• Nem Talált Eredményt

Electronic Journal of Qualitative Theory of Differential Equations 2011, No. 38, 1-17; http://www.math.u-szeged.hu/ejqtde/

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Electronic Journal of Qualitative Theory of Differential Equations 2011, No. 38, 1-17; http://www.math.u-szeged.hu/ejqtde/"

Copied!
17
0
0

Teljes szövegt

(1)

Electronic Journal of Qualitative Theory of Differential Equations 2011, No. 38, 1-17; http://www.math.u-szeged.hu/ejqtde/

Asymptoti stability of two dimensional

systems of linear dierene equations and of

seond order half-linear dierential equations

with step funtion oeients

L. Hatvani

1 ∗

and L. Székely

2

1

Corresponding author

University of Szeged, BolyaiInstitute

Aradivértanúk tere 1, Szeged, H-6720 Hungary

E-mail: hatvanimath.u-szeged.hu

2

Szent István University

Institute of Mathematis and Informatis

E-mail: szekely.laszlogek.szie.hu

Abstrat

We give a suient ondition guaranteeing asymptoti stability

with respet to

x

for the zero solution of the half-linear dierential equation

x ′′ | x | n− 1 + q(t) | x | n− 1 x = 0, 1 ≤ n ∈ R ,

withstepfuntionoeient

q

. Thegeometrimethodoftheproofan

be applied alsoto two dimensional systems oflinear non-autonomous

dierene equations. The appliation gives a new simple proof for a

sharpenedversionofÁ.Elbert'sasymptotistabilitytheoremsforsuh

diereneequationsandlinearseondorderdierentialequationswith

step funtionoeients.

Supported by the Hungarian National Foundation for Sienti Researh (OTKA

K75517), Analysis and Stohastis Researh Group of the Hungarian Aademy of Si-

enes, andTÁMOP4.2.2.

(2)

funtion oeients; half-lineardierentialequation.

2000 Mathematis Subjet Classiation: Primary 34D20, 39A30.

1 Introdution

Consider the diereneequation

x n+1 = M n x n , n = 0, 1, 2, . . . ,

(1)

where

x n ∈ R 2

and

M n ∈ R 2 × 2

. We do not onsider the trivial ase when all the entries of

M n

are equal to

0

for some

n

. Let

k M k

be the spetral

norm, i.e.,

k M k

isthe square rootof thelargest eigenvalue of the symmetri

positive semi-denite matrix

M T M

. It is well-known [3, p. 232℄ that if

Q

n=0 k M n k = 0

, then all solutions of equation (1)tend to zero as

n → ∞

,

i.e., thezerosolutionisasymptotiallystable. Á.Elbert[10℄gaveasuient

ondition for the asymptoti stability under the assumptions

(i) Q

n=0 max {k M n k , 1 } < ∞

,

(ii) 0 < Q

n=0 k M n k

,

(iii) Q ∞

n=0 max {| det M n | , 1 } < ∞

.

His proofwasbased onestimation ofthe normof some speial matriesand

a triky deomposition of matries

M n

. He applied this result to dedue

anArmellini-Tonelli-Sansone-typetheorem(abbreviated asA-T-S theorem),

i.e., a theorem guaranteeing asymptoti stability with respet to

x

for the

zero solution of the linear seondorder dierentialequation

x ′′ + a(t)x = 0 (a(t) ր ∞ , t → ∞ )

(2)

with step funtion oeient

a

[11, 12℄.

I.Bihari[5℄ andElbert [9℄introduedthehalf-lineardierentialequation

x ′′ | x | m−1 + q(t) | x | m−1 x = 0, m ∈ R + ,

(3)

whihhasattratedattention,andithasanextensiveliterature(see,e.g.,[7℄,

[8℄and thereferenes therein). Bihari[6℄has generalizedthe A-T-S theorem

tothisequationintheaseofsmoothoeient

q

,requiringregulargrowth

(3)

of

q

. Roughly speaking, this ondition means that the growth of

q

annot

be loated to a set with small measure (see Setion 3). Of ourse, a step

funtion

q

doesnotsatisfythisondition. Elbert's method,usingawideand

deep mahinery from linear analysis,does not apply tothe half-linear ase.

InthispaperweestablishanA-T-Stheoremforthehalf-lineardierential

equationwithstepfuntionoeient

q

. Theproofisbaseduponageometri

method. This method applies also to the linear ase, so we an give a new

simple proof for Elbert's result,assuming only

lim sup n→∞ Q n

k=0 k M k k < ∞

instead of

(i)

(iii)

.

2 Dierene equation

To investigateequation(1), wewilldeneadiereneequationonthe plane

whih has the same stability properties as equation (1). Let us introdue

the following notations for the matriesof the reetion with respet to the

x

-axis, and ofthe rotationaroundthe origin ounterlokwise with

ϕ

in

R 2

:

R =

1 0 0 − 1

, E(ϕ) =

cos ϕ − sin ϕ sin ϕ cos ϕ

.

(4)

Obviously,

E(ϕ 1 )E(ϕ 2 ) = E(ϕ 1 + ϕ 2 ), E(ϕ)R = RE( − ϕ).

(5)

We willneed the following theorem (see, e.g., [16, p. 188℄):

Theorem (polar fatorization). Every

M ∈ R n×n

an be represented as a produt

M = SQ

where

S

is symmetri, positive semi-denite, and

Q

is

orthogonal.

S

is uniquely determined while

Q

is unique if and only if

M

is

non-singular.

In this theorem

S

is the square root of the symmetri positive semi-

denitematrix

M T M

. If

M ∈ R n × n

isnon-singular,thentheprodut

M T M

ispositivedenite,thusitan bediagonalized:

M T M = PD 2 P 1

,where

D 2

isthediagonalmatrixontainingtheeigenvaluesof

M T M

andtheorthogonal

matrix

P

has the propereigenvetorsinitsolumns. Then

S = PDP 1

and

M = PDP 1 Q.

(6)

(4)

Denote by

Λ

and

λ

the eigenvalues of

M T M ( k M k = Λ ≥ λ > 0)

. Suppose

that the diagonalelements in

D

are in dereasing order. If

det M = 0

, then

S

is positive semi-denite and the symmetri matrix

S ˜ := k M k 1 S

an be

represented as

S ˜ = P DP ˜ −1

, where

P

is orthogonaland

D ˜ =

1 0 0 0

.

Applying the aboveargument tothe oeientmatries of (1), we have

M n = k M n k P n D ˆ n P n 1 Q n ,

(7)

where

D ˆ n :=

1 0 0 d n

, d n :=

( q λ n

Λ n > 0,

if

det M n 6 = 0

;

0,

if

det M n = 0

.

(8)

Letusexaminetheow

F n := Q n

k=0 M k

ofequation(1). Usingthefat,that

the produt of orthogonal matriesare alsoorthogonal,

F n

has the form

F n =

n

Y

k=0

P k D ˆ k P k 1 Q k =

n

Y

k=0

k M k k

! P n

n

Y

k=0

D ˆ k O k

!

,

(9)

where the orthogonal matries

O k (k = 0, . . . , n + 1)

are dened by

O 0 := P −1 0 Q 0 , O k = P −1 k Q k P k− 1 , k = 1, . . . , n,

(10)

and the produt

Q n

k=0 N k

ismeantin the order

N n · · · N 0

. It isknown from

the elementary geometry that in the plane every orthogonal transformation

is a rotation or a produt of a rotation and a reetion with respet to the

x

-axis. Thus, if

O k

is not a rotation, then let

O k = E(ϑ k )R

for some

ϑ k

.

Sine

R

is ommutable with every diagonalmatries, from (5)we obtain

F n =

n

Y

k=0

k M k k

!

R m E(α n )

n

Y

k=0

D ˆ k E(ω k )

!

(11)

for some

m ∈ N 0

(

m ≤ n + 1

)andsome

ω k

's,where

α k

,

ω k

an bealulated

from

M 0 , . . . , M k

.

(5)

x n+1 = k M n k

1 0 0 d n

cos ω n − sin ω n

sin ω n cos ω n

x n ,

0 ≤ d n ≤ 1, n = 0, 1, 2, . . .

(12)

The equilibrium

(0, 0)

of (1) is stable (asymptotiallystable) if and only if the equilibrium

(0, 0)

of (12) is stable (asymptotiallystable). Now, we an state the main theorem of this setion:

Theorem 1. Suppose that

lim sup n→∞ Q n

k=0 k M k k < ∞

. If

X

n=0

min { 1 − d n , 1 − d n+1 } sin 2 ω n+1 = ∞ ,

(13)

then the zero solution of dierene equation (12) is asymptotially stable.

Proof. Obviously, itisenoughto dealwith the ase

k M k k = 1

(

k = 0, 1, . . .

)

and to showthat

Q

n=0 D ˆ n E(ω n )

=0. Geometrially,the dynamis of (12) is omposed of onseutive rotationsand ontrations along the

y

-axis. Let

us introdue polaroordinates

r

,

ϕ

so that

x :=

x y

, x = r sin ϕ, y = r cos ϕ.

Inthese oordinatesthe phasespaeforsystem(12) is

r ≥ 0

,

−∞ < ϕ < ∞

.

Using the notations

˜

x n = E(ω n )x n , κ n := ϕ n+1 − (ϕ n + ω n ), ∆r n := r n+1 − r n , n = 0, 1, . . .

we have

p x 2 n + y n 2 = p

˜

x 2 n + ˜ y n 2 , x n+1 = ˜ x n , y n+1 = d n y ˜ n

ϕ n+1 = ϕ 0 +

n

X

i=0

(ω i + κ i ), r n+1 = r 0 +

n

X

i=0

∆r i ,

and

∆r i ≤ 0

beause of the ontration. Therefore, the sequene

{ r n } n=0

is

monotonously dereasing.

(6)

Supposethatthestatementofthetheoremisnottrue,i.e.,

¯ r := lim n→∞ r n

> 0

. Then

− ∆r i = r i − r i+1 = q

x 2 i + y i 2 − q

x 2 i+1 + y i+1 2

= q

˜

x 2 i + ˜ y 2 i − q

˜

x 2 i + d 2 i y ˜ 2 i = (1 − d 2 i )˜ y i 2 p x ˜ 2 i + ˜ y i 2 + p

˜

x 2 i + d 2 i y ˜ 2 i

≥ (1 − d 2 i )r 2 i cos 2 (ϕ i + ω i ) 2r i ≥ ¯ r

2 (1 − d i ) cos 2 (ϕ i + ω i ).

(14)

Wewanttogetthe ontraditionthat thesum ofthe lowerestimatingterms

in(14)diverges. Theproblemisthatthesetermsontain

ϕ i

's,whihdepend

on solutions,so they are unknown; we haveto get rid of them. Obviously,

| cos(ϕ i + ω i ) | = | cos ϕ i cos ω i − sin ϕ i sin ω i |

≥ | sin ϕ i || sin ω i | − | cos ϕ i || cos ω i | .

(15)

For arbitrarily xed

0 < γ < ε < 1

, dene

µ(ε, γ) := p

1 − γ 2 − εγ

. Sine

lim ε→0,γ→0 µ(ε, γ) = 1

, we may assume that

µ(ε, γ) ≥ 1/2

. We distinguish three ases:

a)

γ| sin ω i | ≥ | cos ϕ i |

and

| cos ω i | ≥ ε.

Then

| sin ϕ i | ≥ | cos ω i |

, and

from (15) weget

| cos(ϕ i + ω i ) | ≥ | sin ω i || cos ω i | (1 − γ) ≥ | sin ω i | (1 − γ)ε.

(16)

In this ase, estimate (14) isontinued as

− ∆r i ≥ r ¯

2 (1 − d i ) cos 2 (ϕ i + ω i ) ≥ r ¯

2 (1 − γ) 2 ε 2 (1 − d i ) sin 2 ω i .

(17)

b)

γ| sin ω i | ≥ | cos ϕ i |

and

| cos ω i | < ε

. Then

| sin ϕ i | ≥ q

1 − γ 2 sin 2 ω i ≥ p

1 − γ 2 ,

(18)

and

| cos(ϕ i + ω i ) | ≥ ( p

1 − γ 2 − εγ) | sin ω i | = µ(ε, γ ) | sin ω i | ≥ 1

2 | sin ω i | .

Then

− ∆r i ≥ r ¯

2 (1 − d i ) cos 2 (ϕ i + ω i ) ≥ r ¯

8 (1 − d i ) sin 2 ω i .

(19)

(7)

)

γ| sin ω i | < | cos ϕ i |

. In this ase we an estimate

− ∆r i− 1

(instead

of

− ∆r i )

from below by

| sin ω i |

. In fat, usingalso the inequality

| cos ϕ i | = | y i |

p x 2 i + y 2 i = d i−1 | y ˜ i−1 | p x ˜ 2 i− 1 + d 2 i− 1 y ˜ i− 2 1

≤ | y ˜ i − 1 |

p x ˜ 2 i− 1 + ˜ y i− 2 1 = | cos(ϕ i−1 + ω i−1 ) | ,

(20)

from (14) weobtain

− ∆r i−1 ≥ ¯ r

2 (1 − d i−1 ) cos 2 (ϕ i−1 + ω i−1 ) ≥ r ¯

2 (1 − d i−1 ) cos 2 ϕ i

≥ ¯ r

2 γ 2 (1 − d i− 1 ) sin 2 ω i ≥ r ¯

2 γ 2 min { 1 − d i− 1 , 1 − d i } sin 2 ω i .

(21)

Setting

c := r ¯

2 min { (1 − γ) 2 ε 2 ; 1

4 ; γ 2 } > 0,

for every

i

we have

c min { 1 − d i − 1 ; 1 − d i } sin 2 ω i ≤ − ∆r i − 1 − ∆r i = r i − 1 − r i+1 .

Summarizing these inequalitieswe obtain

c

X

i=1

min { 1 − d i− 1 ; 1 − d i } sin 2 ω i ≤ r 0 − r < ¯ ∞ ,

whih ontradits assumption (13).

3 The half-linear equation

In this setion we onsider the half-linearseond orderdierentialequation

x ′′ | x | n− 1 + q(t) | x | n− 1 x = 0, n ∈ R + ,

(22)

whihwas introdued by Bihari[5℄ and Elbert [9℄. They alled it half-linear

beauseitssolutionsetishomogeneous, butitisnotadditive. Thisequation

is a generalizationof the seond order lineardierentialequation

x ′′ + q(t)x = 0

(23)

(8)

500℄, we alla non-trivialsolution

x 0 (t)

of (22) small if

t lim →∞ x 0 (t) = 0.

(24)

H. Milloux [18℄ proved, that if

q

is dierentiable, monotonously inreasing andtends toinnityas

t → ∞

,thenthe linearequation(23) hasatleastone

smallsolution. Healsoonstrutedanequationwithsuhaoeient

q

hav-

ingnotsmallsolutions,too. The famousArmellini-Tonelli-SansoneTheorem

(see, e.g., [17℄) gave a suient ondition guaranteeing that all solutions of

(23) were small. Many papers examined andsharpened theabove theorems,

even for nonlinear dierential equations or dierene equations (see, e.g.,

[15,17℄ and the referenes therein).

F. V. Atkinson and Elbert [4℄ extended the theorem of H. Milloux to

the half-lineardierentialequation(22). Anextensionof theA-T-S theorem

to (22) was given by Bihari with the following onept. A nondereasing

funtion

f : [0, ∞ ) → (0, ∞ )

with

lim t→∞ f(t) = ∞

is alled to grow in-

termittently if for every

ε > 0

there is a sequene

{ (a i , b i ) } i=0

of disjoint

intervals suh that

a i → ∞

as

i → ∞

,and

lim sup

i →∞

i

X

k=1

b k − a k

b i ≤ ε,

X

i=1

(f (a i+1 ) − f (b i )) < ∞

are satised. If suh a sequene does not exist, then

f

is alled to grow

regularly.

Theorem B (Bihari[6℄). If

q

is ontinuously dierentiable and it grows to innity regularly as

t → ∞

, then all non-trivial solutions of equation (22) are small.

Thesimplestaseoftheintermittentgrowthiswhen

q

isamonotonously inreasing step funtion. In this setion we will examine this ase, i.e., the

equation

x ′′ | x | n− 1 + q k | x | n− 1 x = 0 (t k ≤ t < t k+1 , k = 0, 1, . . .),

(25)

where

t 0 = 0, lim

k→∞ t k = ∞ , 0 < q 0 ≤ q 1 ≤ . . . ≤ q k ≤ q k+1 ≤ . . . , lim

k→∞ q k = ∞ .

(9)

equation (25)has a smallsolution. Elbert [11, 12℄proved anA-T-S theorem

for the linear (

n = 1

) ase of equation (25) as a diret appliation of his

theorem onthe asymptotistability of the trivialsolution of (1).

Theorem C (Elbert [11℄). Let

n = 1

. If

X

k=0

min

1 − q k

q k+1

, 1 − q k+1

q k+2

sin 2 ( √ q k+1 (t k+2 − t k+1 )) = ∞ ,

(26)

then allnon-trivial solutions of equation (25) are small.

Our main goal is to extend Theorem C to the ase

n > 1

of half-linear equation(25). To thisend, weneed the so-alledgeneralizedsineand osine

funtions introdued by Elbert [9℄. Consider the solution

S = S n (Φ)

of the

initialvalue problem

( S ′′ | S | n− 1 + S | S | n− 1 = 0

S(0) = 0, S (0) = 1.

(27)

Multiplying the dierential equation by

S

and integrating it over

[0, Φ]

we

obtain the relation

| S | n+1 + | S | n+1 = 1 ( −∞ < Φ < ∞ ),

(28)

whihan be onsideredas ageneralizationof the lassialidentity

cos 2 ϕ + sin 2 ϕ = 1

(the ase

n = 1

).

S

and

S

are periodi funtionswith period

2ˆ π

,

where

π ˆ

is dened as

ˆ

π = 2 n+1 π sin n+1 π ,

whih gives bak

π

in the ordinary ase

n = 1

(see [9℄). Furthermore,

S

is

odd and

S

is even. The generalized tangent funtion an be introdued as well:

T (Φ) = S(Φ) S (Φ) .

Now wean state our main theorem.

Theorem 2. Let

n > 1

. If

X

k=0

min

1 − q k

q k+1

, 1 − q k+1

q k+2

S q

1 n+1

k+1 (t k+2 − t k+1 )

!

n+1

= ∞ ,

(29)

then allnon-trivial solutions of equation (25) are small.

(10)

Proof. First, using the notation

q(t) := q k (t k ≤ t < t k+1 , k = 0, 1, 2 . . .)

we

introduea new time variable

τ = ϕ(t) = Z t

0

q(s) n+1 1 ds, τ k := ϕ(t k ).

(30)

Let

x(t) = x(ϕ 1 (τ )) =: y(τ )

, where

ϕ 1

is the inverse funtionof

ϕ

. Then

x (t) = ˙ y(τ)q n+1 1 (t), x ′′ (t) = ¨ y(τ )q n+1 2 (t) (t 6 = t k , k = 0, 1, 2, . . .),

where

( · ) · = d( · )/dτ

. Thus, equation (25) is transformed intothe form

¨

y(τ) | y(τ ˙ ) | n 1 + | y(τ) | n 1 y(τ ) = 0, (τ 6 = τ k k = 0, 1, . . .).

(31)

Sineany solution

x

ofequation(25) hastobeontinuouslydierentiableon

(0, ∞ )

,

x (t k+1 − 0) = x (t k+1 + 0) = x (t k+1 )

must hold forevery

k ∈ N

, i.e.,

˙

y(τ k+1 ) = ˙ y(τ k+1 + 0) = q k

q k+1 n+1 1

˙

y(τ k+1 − 0),

where

f (t − 0)

and

f(t + 0)

denotes the left-hand side and the right-hand

side limitofafuntion

f

at

t

, respetively. Weobtainthat(25) isequivalent to the followingdierentialequation with impulses:

¨

y(τ) | y(τ ˙ ) | n− 1 + | y(τ ) | n− 1 y(τ ) = 0, τ 6 = τ k

˙

y(τ k+1 ) = q k

q k+1

n+1 1

˙

y(τ k+1 − 0), k = 0, 1, 2, . . .

(32)

Let us introdue the generalized polar oordinates

y ˙ = ρS (Φ)

,

y = ρS(Φ)

,

where

ρ = ( | y ˙ | n+1 + | y | n+1 ) n+1 1 , T (Φ) = y

˙

y , −∞ < Φ < ∞ .

Thisistheso-alledgeneralizedPrüfertransformation. Withtheaidofthese

variableswe an rewrite equation(31) into

˙Φ = 1, ρ ˙ = 0, (τ k ≤ τ < τ k+1 , k = 0, 1, . . .).

(33)

So the dynamis of system (32) on the Minkowski plane [19℄

( ˙ y, y)

is the

following. It turns any point

( ˙ y 0 , y 0 )

around the origin on the Minkowski

(11)

irle with radius

ρ 0 := ( | y ˙ 0 | n+1 + | y 0 | n+1 ) n+1 1

on

[τ 0 , τ 1 )

, and at

τ 1

the point

( ˙ y(τ 1 − 0), y (τ 1 − 0))

jumps tothe point

( ˙ y(τ 1 ), y(τ 1 )) :=

q 0

q 1

n+1 1

˙

y(τ 1 − 0), y(τ 1 − 0)

! .

This proess is repeated onseutively for

1 , τ 2 )

,

2 , τ 3 ), . . .

. Dene

ρ k := | y(τ ˙ k ) | n+1 + | y(τ k ) | n+1 n+1 1

, Φ k := Φ(τ k ), Ω k := τ k+1 − τ k ,

∆ρ k := ρ k+1 − ρ k , κ k := Φ k+1 − (Φ k + Ω k ), k = 0, 1, . . .

Obviously,

Φ k+1 = Φ 0 +

k

X

i=0

(Ω i + κ i ), ρ k+1 = ρ 0 +

k

X

i=0

∆ρ i , k = 0, 1 . . .

Sine

∆ρ i ≤ 0

,thesequene

{ ρ k } k=0

ismonotonouslydereasing,thereforeit has alimit

ρ ¯ := lim k→∞ ρ k

. Ifthe statementof thetheorem is nottrue, then

there exists a solution

(ρ, Φ)

suh that

ρ > ¯ 0

. Let us onsider this solution

and estimate

− ∆ρ i

:

− ∆ρ i = ρ i − ρ i+1

= ( | y(τ ˙ i ) | n+1 + | y(τ i ) | n+1 ) n+1 1 − ( | y(τ ˙ i+1 ) | n+1 + | y(τ i+1 ) | n+1 ) n+1 1

= ( | y(τ ˙ i+1 − 0) | n+1 + | y(τ i+1 − 0) | n+1 ) n+1 1

− ( | y(τ ˙ i+1 ) | n+1 + | y(τ i+1 ) | n+1 ) n+1 1

= ( | y(τ ˙ i+1 − 0) | n+1 + | y(τ i+1 − 0) | n+1 ) n+1 1

− q i

q i+1 | y(τ ˙ i+1 − 0) | n+1 + | y(τ i+1 − 0) | n+1 n+1 1

= 1

n + 1 ρ n+1 i+1 + η i ρ n+1 i − ρ n+1 i+1n+1 n

×

1 − q i

q i+1

| y(τ ˙ i+1 − 0) | n+1

≥ 1

n + 1 (¯ ρ) n+1 n+1 n

1 − q i

q i+1

ρ n+1 i | S (Φ i + Ω i ) | n+1

≥ ρ ¯ n + 1

1 − q i

q i+1

| S (Φ i + Ω i ) | n+1

(34)

(12)

with some

η i ∈ (0, 1)

for all

i ∈ N 0

. Now we need to estimate

| S (φ i + Ω i ) |

from belowby either

| S(Ω i ) |

or

| S(Ω i+1 ) |

, similarlytothe proof of Theorem

1, where weused the addititonal formulae for the osine funtion. However,

to our best knowledge,the problemof nding exat additionformulaefor

S

and

S

is not ompletely solved, although there are some papers about this

topi (see, e.g., [1℄, [2℄). Therefore, to omplete the proof we need a new

method dierent from one we used in the proof of Theorem 1 after formula

(14).

Funtions

| S (Φ + Ω) |

and

| S(Ω) |

are

π ˆ

-periodi with respet to both

variables

Φ, Ω

,henewemayrestritourselvestothequadrant

[ − π/2, ˆ ˆ π/2] × [ − π/2, ˆ π/2] ˆ

on the

(Φ, Ω)

plane. Thanks to the symmetry properties of

S

and

S

,it isenough tomakethe estimate on

Q := [0, π/2] ˆ × [0, ˆ π/2]

.

At rst, letus handlethe set

Q ε := { (Φ, Ω) ∈ Q : | S (Φ) | < ε } ,

where

ε > 0

is small enough. The omplementer set of

Q ε

with respet to

Q

will be treated in another way. The same way will be used also for the

omplementer set of

Q γ := { (Φ, Ω) ∈ Q : | S (Φ) | ≤ γ | S(Ω) |} (0 < γ < 1),

so nowweonsider the set

Q γ ε := Q ε ∩ Q γ

(see the gure).

A part of the boundary of this set is a piee of the urve dened by the

equation

Γ : | S (Φ) | = γ | S(Ω) | .

We show that the tangent to

Γ

at

(ˆ π/2, 0)

is the line

Φ = ˆ π/2

, i.e.,

Φ → lim π 2 − 0 f (Φ) = −∞ ; f(Φ) := S −1 1

γ S (Φ)

,

(35)

provided

n > 1

. The statementof the theorem for the linearase

n = 1

was

proved in Theorem 1, so proving (35) we an restrit ourselves to the ase

n > 1

.

It iseasy tosee that

(S 1 ) (W ) = 1

(1 − W n+1 ) n+1 1 (0 ≤ W ≤ 1).

(13)

S ′′ (Φ) = −| S (Φ) | −n+1 | S(Φ) | n−1 S(Φ).

(36)

Therefore,

d

d

Φ f(Φ) = f (Φ) = − γ 1 (S (Φ)) −n+1 S n (Φ) 1 − γ n+1 1 (S (Φ)) n+1 n+1 1 ,

onsequently, (35) holds, independently of

γ.

(35) implies the existene of a

(14)

δ > 0

suh that

f (Φ) < − 2

(S ) −1 (ε) < π ˆ

2 − δ < Φ < π ˆ 2

,

whene we get

f (Φ) ≥ − 2

Φ − π ˆ 2

,

whihmeansthat

Γ

isloatedonthe right-handside ofthe line

Ω = − 2(Φ − ˆ

π/2)

near the point

(ˆ π/2, 0)

(see the gure). To estimate

| S (Φ i + Ω i ) |

from

belowby

| S(Ω i ) |

in(34)wehavetoestimatethequotient

| S (Φ + Ω) | / | S(Ω) |

frombelow. In

Q γ ε

wederease this quotientexhangingpoint

(Φ, Ω)

for the

horizontally orresponding point

(ˆ π/2 − Ω/2, Ω)

of the line

Φ = ˆ π/2 − Ω/2

(see the gureagain). Therefore, by the L'Hospital Rule and (36) we get

lim Φ ˆ π

2 − 0,Ω → 0+0,(Φ,Ω) ∈ Q γ ε

| S (Φ + Ω) |

| S(Ω) | ≥ lim

Ω → 0+0

− S ˆ

π

2 − 1 2 Ω + Ω S(Ω)

= lim

Ω → 0+0

− S ˆ

π

2 + 1 2

S(Ω) = lim

Ω → 0+0

− S ′′

ˆ π

2 + 1 2

1 2

S (Ω)

= lim

Ω → 0+0

S

ˆ π

2 + 2

− n+1 S

ˆ π

2 + 2

n − 1

S ˆ

π 2 + 2

2S (Ω) = ∞ .

This means that there exists a

κ > 0

suh that

| S (Φ + Ω) | ≥ κ | S(Ω) | ((Φ, Ω) ∈ Q γ ε ).

(37)

Nowwe are readyto ompleteestimate(34). Wedistinguish threeases:

A)

(Φ i , Ω i ) ∈ Q γ ε .

Then by (34) and (37) we have

− ∆ρ i ≥ ρ n + 1

1 − q i

q i+1

κ n+1 | S(Ω i ) | n+1 .

(38)

In the remaining ases we estimate

− ∆ρ i− 1 .

By the analogue of (20) it is

alwaystrue that

− ∆ρ i − 1 ≥ ρ n + 1

1 − q i − 1

q i

| S (Φ i − 1 + Ω i − 1 ) | n+1

≥ ρ n + 1

1 − q i − 1

q i

| S (Φ i ) | n+1 .

(15)

B)

(Φ i , Ω i ) ∈ Q ε \Q γ ε

. Then

| S (Φ i ) | ≥ γ | S(Ω i ) |

, and

− ∆ρ i−1 ≥ γ n+1 ρ n + 1

1 − q i − 1

q i

| S(Ω i ) | n+1 .

(39)

C)

(Φ i , Ω i ) ∈ Q \ Q ε

. Then

| S (Φ i ) | ≥ ε | S(Ω i ) |

and

− ∆ρ i− 1 ≥ ε n+1 ρ n + 1

1 − q i−1

q i

| S(Ω i ) | n+1 .

(40)

Setting

C := ρ

n + 1 min { κ n+1 ; γ n+1 ; ε n+1 } > 0,

and taking intoaount (38), (39), (40), for every

i

we have

C min

1 − q i − 1

q i

; 1 − q i

q i+1

| S(Ω i ) | n+1 ≤ ∆ρ i−1 − ∆ρ i = ρ i−1 − ρ i+1 .

Summarizing these inequalitieswe obtain

C

X

n=1

min

1 − q i − 1

q i

; 1 − q i

q i+1

| S(Ω i ) | n+1 ≤ ρ 0 − ρ < ∞ ,

whih ontradits the assumption of the theorem.

Theorem2extends Elbert'sTheorem Ctohalf-linearequationsprovided

n > 1

. It would bee interesting to nd anextension tothe ase

n < 1

,too.

Referenes

[1℄ I. Adamaszek, On generalized sine and osine funtions,Demonstratio

Math. 28(1995),263270.

[2℄ I. Adamaszek-Fidytek, On generalized sine and osine funtions, II.

Demonstratio Math.37(2004), 571578.

[3℄ R.P.Agarwal,Dierene EquationsandInequalities,Monographsand

TextbooksinPureandAppliedMathematis,vol.115,MarelDekker,

In., New York, 1992.

(16)

linear dierential equations, Pro. 6'th Colloq. Qual. Theory Dier.

Equ., No.8, Eletron. J. Qual. Theory Dier. Equ., Szeged, 2000.

[5℄ I.Bihari,Ausdehnung derSturmshenOsillationsundVergleihssätze

aufdieLösungen gewissernihtlinearenDierentialgleihungenzweiter

Ordnung, Publ. Math. Inst. Hungar. Aad. Si.,2(1957), 154165.

[6℄ I. Bihari, Asymptoti result onerning equation

x ′′ | x | n 1 + a(t)x n

.

ExtensionofatheorembyArmellini-Tonelli-Sansone,StudiaSi.Math.

Hungar. 19(1984), 151157.

[7℄ O. Do²lý, Half-linear dierential equations, Handbook of Dierential

Equations, 161357, Elsevier/North-Holland,Amsterdam, 2004.

[8℄ O.Do²lý,P.ehák, Half-linearDierentialEquations, Elsevier/North-

Holland, Amsterdam, 2005.

[9℄ Á. Elbert, A half-linear seondorder dierentialequation, Qualitative

Theory of Dierential Equations, Vol. I, II (Szeged, 1979), 153180,

Colloq.Math. So.János Bolyai,30, North-Holland,Amsterdam-New

York,1981.

[10℄ Á. Elbert, Stability of some differene equations, Advanes in Die-

rene Equations: Proeedings of the Seond International Conferene

on Dierene Equations and Appliations, Veszprém, Hungary, 7-11

August 1995,Gordon and Breah Siene Publishers, 1997, 155178.

[11℄ Á.Elbert,On asymptotistabilityof someSturm-Liouvilledierential

equations,General Seminar in Mathematis, University ofPatras,22-

23(1996/97), 5766.

[12℄ Á. Elbert,On dampingoflinearosillators,Studia Si.Math. Hungar.

38(2001), 191208.

[13℄ P. Hartman, Ordinary Dierential Equations, Birkhäuser, Boston,

1982.

[14℄ L. Hatvani, On stability properties of solutionsof seond order dier-

entialequations, Pro.6'th Colloq.Qual. Theory Dier. Equ.,No. 11,

Eletron. J. Qual. Theory Dier. Equ., Szeged,2000.

(17)

near osillatorwithaninreasing elastiityoeient,Georgian Math.

J. 14(2007),no. 2,269278.

[16℄ N.Jaobson, Letures inAbstrat Algebra,II. Linear Algebra,Springer

Verlag (New York- Heidelberg - Berlin),1953.

[17℄ J. W. Maki, Regular growth and zero tending solutions, Ordinary

Dierential Equations and Operators (Dundee, 1982), Leture Notes

in Math., vol. 1032, 358399.

[18℄ H.Milloux,Surl'equationdierentielle

x ′′ +A(t)x = 0

,PraeMat.-Fiz.,

41(1934), 3954.

[19℄ H.Rund,TheDierentialGeometryofFinslerSpaes,Springer,Berlin,

1959.

(Reeived April 2,2011)

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Keywords: Leslie-Gower predator-prey models, global stability, time delay , Lyapunov fun-.. tional, Holling's

Henderson, Positive solutions of second order boundary value problems with changing signs Carath´eodory nonlinearities, Electronic Journal of Qualitative Theory of

D ošlý , Constants in oscillation theory of higher order Sturm–Liouville differential equations, Electron.. Differerential Equations

Xu Growth of meromorphic solutions of higher-order linear differential equations , Electronic Journal of Qualitative Theory of Dif- ferential Equations., 1 (2009), 1–13..

El-Maghrabi, Stability of a monotonic solution of a non- autonomous multidimensional delay differential equation of arbitrary (fractional) order, Electronic Journal of

linear dierential equation, variational method, weighted Hardy type

Electronic Journal of Qualitative Theory of Differential Equations

Oscillatory solution; Integral averaging technique; Second order re- tarded differential equation; Half-linear equation; Emden-Fowler equation.. EJQTDE,