• Nem Talált Eredményt

SS //< ^ S/6

N/A
N/A
Protected

Academic year: 2022

Ossza meg "SS //< ^ S/6"

Copied!
20
0
0

Teljes szövegt

(1)

с & //< ^ S/6

1972

international book year

SS KFKI-72-60

S^cAin^ axi a n S ic (idem ^ o f (Sciences

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

könyvtara. . ЯТ.ТАТб INTŐÉI

BUDAPEST

P. Zaránd

T W O CODES FOR EVALUATION O F NUCLEAR ACCIDENT DOSIMETRY SYSTEM

(2)
(3)

KFKI-72-60

TWO CODES FOR EVALUATION OF NUCLEAR ACCIDENT DOSIMETRY SYSTEM

P. Zaránd

Central Research Institute for Physics, Budapest Hungary Reactor Research Department

Work partly supported by the International Atomic Energy Agency under Research Agreement No.

889/R1/CF.

(4)

evaluating of nuclear accident dosimeters /NAD/ based on activation detec­

tors. The codes compute and plot kerma, neutron dose due to H/n,gamma/

reaction, neutron dose due to recoils and neutron fluence along with other quantities useful in nuclear accident dosimetry.

РЕЗЮМЕ

В статье описываются две программы ЭВМ, которые предназначены для оценки ядерных аварийных дозиметров, собранных на активационных детекторах.

С помощью программ вычисляются: керма, доза нейтронов /ядврная и протонная отдача вычислены отдельно от дозы, полученной по реакции Н/п,у/ /, а также сигнализация нейтронов гамма-детенторами. Программы записывают также произ­

водные по энергии нейтронного потока и керма.

KIVONAT

A riportban a szerző két FORTRAN nyelven irt programról számol be.

Ezek alkalmasak aktivációs detektorokon alapuló baleseti doziméterek kiér­

tékelésére. A programok a következő dozimetriai szempontból fontos mennyi­

ségeket számolják: kerma, neutrondózis /a visszalökött magok és protonok ill. a H/n,gamma/ reakció külön-külön/ és a gamma-detektorok jelzése neut­

ronokra. A neutron-fluens és a kerma energia szerinti differenciálhányado­

sát a program kirajzolja.

(5)

INTRODUCTION

The Nuclear Accident Dosimetry NAD system used routinely at the Central Research Institute for Physics was designed in 1964 by Deme and Békés [l] along the lines of the system of Braun and Nilsson [2] . Sub-, sequent developments in nuclear accident dosimetry, the increased thermal power of the research reactor operated in the Institute, and the commence­

ment of zero power experiments, however, have produced the need for a more elaborate dosimetric system arid more sophisticated evaluation techniques.

NAD development in several countries including Hungary, is sup­

ported by the I.A.E.A. /Research Agreement No. 889/R1/CF/, and as a part of this work two programs, DZBl and DZBB, have been written for dose compu­

tations on the basis of previously elaborated RFSP [3] and RF07 [4] codes respectively, which fit theoretical or supposed neutron spectra on to the measured activities of the NAD system. During this procedure code RFSP minimizes the quantity

where Ф0 (Е ) is the input spectrum, Ф (e) is the fitted spectrum, and Ещах and Emin are the епеГ1ЗУ values below and above of which ф(е) is - or may be considered as zero. Code RF07 calculates the neutron spectrum by means of step by step iteration.

Both DZBB and DZBl programs can read any spectrum from the neutron spectrum library called DPSC-LIBRARY [5]. This collection of measured and calculated spectra is made as a part of the I.A.E.A. Research contract No. 1115/RB. These programs compute the neutron kerma in three different forms discussed in the next part and the normalized neutron and kerma spec­

tra, E*PHI(E) and E*K(e) versus logE are plotted through an off line plotter.

(6)

DOSE CALCULATIONS

The neutron dose /kerma/ calculations are used in biological ex­

periments [б] and in evaluation of the NAD system [7]. For evaluation of biological experiments the approximate neutron fluence-to-kerma conversion factors /Lamberieux, [8]/ and their modified versions are used. A modifi­

cation is necessary, when the neutrons with an energy less than 0.5 MeV are not negligible. For evaluation of NAD systems neutron kerma, surface-ab­

sorbed doses due to recoils and surface-absorbed doses due to H/n,gamma/

reaction conversion factors are those calculated by Auxier et al. [э] .

As these programs are used for accident dosimetry, some additional modifications have been made to the codes to facilitate evaluation and in­

tercomparison. The fractions of quantities mentioned above as well as those of neutron fluence are calculated in five energy ranges /thermal т 0.01 Mev, 0.01 T 0.75 M e V , 0.75 * 1.5 MeV, 1.5 * 2.5 MeV, and above 2.5 MeV/. The normalized neutron and kerma spectra are printed out together with apparent dose due to neutrons detected by LiF, BeO and Kodak Radiation Monitoring

film. The neutron sensitivities of these gamma detectors were taken from the literature

[lo] .

USER'S MANUAL

This manual must be read in conjuction with the reports KFKI-70-39 RPT /code DZBB/ and KFKI-71-22 /code D Z B 1 /, as it defails only those modi­

fications and additions to the codes necessary for their use.

PROGRAM NAME: DZBB and DZB1

The programs calculate the neutron spectrum from an input spectrum and foil measurements. The neutron spectrum is converted to a kerma spectrum and drawn on a plotter.

PROGRAM LANGUAGE ICT 1900 FORTRAN

DZBB DZB1

PERIPHERALS: 1 tape reader 1 tape reader 1 line printer 1 line printer Magnetic tapes Magnetic tapes 2 scratch tapes scratch tape

RFSP-LIBRARY RFSP-LIBRARY

DPSC-LIBRARY /optional/ DPSC—LIBRARY /optional PLOTTER TAPE /optional/ PLOTTER TAPE /optional/

STORE USED 26700 words 27400 words

(7)

3

DESCRIPTIONS of the programs are presented in the reports mentioned above.

Additional information necessary for using the programs is as follows:

The number of input E^ and PHI /E^/ values for DZB1 must not exceed 40. No tape output is given with program DZBB.

Both programs are operated from paper tape, but the input data may be given on cards, in which case the tape reader has to be replaced with a card reader.

A typical time necessary for solving a problem is about 2 min for both programs without using the plotter. Use of the plotter subroutine necessitates about. 2 min additional running time.

INPUT DATA

Kerma calculations are controlled in both codes by a record of the same type: the type of this record is 11 in code DZBB, IX in DZB1. In code DZB1 a record IX must be added after the last record type V, when record I has the value RUN or FROMTAPE /see below/. With code DZBB the last record type 10 must be always followed by a record 11.

Record IX /LY, LYL; 212/ written in the first four character /Record 11 in DZBB/ positions of the record

LY = О No dose /kerma/ calculations are made.

LY = 1 Lamberieux dose is calculated.

LY = 2 Modified Lamberieux dose is calculated.

LY = 3 Both Lamberieux, and modified Lamberieux dose are calculated.

LY = 4 Kerma, neutron dose due to H/n,gamma/ reaction and neutron dose due to recoils are calculated LY = 5 All calculations described for LY = 1, 2 and

4 are made

LYL = 1 Lamberieux dose spectrum and neutron spectrum

are plotted as E * К /E/ and E * PHI/Е/ versus log E.

LYL = 2 Modified Lamberieux dose spectrum is plotted as E # K / E / and E * P H I /E / versus log E.

LYL = Kerma spectrum and neutron spectrum are plotted as E * P H I /Е/ and E * К /E/ versus log E.

Values of LYL must be in accordance with the actual values of LY /e.g.

LYL = 3 is meaningless if LY = 1/.

(8)

Input spectra can be read from the DPSC-LIBRARY/neutron spectrum library/as follows:

DZB1

The word FROMTAPE must be written in the first eight characters of record I, the other character positions being left empty. After this comes Record X, ISP /10А8/. The first eight character positions of the record carry the identifications characters of the spectrum needed from the library, the other positions are empty. This record is followed by records II, III and by record/s/ V, the last record is a record IX. In

this operation mode IENER on record III is an arbitrary number in 13 format, as the true IENER is read from the library. On the DPSC-LIBRARY, however, IENER is always 48, so eight E and P H I /Е/ values are omitted.

DZBB

Records 1, 2, 3, 4, 5, 6 and 7 are followed by a record 10. On this record the value NENBE /format 14/ is 0 /zero/. The next record /12/

has the same function as record X of DZB1 /format 10A8/ . The last record is always a record 11.

An example of the input records for both programs is given in Fig. 2.

OUTPUT

The output is given on a line printer and on an off-line operated Computer Instrumentation Ltd Series 6000/601 Large Incremental Plotter.

The spectra are plotted in the energy interval lO-® т 100 MeV. The measure of the drawing is 32 x 20 cm.

The results of the spectrum fitting are printed in the manner described in reports KFKI-70-39 RPT and KFKI-71-22.

When the codes are operated from the DPSC-LIBRARY, all the infor­

mation concerning the input spectrum which is contained in the library in block ITEXT/6/10А8// and the spectrum itself are printed out before the results, along with the identification number of the spectrum /Fig. 1/.

Results of the kerma-calculating subroutines /Figs. За-b/ are printed out after the results of the last iteration as these calculations are performed only after the last iteration - reading of gamma detectors due to neutrons, followed by the results of Lamberieux and modified Lamberieux dose calcula­

tions and that of kerma, dose due to H/n,gamma/ reaction and dose due to recoils.

(9)

5

COMMENT

The test case chosen for publication is the third burst of the HPRR at Oak Ridge during the I.A.E.A. intercomparison studies of May 1971.

The input spectrum calculated is a fission spectrum penetrating through 12 cm lucite, and the neutron dose results are in good agreement with those of other participants.

ACKNOWLEDGEMENT

The author is indebted to Messrs. L. Turi and A. Fischer for help­

ful discussions.

(10)

APPENDIX A

The "Lamberieux dose" is an approximation of the first collision dose which in the energy range considered is practically equal to the k e r m a .

It is a linear approximation /у = m. E + b/. The values of m and

' 2 -9

b are given in Table I. The unit of у is rad • cm • 10

As this approximation is not satisfactory when the dose due to neutrons with an energy less than 0.5 MeV is important /e.g. heavy water moderated reactors/, it is modified here on the basis of the neutron

fluence-to-kerma conversion curve published in ORNL-4168. These modified values are also given in Table I. The modified approximation is not linear

— 8 -5

in the energy range 4.10 MeV т 10 MeV.

Here

2 * IO-2

y = ---— —

(E/4 * 10-8)1'2 and E is given in MeV.

Table I. Constants needed to the calculation of approximate neutron fluence-to-kerma conversion factors

Energy range /MeV/

Laitiberieux approx.

m o d . Lamberieux ' approx.

m b m b

10-5 - 10-4 3. О 0 1.2 x 10-3

10-2 - 2 x 10-4 3.

о

0 1.6 x 10~3

2

x

io“4 - 10-2

3.

о

10. О

10-2 - 2 x lO-1 3.

о

5.2 4.8 x 10-2

0.2 - 0.8 3. 0 2.16 0.667

0.8 - 4.0 0.56 1.93 0.56 1.93

4.0 - 8.0 0.3 3. 0.3 3 .

above 8.0 0 5.4 0 5.4

Fig. 4 is the flow-chart of the kerma /and neutron dose due to recoils and H/n,gamma/ reactions/ calculations. The neutron spectrum is a p ­ proximated with a step function. To avoid under or overestimation the neutron fluence differential in energy 'fg is considered in the energy range \|е ^х^ • E^1 - 1 ^' т ^E^1^ • E^1 + 1^ equal to f ^ •

(11)

7

I

9

REFERENCES

[1] Békés, M. and Deme, S.: KFKI Közlemények, 12., 89 /1964/

[2] Braun, J. and Nilsson, R . : AR-33 /1960/

[3] Fischer, A. and Túri, L . : KFKI-71-22, Report /1971/ /Budapest:

Central Res. Inst, for Physics/

[4] Túri, L. and Fischer, A.: KFKI-70-39 R F T , Report /1970/

[5] Pálfalvi, J. and Zaránd, P . : to be published as KFKI Report /1972/

[6] Zaránd, P., Makra, S., Sántha, A. and Mándi, E.: Proc. First

European Biophys. C o n g r . p. 315, /Vienna: Verl, der Wiener Med. Akad./, /1971/

[7j Makra, S. and Zaránd, P . : KFKI-71-82, Report /1971/

[8] Lamberieux, I.: Proc. Sypm. on Neutron Dosimetry, /Vienna: 1.А.Е.А./

/1963/

[9] Dennis, J.A., Delafield, H.J., Holt, P.D. and Boot, S.J.:

AERE-R 6498 /1970/

[10] Tochilin, E., Goldstein, N. and Miller, W . G . : Health Ph y s ., 1£, 1 /1969/

[11] Auxier, J .A . : ORNL-4168, /1967/

»

f

(12)

DZBB when the input spectrum is read from the DPSC-LIBRARY.

Fig. 2 Input records of codes DZB1 /а/ and DZBB /b / operated from the neutron spectrum library.

Fig. 3a Output records of the kerma calculating subroutines.

Lamberieux and modified Lamberieux first collision dose

spectra normalized to unit lethargy interval and f.c. dose fractions.

Fig. 3b Output records of the kerma calculating subroutines. Kerma spectrum normalized to unit lethargy interval. Absorbed dose, kerma and neutron fluence fractions.

Fig. 4 Flow-chart of the kerma calculations.

(

?

(13)

00000002 НГ F R

о» 1 гг м

l u c i t e

C A L С и I А П 0 В V V E R T E S 26-05-72

* *

F P H I ( E ) E P H I ( E ) E 4 H 1 ( E 1 E p h( ( E )

8 . 9 1 1 7 0 F 0 0 4 , 4 6 1 1 0 t " 0 3 7 . 0 7 8 2 0 E 0 0 1 . 2 3 2 6 9 E - 0 2 5 . 6 2 2 6 OE 0 0 2 . 2 2 8 9 9 F - 0 2 4 . 4 6 6 З 0 Е 0 u 3 . 4 / 4 8 7 6 - 0 ' ' 3 . 5 4 7 X 0 F 0 0 5 . 0 3 9 3 0 E - 0 2 2 . 8 1 8 2 0 F 0 0 7 . 2 2 Ц 5 Е - 0 ? 2 . 2 3 8 5 0 E 0 0 1 . 0 1 1 5 3 E - 0 1 1 . 7 8 i - 5 0 t 0 0 1 . 2 8 8 6 7 E • 0 ! 1 . 4 1 2 5 0 t 0 0 1 . 3 7 7 4 2 F - 0 1 1 . 1 2 2 0 0 F 0 0 1 . 5 2 5 5 8 E - 0 1 8 9 Ц 7 0 Е - 0 1 1 . 6 V 2 3 6 F - 0 1 7 , 0 7 8 < ' 0 F » 0 1 1 . 9 0 О 5 2 f - ö . 5 . 6 2 2 ^ 0 E - 0 1 2 . 0 9 5 6 S E - 0 1 4 . 4 6 6 3 0 E - Ű 1 2 , 1 5 2 o 8 E - o i 3 . 5 4 7 8 0 E - 0 1 2 . 2 2 3 1 1 E - 0 1 ? , 8 1 8 / < ) E - 0 * i 2 . 4 o , ) 7 3 t - 0 . i 2 . 2 3 8 S 0 F - 0 1 2 . 8 9 0 2 0 F - 0 1 1 . 7 8 1 6 0 E - 0 1 3 . 5 0 0 4 6 E - 0 1 1 . 4 1 2 5 0 E - 0 1 4 . 1 9 7 4 4 E • 0 1 1 . 1 2 2 0 0 6 - 0 1 4 , 7 5 9 6 9 f - 0 0 . 9 Ц 7 0 Е - 0 2 5 , 5 5 8 l 8 t - 0 1 7 . 0 7 8 2 0 F - 0 2 6 , 4 9 9 3 5 E - 0 1 5 . 6 2 2 6 0 6 - 0 2 7 . 5 9 A / A F - 0 1 4 . 4 6 6 5 G E -u^ 8 , 9 7 8 2 7 t - ,

3 . 5 4 7 Я 0 Е - 0 2 1 , 0 7 1 7 5 t 0 0 2 . 8 1 8 2 0 E - 0 2 1 . 2 9 5 2 4 E 0 0 2 . 2 3 8 5 0 E - O 2 1 . 5 / 7 8 5 E 0 0 1 . 7 8 1 6 0 - - У « . 1 . 9 3 0 1 6 t 0 0 1 . 4 1 2 5 0 F - 0 2 2 , 3 6 9 1 8 t Of - 1 . 1 2 2 0 0 F - 0 2 2 . 9 0 3 5 0 E OO' 6 . 8 1 9 Ю Е - 0 3 4 , 5 8 3 8 8 t 0 0 3 . 1 6 1 V o t - n s 9 , 5 9 7 1 / 1 0 0 1 . 4 6 M 0 F - Q 3 г . 0 6 6 3 4 E 0 1 6 . 8 1 9 1 0 F - 0 4 4 . 4 5 6 5 8 E 0 1 3 *. 1 6 1 9 0 E - 0 4 9 . M 2 9 0 F 0 1 1 . 4 6 6 3uE - J 4 2 . 1 1 7 1 5у 0 - 6 . 8 1 9 1 0 E - 0 5 4 , 5 6 9 6 0 t 0 2 3 . 1 6 1 9 0 F - 0 5 9 . 9 6 8 6 7 E 0 2 1 . 4 6 6 З О Е - 0 5 2 . / 0 9 6 V F 0 3 6 , 0 1 Я 1 о 6 - Oft 4 . 8 1 0 , 3 t 0 5 3 . 1 6 Ю 0 Е - 0 6 1 , 0 4 8 0 8 t 0 4 1 . 4 6 6 3 0 F - 0 A 2 , 3 1 4 5 1 E 0 4 7 . 0 7 1 5 0 E - 0 7 4 . 8 1 1 4 4 t 0 4 3 . 5 3 5 8 0 t - v i / 9 . 6 2 4 0 8 ? 0 4 2 . 1 7 0 Ю Е - 0 7 0 . O O O O O F - 0 1 8 . 8 З Ю 6 Е - О 4 8 . 8 Ю 9 Я Е - 0 4 8 . 7 6 3 7 4 E - 0 4 8 , 6 8 6 3 З Е - 0 4 8 . 5 7 5 4 7 6 - - Л . 8 , 4 ? 7 fc 1 F - 0 '

I

I

Fig. 1

(14)

PROMTAPE

00000002

TEST CASE IAEA INTERCOMP. MAY 71 ORNL III B. AREA SP.LIBR 1 1 2 0 05000E 00 5 2

S3(NP)P32 8 43000E Об 5 00000E-02 1 1

ENDEND

b./

22 2 1

1

S32(NP)?32 8.43000E 08

TEST CASE IAEA INTERCOMPARISON, OAK RIDGE MAY 1971 III BURST AREA DET. SPECTRUM PROM LIBR. NO. 00000002 10 0.1 OOOOE 00 0.1

1.00000E-08 1.70000E 01 20

O.T)

0.0 0.0 0.45

0

00000002

4 3

33

Fig. 2

(15)

* » * o?ei

r e a d i n g of g* L I F 2 . Р 5 7 0 2

E 3 . 5 3 5 6 0 F . o 7

1 . 46P30F.04

6 . 8 l « 1 0 f - 0 3 г . ? < » 5 n F * n 2 5,4г г6о Е . о г 1 . 4 1 ? 5 0 F . P 1 3 . 5 4 ? 8 o E , C 1 6 , 9 l l 7 p F * 0 1 г . г з я 5оЕ oa 5.6 2 2 * 0 2 p I

E 5 . 5 3 5 6 0 E . 0 7 1 , 4 6 6 3 0 2 . 0 4 6 . 8 l 9 l o F ’ P3

г.гзязрс.ог

5 . б г г А о Е ' с г 1 . 4 1 2 5 0 F » 0 1 3 . 5 < . 7 * f l F , m 8 . 9 1 1 7 o F * 0 1

г.гзчзоЕ со 5.8гг*оЕ со

* * * TEST CASF I AEA JnTERCOMP. i jAV 71 0 “ Nl Щ 6 . AREA $ Р . ц В Р PAj E NO.

■IMA DETECTORS DUE TO N FIJT RON S ( F . GT . <1. AF V ) I N R BFO 3.41036 E U “ 0.00000

4 ( F )

0.000002.01 3.77915F.04

1 .14J44E.0?

4 . S V0? 2 F -o>

1 . 39 3 ''*F.C1 4.86263E.01 1 / 2 3 1 0 Е 00 7.08З 3öE 00 1 . 5 9 5 0 6 F 01 1.1 35 70E 01

4 ( F ) 0 . OOO0OE-O1 1 3 7 4 6 5 E . 0 J J> 1 1 4 8f, 0 ? 1 .1 2 3 7 6 E - 0 1 2.8 1 1 0 2 2 - 0 1

8.979T0F.OI

? . 1 8 5 . ‘9f 00 7 . 0 8 3 3 8 E 00 1 . 3 9 5o6f 01

1 .135 7qF 01

NEUTRON DOSE SPECTRUM ( R A D / I E T . I N T . ) I A MrErI E Au* d o s e

r

1 , 4 6 6 3 0 F . 0 6

* , í1°1« í . n * 1.1 2 2 0 0 1 - 0 2

г .81я г о Е - Р г 7 . 0 7 8 2 O F . C 2 1 . 7 8 1 6 0 F . 0 1

4 _4 6 6 3 ' ' « . fll

1 . 1 2 7 0 0 ' 00

2 . 3i8 ?oE 00

7 . 0 ? * 7 0 2 00

4 ( E ) 4 . ? 6 8o7 E , 0 * 1 . 0 0 1 6 f , F ^ o i 1, 8 7 9iF F - 0 ? 5 . 9 6 6 8 6 Е »о? 1.r r r q 0 F *01 6 , 4 S ? 3 9 E . 0 1 2, 4 9 n1 1E 00 8.4 6 6 6 0E Op 1 . 3 * 0 3 6 « o,

* . 6 4 3 « ? F 0rt

E 6.8l9 1 0C- 0 6 1 . 4 6 6 * 0 2 . 0 3 1. 4 i г З о Е - о г 3 . 5 4 7 R p F - 0 2 8.9 1 1 7OE-O?

2 , 2 3 8 S 0 F - 0 1 5 . 6 2 2 6 0 E - 0 1 1 . 4 1 2 5 0 2 00 3 . 5 4 7Rq E Oi) 8 . 91 17pE op

4 ( E ) 1 8 5 ? 7 Be.o5 2 Í 8 1 6 9 4 E . 0 3

2.744*4F-02

7 . « 2 4 8 5 E - 0 2 2.5*0 6 7 2 - 0 1 8 4 t ) 8 3 4 F . 0 1 3 I 8 4 2 8 7 E 00 1 !o2 4 6 4 F 01 1 . 3 5 J 9 5 E 01 4 .1 5 p 92E 00

NEUTRON DOSE SPECTRUM ( RA О / l F T . I N T . )

<" ) 0 . LA“ * F R I E A u 4 DOSE E

1 , 4 6 6 3 O E - 0 8 6 8 1 9 Щ Е . 0 4 1 .' 1 2 2O oc * 0 2

2.8lя2ое-о2

7 . 0 7 8 2oF - 0 2 1 . 7 8 1 A 0 E - " 1 4 . 4 » 6 3 f l E . 0 l 1 . 1 2 2 0 0 2 00

2.81820E 00

7 ,07 8 2 oF 00

4 ( E ) 3 . 2 0 5 5 1 F . O S 3 3 3 8 6 5 2 . 0 3 5 . ' 9 3 6 0 , E . p ? 1 . 3 7 3 0 ? * . 0 1 3 . 7 f l i p 7 F ч 01 1 . 1 7 2 7 2 E 00 3 . 0 3 1 8 4 « 00 8 , 4 6 6 6 0 F 00 1 . Зя ОЗ*Е 01 8 . 6 4 3 9 ? « 00

E 6 . 8 l 9 i o E - n 6 1 4 6 6 3 0 Е - П З 1 ; 4 1 2 5 0 2 - 0 2 3 . 5 4 7 8 0 2 - 0 2 8 . 9 ц 7 o E- 0 2 2 . 2 3 g 5 0 F - 0 1 5 , 4 2 2 4 o 2 . p i 1 . 4 1 2 5 0 2 00 3 . 5 4 78o E 00 8 . 9 117pE 00

4(F) 1 . 3 8 7 5 1 E - 0 3 9 _ 3 8 9 7 9 F . 0 3 7 ; 8 6 6 3 6 E - 0 2

1, 7 n 9 ? o 2 - o i 4 . 8 9 7 8 5 E - 0 1 1 4 4 01 2 F 00 4 t 28 5 49 E 00 1 i P?4 6 4 E 01 1 . 3 5 3 9 5 F 01 4 . 1 5 0 9 2 E 00

DOSE ERaC T I OnS In RAD

LAMr. MOD. LAMB.

UNDER . 0 « mEv 0.0 1*1 . 0 0 1 . 0 0 * 3. 0 0 MFv

•ROVE 3 . 0 “ EV

0.00000

5 . 7 6 1 9 0 1 3 , 6 1 3 1 8 11 . 6 7 6 9 4

0 , 0 6 1 3 5 6 . 9 4 8 4 2 1 3 . 6 1 3 1 8 11 . 6 7 4 9 4 NFUTROn DOSE 3 1 . 0 5 2 0 3 3 2 , 3 0 0 1 0

E 3 . l 6 i 9 o E . n 5 3 . l 8 l 9 0 2 . 0 5 1. 7 8 1 6 0 E - C 2 4 . 4 6 6 7 J F - 0 2

1 . 1 < 2 0 0f-01

2,8 1 8 2QF- 0 1 7 . f l 7 8 ? 0 F . 0 1

1 .7 8 16 0 2 00

4 , 4 6 6 3 0 е ОС

I 3 . 1 6 1 9 0 E - 0 5 3 . 1 6 1 9 0 F . 0 3 1 .' 781 4 0 2 - 0 2 4 . 4 6 6 30f-o2 1 . 1 2 2 0 0 2 - 0 1 2.8 1 8 2 0 2 - 0 1 7 .0? « ?0 * - 0 1 1. 7 8 16 0E 00 4 . 4 6 6 3 0 2 00

4 ( E ) 8 , ? 8 5 9 8 E -o5 б ! о 8 1 2 3 2 . о З 3 . 5 4 6 8 3 E - 0 2 1 . 0 3 8 8 5 E - 0 1 S .s0 467 E , 0 1 1 1 0 5 9 6 E 00 5 . 5 2 2 8 7 E 00 1 . 2 6 7 U F 01 1 . 3 0 2 2 ’ f 01

4 ( E ) 1 . 0 4 8 2 3 E . 0 3 2 . 0 2 7 0 8 2 , 0 2 9 . 3 3 3 1 5 2 . p?

2 . 1 7 2 8 3 2 - 0 1 6 . 5 7 4 5 4 2 - 0 1 1 , 6 6 § 3 7 E 00 5 . 7 l 0 3 9 F 00 1 . 2 6 7 l 3 | 01 1 . 3 0 2 2 9 2 01

Fig. 3 a

(16)

K F R M A S P E f T R U M ( R A D / U N T T L F T . I N T , ) ,

F < < F ) F * ( F ) E F ( F ) E < < E )

З . Ч т ^ г - Г'7 O . O O O O O t-01 1 . 466^0F-06 2.1278s E »0T 0.81910E »00 1. I I794F - O3 3.161906-05 6,463656- D4 1 , '« -63 O E " " A 1.48993F »03 3.31910F-04 3.0O887F-03 1.466306-03 7.97819F-03 3.1619Q F-03 2.152456-02

6 , 31910 f - r 3 3.645 ?9г .0? 1,12200F-02 4.81215F .0? 1 41250F -0? 7 34026E-02 1.781606-02 1 18333F.01

? ’ ? T R S o t . P2 1 Ч у4P a f.o i 2818206.02 1 «49336,01 3'547R O F . O ? 2'34318F.01 4 466306-02 2 [953586,01

5Í67760F - O2 3 ! 2 о 1 r, A E - 01 7i o7« ? o F - o2 O « ? 30F -0l R !9i170F-02 6Í05550F-01 1 I 122006-01 7! 64645F-01 1 . A 1 ? 50 E - Г 1 9.73679F-01 1.7« l60F - o l 1 .17946 F 00 7.23«50F-01 1.39845E 00 2.8l8?0F - n i 1 . 66372F p o

3.54780**01 ? . ?00Я з E 00 A .466rO F -oV 3. O l ?90E 00 5.62?60F-01 4.17059 F O O 7.078?0F - O1 5.j0407F 00 8,911706*01 6.603?8f 00 1.122C0F 00 7. R A123F 00 1 . 4Í 2S0F 00 1 . 03555 F 01 1,781*06 00 1 , 25720F 01 2.23R5o r 00 1 . 37378 F 01 2,81 Я2о F 00 1,39393 F 01 3.547R0F 00 1.46034? 01 4,4663 g f 00 1.259906 01 5,ó? ?6o f 00 1 . 12157 F 01 7.07ft2O F 00 8. A 5926 F 00 R .91170F 00 2.35o96F 00

N F ' J TrOn D O S F ( P A D ) K ErMa n e u t r o n

S U R E A C E A R S O R B F D D O S F ( R A O ) f l u f n c e

H ( N , <5 A M M A ) R F C O I L S

U N D E R .01 M F v 1. « S338 0.24537 0.06780 5.12»2A6 09

0,01-0.75 m ev 1.00903 4.60551 5.03175 3.46496E 09

0.75-1. S O M E V 0.3S416 6. Ю 518 5.41673 1 . 37790É Ci9

1.5o *2, S o M E V 0.4736о 12.74629 10.16775 1 . 88807c 09

A B O V E 2.5 M F V 0.27556 13.04830 10.92083 3.342536 09

S U M 3.91573 36.75065 31.60485 1 . 51У 97 E 10

K f И М А S P . I S P L О Т T f 0

F ig . 3b

(17)

- 13 -

F ig. 4

(18)
(19)
(20)

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Szabó Ferenc, a KFKI Reaktor­

kutatási Tudományos Tanácsának elnöke Szakmai lektor: Kötél Gyula, Fischer Adám Nyelvi lektor: T. Wilkinson

Példányszám: 305 Törzsszám: 72-7411

Készült a KFKI sokszorosító üzemében, Budapest 1972. október hó.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In [6] Brown and Zhang used the relationship between the Nehari manifold and fibering maps to show how existence and nonexistence results for positive solutions of the equation

To visualize the relative conversion rates of the indi- vidual monomers, their conversion was plotted against the total monomer conversion in the different polymerization

After the phase of the experiment results were evaluated according to the Design of Experiments (DOE) methodology, which is used to determine the important factors

Due to the fact that these are mostly multilayered structures the mostly used numerical techniques for their calculation are the method of the surface permeability,

The main contri- butions of this paper are (i) the automated Rally performance evaluation environment, and (ii) the predefined set of test cases used for investigating the

faba root-micronucleus test was used to evaluate cytotoxicity and genotoxicity induced by raw SS and composts of SS mixed with soil for different time periods;

3.1 Methods used for the analysis of environmental factors causing back pain and for the evaluation of environmental and psycho-social factors affecting the general health

The production of mycotoxins in fungi, and their presence in food and feed, animals and humans, depend on several biological and environmental factors, which can significantly