For eachδ∈(0,1]equality holds in Theorem2.1iffPX = 121+ ε−1)(whereεxdenotes the Dirac measure inx).

Proof. (i) Let X be a real random variable with PX = 121 + ε−1). Then E(X) = 0, Var(X) = 1, γ2+δ = 1 and so gδ2+δ) = 1for all δ ∈ (0,1].

SinceP(X <0) =P(X >0) = 12 we get equality.

(ii) In Theorem2.1we have β23+δ

2

2+δ

!

3+δ 2

≤α3+δ2 ≤ (p(1−r−p))1+δ2

(1−r−p)1+δ2 +p1+δ2 β3+δ

2 .

(11)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

In the first “≤” there is equality iff|X|1/2 and|X|1+δ/2 are linearly dependent P-almost surely, i.e. P(|X| ∈ {0, c}) = 1for somec > 0. AsE(X) = 0,we obtainPX =p(εc−c)+(1−2p)ε0. So the inequality is sharp iffgδ2+δ) = 1.

With1 =E(X2) = 2c2pwe obtain

γ2+δ = 2pc2+δ = 1 (2p)δ/2.

The functions hδ : (0,12]→ R, δ ∈(0,1], defined byhδ(p) =gδ

1 (2p)δ/2

, are strictly decreasing. Due top∈ 0,12

andhδ 12

= 1we getp= 12, r = 0and c= 1, thereforePX = 121−1).

Since the Central Limit Theorem is concerned with sums of random vari- ables (instead of single variables) we need a corresponding generalization of Theorem2.1.

Corollary 2.2. Under assumption (M),

E

√1 n

n

X

i=1

Xi

2+δ

≤ γ2+δ−1

nδ/2 +n2−δ/2 holds, and therefore,

P

n

X

i=1

Xi <0

!

≤gδ

γ2+δ−1

nδ/2 +n2−δ/2

P

n

X

i=1

Xi >0

! .

(12)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

Proof.

n

X

i=1

Xi

2+δ

=

n

X

i=1

Xi

3

2+δ 3

n

X

i=1

|Xi|3+ 3

n

X

k,i=1 k6=i

|Xk2Xi|+

n

X

i,k,l=1 i6=k6=l6=i

|XiXkXl|

2+δ 3

n

X

i=1

|Xi|2+δ+ 3

n

X

k,i=1 k6=i

|Xk2Xi|2+δ3 +

n

X

i,k,l=1 i6=k6=l6=i

|XiXkXl|2+δ3 .

Since the Xi are independent and, due toE|Xi|2 = 1and Jensen’s inequality, E|Xi|α ≤1forα≤2,we obtain

E

√1 n

n

X

i=1

Xi

2+δ

≤ 1

n1+δ/2(nγ2+δ+ (n3−n)) = γ2+δ−1

nδ/2 +n2−δ/2.

From E

1 n

Pn i=1Xi

= 0, E

1 n

Pn

i=1Xi2

= 1 and Theorem 2.1 the assertion follows.

We need a bound which does not depend on the number of summands. For this aim we use forn < κ:= (4cδγ2+δ)2/δ the asymmetry inequality of Corol- lary 2.2 and for n ≥ κ the Berry-Esseen bound (the choice ofκ as boundary between “small” and “large”nis somewhat arbitrary).

(13)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

Corollary 2.3. Under Assumption (M) P

n

X

i=1

Xi <0

!

≤(fδ2+δ)−1)P

n

X

i=1

Xi >0

! ,

where

fδ(y) := max

3, gδ(y), gδ

y−1 4cδ

+ (4cδy)4δ−1

+ 1.

Proof. (i) Letn < κ. Then Corollary2.2yields P

n

X

i=1

Xi <0

!

≤gδ

γ2+δ−1

nδ/2 +n2−δ/2

P

n

X

i=1

Xi >0

! .

For the function h : [1,∞) → [1,∞)defined byh(y) := γ2+δyδ/2−1 +y2−δ/2 we obtain

h00(y) = δ 2

1 + δ

2

2+δ−1)y−2−δ/2+

2− δ

2 1− δ 2

y−δ/2 >0, i.e.,his convex. Hence the maximum of

h:{1, . . . ,bκc} →[1,∞)

is attained either for n = 1or forn = bκc. Since gδ is strictly increasing this yields

gδ

γ2+δ−1

nδ/2 +n2−δ/2

≤max

gδ2+δ), gδ

γ2+δ−1

4cδγ2+δ + (4cδγ2+δ)4/δ−1

(14)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

for alln < κ.

(ii) Let n ≥ κ, i.e. nδ/2 ≥ 4cδγ2+δ. Then the (special case of the) theorem of Berry-Esseen yields

P

n

X

i=1

Xi <0

!

− 1 2

≤cδγ2+δ nδ/2 ≤ 1

4 and, therefore,

P

n

X

i=1

Xi <0

!, P

n

X

i=1

Xi >0

!

≤ 3/4 1/4 = 3.

Combining (i) and (ii) we obtain the assertion.

(15)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

3. Some Futher Inequalities

The next inequality represents a quantification of Lemma 7 by Landers and Rogge [8].

Lemma 3.1. Under Assumption (M)

P min

p≤n≤q n

X

i=1

Xi ≤r

!

−P max

p≤n≤q n

X

i=1

Xi ≤r

!

≤fδ2+δ) P

p

X

i=1

Xi ≤r,

q

X

i=1

Xi ≥r

!

+P

p

X

i=1

Xi ≥r,

q

X

i=1

Xi ≤r

!!

for allp, q ∈Ns.t.p < q and for allr∈R.

Proof. Using the same notation(A, α, β, Ak)as Landers and Rogge [8, p. 280], we have to prove that

P(A)≤fδ2+δ)(α+β).

(i) First we show that P (A∩ {Pp

i=1Xi ≤r}) ≤ fδ2+δ)· α; for this it is sufficient to prove that

P A∩ ( p

X

i=1

Xi ≤r )

∩ ( q

X

i=1

Xi ≤r )!

≤(fδ2+δ)−1)·α.

(16)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

But due to the independence of theAkandPq

i=k+1Xi

P A∩ ( p

X

i=1

Xi ≤r )

∩ ( q

X

i=1

Xi ≤r )!

q−1

X

k=p+1

P(Ak)P

q

X

i=k+1

Xi ≤0

!

≤(fδ2+δ)−1)

q−1

X

k=p+1

P(Ak)P

q

X

i=k+1

Xi ≥0

!

according to Corollary2.3

≤(fδ2+δ)−1)·α.

(ii) Similarly, it follows that P A∩

( k X

i=1

Xi > r )!

≤fδ2+δ)·β.

(i) and (ii) yield the assertion.

A thorough examination of the proof of Lemma 8 of Landers and Rogge [8]

allows a generalization and quantification of their result:

Lemma 3.2. Under Assumption (M), (i) P

Pn

i=1Xi ≤t,Pn+k

i=1 Xi ≥t

2cnδδ/2γ2+δ +1 qk

n.

(17)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

(ii) P Pn

i=1Xi ≥t,Pn+k

i=1 Xi ≤t

2cnδδ/2γ2+δ +1

qk n.

Proof. (ii) follows from (i) by replacing Xi by−Xi. Analogously to the proof of [8], Lemma 8, we obtain

P

n

X

i=1

Xi ≤t,

n+k

X

i=1

Xi ≥t

!

≤ 2cδγ2+δ nδ/2 +

Z

Φ t

√n

−Φ t

√n − 1

√n

k

X

i=1

xi

!

Q(dx1, . . . , dxk)

≤ 2cδγ2+δ nδ/2 + 1

√2π rk

n Z

√1 k

k

X

i=1

xi

Q(dx1, . . . , dxk)

≤ 2cδγ2+δ nδ/2 + 1

√2π rk

n, since

E

√1 k

k

X

i=1

Xi

≤ v u u tE

√1 k

k

X

i=1

Xi

2

= 1.

(18)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

4. A Berry-Esseen Theorem for Random Sums

As an important application of these inequalities we state our main result:

Theorem 4.1 (Berry-Esseen type result for random sums). Let {Xn, n ≥ 1} be i.i.d. random variables with EXn = 0, VarXn = 1 and γ2+δ :=

E|Xn|2+δ<∞for someδ∈(0,1]; let{Nn, n∈N}be integer-valued random variables andn, n ∈ N}real numbers with limn→∞ζn = 0such that there existd, τ > 0with

P

Nn nτ −1

> ζn

≤dp ζn. Then1

(i) sup

t∈R

P 1

√nτ

Nn

X

i=1

Xi ≤t

!

−Φ(t)

≤cδγ2+δ(1 + 22+δ/2fδ2+δ)) 1

bnτcδ/2 + 1 p2πebnτc + 2fδ2+δ)

s

2 + 1/τ

π max

1 n, ζn

+ 2dp ζn.

(ii) sup

t∈R

P 1

√Nn

Nn

X

i=1

Xi ≤t

!

−Φ(t)

≤cδγ2+δ(1 + 22+δ/2fδ2+δ)) 1

bnτcδ/2 + 1 p2πebnτc

1bxc:= max{nN:nx}.

(19)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

+ 2fδ2+δ) s

2 + 1/τ

π max

1 n, ζn

+ (3d+ 1)p ζn

for alln ∈Ns.t. 2 −nτ ζn≥1.

Since2 −nτ ζn −→

n→∞∞there exists ann0s.t. 2 −nτ ζn ≥1for alln≥n0. Proof. (i) Letn∈Nfulfill 2 −nτ ζn≥1and define as Landers and Rogge [8, p. 271]

bn(t) :=t√

nτ andIn :={k ∈N:bnτ −nτ ζnc ≤k≤ bnτ +nτ ζnc}.

Due to the assumption onNnwe have

P(Nn∈/ In)≤dp ζn.

For

An(t) :=

( maxk∈In

k

X

i=1

Xi ≤bn(t) )

, Bn(t) :=

( mink∈In

k

X

i=1

Xi ≤bn(t) )

follows (see Landers and Rogge [8, p. 272]) for eacht ∈R

P(An(t)∩ {Nn∈In})≤P

Nn

X

i=1

Xi ≤bn(t), Nn ∈In

!

≤P(Bn(t))

(20)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

and

P(An(t))≤P

bnτc

X

i=1

Xi ≤bn(t)

≤P(Bn(t)).

Using the Berry-Esseen theorem and the result (3.3) of Petrov [10, p. 114], we obtain

sup

t∈R

P

bnτc

X

i=1

Xi ≤bn(t)

−Φ(t)

≤sup

t∈R

P

 1 pbnτc

bnτc

X

i=1

Xi ≤t r nτ

bnτc

−Φ

t r nτ

bnτc

+ sup

t∈R

Φ

t

r nτ bnτc

−Φ(t)

≤ cδγ2+δ

bnτcδ/2 + 1 p2πebnτc.

Forp(n) :=bnτ −nτ ζnc, q(n) :=bnτ +nτ ζncwe obtain from Lemma3.1 P(Bn(t))−P(An(t))

≤fδ2+δ

P

p(n)

X

i=1

Xi ≤bn(t)≤

q(n)

X

i=1

Xi

(21)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

+P

p(n)

X

i=1

Xi ≥bn(t)≥

q(n)

X

i=1

Xi

.

According to Lemma3.2it follows that

sup

t∈R

P

p(n)

X

i=1

Xi ≤bn(t)≤

q(n)

X

i=1

Xi

≤ 2cδγ2+δ

(p(n))δ/2 + 1

√2π s

q(n)−p(n) p(n)

≤ 21+δ/2cδγ2+δ (nτ)δ/2 +

s

2 + 1/τ

π max

1 n, ζn

,

sincep(n)≥nτ −nτ ζn−1≥nτ /2and, therefore, s

q(n)−p(n) p(n) ≤

s

2nτ ζn+ 1 nτ /2 =

r

n+ 2 nτ; analogously

sup

t∈T

P

p(n)

X

i=1

Xi ≥bn(t)≥

q(n)

X

i=1

Xi

≤ 21+δ/2cδγ2+δ (nτ)δ/2 +

s

2 + 1/τ

π max

1 n, ζn

.

(22)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

Altogether we obtain

sup

t∈R

P

Nn

X

i=1

Xi ≤bn(t)

!

−Φ(t)

≤sup

t∈R

P

Nn

X

i=1

Xi ≤bn(t), Nn∈In

!

−Φ(t)

+P(Nn ∈/ In)

≤P(Bn(t))−P(An(t)) + cδγ2+δ

bnτcδ/2 + 1

p2πebnτc + 2dp ζn

≤2fδ γ2+δ 21+δcδγ2+δ (nτ)δ/2 +

s

2 + 1/τ

π max

1 n, ζn

!

+ cδγ2+δ

bnτcδ/2 + 1

p2πebnτc + 2dp ζn

≤cδγ2+δ(1 + 22+δ/2fδ2+δ)) 1

bnτcδ/2 + 1 p2πebnτc + 2fδ2+δ)

s

2 + 1/τ

π max

1 n, ζn

+ 2dp ζn.

(ii) Applying Lemma 1 of Michel and Pfanzagl [9] for

r =ζn, f = 1

√nτ

Nn

X

i=1

Xi, g = rNn

(23)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

and using the fact that

qNn

−1 >√

ζnimplies

Nn −1

> ζn, hence

P

rNn nτ −1

>p ζn

!

≤P

Nn nτ −1

> ζn

≤dp ζn,

we obtain from part (i)

sup

t∈T

P 1

√Nn

Nn

X

i=1

Xi ≤t

!

−Φ(t)

≤cδγ2+δ(1 + 22+δ/2fδ2+δ)) 1

bnτcδ/2 + 1 p2πebnτc + 2fδ2+δ)

s

2 + 1/τ

π max

1 n, ζn

+ (3d+ 1)p ζn.

(24)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

References

[1] F.J. ANSCOMBE, Large sample theory of sequential estimation, Proc.

Cambridge Philos. Soc., 48 (1952), 600–607.

[2] P. VAN BEEK, An application of Fourier methods to the problem of sharp- ening the Berry-Esseen inequality, Z. Wahrscheinlichkeitstheorie verw.

Gebiete, 23 (1972), 187–196.

[3] J.R. BLUM, D.L. HANSONANDJ.I. ROSENBLATT, On the central limit theorem for the sum of a random number of independent random vari- ables,. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 1 (1963), 389–393.

[4] H. CALLAERT AND P. JANSSEN, A note on the convergence rate of random sums, Rev. Roum. Math. Pures et Appl., 28 (1983), 147–151.

[5] Y.S. CHOWANDH. TEICHER, Probability Theory: Independence, Inter- changeability, Martingales. Springer, New York, 1978.

[6] H. KLÄVER, Ein Berry-Esseen-Satz für Zufallssummen. Diploma Thesis, Univ. Münster, 2002

[7] A. KRAJKA ANDZ. RYCHLIK, The order of approximation in the cen- tral limit theorem for random summation, Acta Math. Hungar., 51 (1988), 109–115.

[8] D. LANDERSANDL. ROGGE, The exact approximation order in the cen- tral limit theorem for random summation, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 36 (1976), 269–283.

(25)

An Inequality for the Asymmetry of Distributions and

a Berry-Esseen Theorem for Random Summation

Hendrik Kläver and Norbert Schmitz

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of25

J. Ineq. Pure and Appl. Math. 7(1) Art. 2, 2006

[9] R. MICHELANDJ. PFANZAGL, The accuracy of the normal approxima- tions for minimum contrast estimates, Z. Wahrscheinlichkeitstheorie verw.

Gebiete, 18 (1971), 73–84.

[10] V.V. PETROV, Sums of Independent Random Variables. Springer, Heidel- berg, 1975.

[11] A. RENYI, On the central limit theorem for the sum of a random number of independent random variables. Acta Math. Acad. Sci. Hung., 11 (1960), 97–102.

[12] W. TYSIAK, Gleichmäßige Berry-Esseen-Abschätzungen. Ph. Thesis, Univ. Wuppertal, 1983.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this case Darling proved the sufficiency parts corresponding to (i) and (ii) (Theorem 5.1 and Theorem 3.2 in [6]), in particular the limit W 0 has the same distri- bution as given

Keywords: Blaschke–Santaló inequality, hyperconvex sets, reverse isoperimetric problem, volume product.. 2010 Mathematics Subject Classification: Primary 52A40; Secondary 52A20,

R adulescu ˘ , Eigenvalue problems associated with nonhomogeneous differential operators in Orlicz–Sobolev spaces, Anal. R adulescu ˘ , Nonlinear elliptic equations with

We obtain the following asymptotic results in which Theorem A extends the recent result of Atici and Eloe [3]..

In 2009, Chen and Xu [23] investigated the higher order non-homogeneous linear differential equations and obtained the following result..

Abstract: In this paper, we use the terminating case of the Euler formula, the limiting case of the q-Gauss sum and the Grüss inequality to derive a bound for certain bibasic

ZÓ, Extension of the best approximation operator in Orlicz spaces and weak-type inequalities, Abstract and Applied Analysis, 6 (2001), 101–114.

proved a central limit theorem for such sums and Landers and Rogge [8] derived the correspond- ing approximation order, a Berry-Esseen type result seems to be missing.. Using