• Nem Talált Eredményt

Electronic Journal of Qualitative Theory of Differential Equations 2012, No. 7, 1-13; http://www.math.u-szeged.hu/ejqtde/

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Electronic Journal of Qualitative Theory of Differential Equations 2012, No. 7, 1-13; http://www.math.u-szeged.hu/ejqtde/"

Copied!
13
0
0

Teljes szövegt

(1)

Electronic Journal of Qualitative Theory of Differential Equations 2012, No. 7, 1-13; http://www.math.u-szeged.hu/ejqtde/

Observation problems posed for the Klein-Gordon equation

ANDRÁS SZIJÁRTÓ 1

, JENŽHEGED–S

(SZTE,Bolyai Institute,Szeged, Hungary)

szijartomath.u-szeged.hu, hegedusjmath.u-szeged.hu

Abstrat.Transversal vibrations

u = u(x, t)

ofa stringof length

l

withxed ends

are onsidered, where

u

is governed by the Klein-Gordonequation

u tt (x, t) = a 2 u xx (x, t) + cu(x, t), (x, t) ∈ [0, l] × R , a > 0, c < 0.

Suient onditions are obtained that guarantee the solvability of eah of four

observation problems with given state funtions

f, g

at two distint time instants

−∞ < t 1 < t 2 < ∞

. The essential onditions are the following: smoothness of

f, g

as elements of a orresponding subspae

D s+i (0, l)

(introdued in [2℄) of a Sobolev

spae

H s+i (0, l)

,where

i = 1, 2

dependingonthe typeofthe observation problem,and the representability of

t 2 − t 1

as a rational multiple of

2l

a

. The reonstrution of the unknown initialdata

(u(x, 0), u t (x, 0))

astheelementsof

D s+1 (0, l) × D s (0, l)

are given

by means of the method of Fourier expansions.

2010 AMS Subjet Classiations: Primary 35Q93, 81Q05;Seondary 35L05,

35R30,42A20

Key words: Observation problems, Klein-Gordonequation, generalizedsolutions,

method of Fourierexpansions.

1. BACKGROUND AND KNOWN RESULTS

In ontrol theory - whih is losely related to the subjet of this paper - numer-

ous monographies and artiles dealt with the aessability of a nal state (position

and speed) of osillations (in partiular string osillations) in the time interval

0 ≤ t ≤ T < ∞

; see for example, [1℄ - [10℄. Although, only the short ommunia-

tion [11℄ dealt with observability of the string osillations on the interval

0 ≤ x ≤ l

,

and ittreated just the ase whenthe observation instants

t 1

and

t 2

are small, namely

0 ≤ t 1 ≤ t 2 ≤ 2l

a

, where

a

is the speed of the wave propagation. Furthermore, it is assumed in [11℄ that the initial data are known on some subinterval

[h 1 , h 2 ] ⊂ [0, l]

.

We reonstruate the initial data in eah of the four observation problems related to

the Klein-Gordon equation for arbitrarylarge

t 1

and

t 2

. Our preassumptions are only that

(t 2 − t 1 ) a

2l

isrationaland thegiven statefuntions aresmooth enough. Theases

f, g ∈ D s

with arbitrary

s ∈ R

are also admitted.

1

Correspondingauthor

(2)

Let

Ω = {(x, t) : 0 < x < l, t ∈ R }

. Consider the problem(atrst inthe lassial

sense)ofthe vibrating

[0, l]

stringwith xedends whenthereisanelasti withdrawing fore proportional to the transversal deetion

u(x, t)

of the point

x

of the string at

theinstantdenoted by

t

.Thisphenomenon isdesribedbythe Klein-Gordonequation asfollows:

(1) u tt (x, t) = a 2 u xx (x, t) + cu(x, t), (x, t) ∈ Ω, a, c ∈ R , 0 < a, 0 > c,

with the initialonditions

(2) u(x, 0) = ϕ(x), u t (x, 0) = ψ(x), 0 ≤ x ≤ l,

and the homogeneousboundaryonditions of the rst kind

(3) u(0, t) = 0, u(l, t) = 0, t ∈ R .

We reall, that the funtion

u

is said to be a lassial solution of this problem, if

u ∈ C 2 (Ω)

and onditions

(1) − (3)

are satised.

It is wellknown that if

(4) ϕ ∈ C 2 [0, l], ψ ∈ C 1 [0, l]

and

ϕ(0) = ϕ(l) = ϕ ′′ (0) = ϕ ′′ (l) = ψ(0) = ψ(l) = 0,

then the Fourier method gives the lassial solution

u

of the problem

(1) − (3)

posed

forthe Klein-Gordonequation, whih isof the following form:

(5) u(x, t) =

X

n=1

[α n cos (tω n ) + β n sin (tω n )] sin( nπ

l x), (x, t) ∈ Ω,

where

(6) ω n =

r ( nπ

l a) 2 − c, n ∈ N ,

(7) ϕ(x) = u(x, 0) =

X

n=1

α n sin( nπ

l x) ⇒ α n = 2 l

Z l

0

ϕ(x) sin( nπ

l x)dx, n ∈ N ,

(8) ψ(x) = u t (x, 0) =

X

n=1

ω n β n sin( nπ

l x) ⇒ β n = 1 ω n

2 l

Z l

0

ψ(x) sin( nπ

l x)dx, n ∈ N .

The uniqueness of the solution isa onsequene of the lawof onservation of energy.

Tohaveawiderlass offuntionsfor

ϕ, ψ

and

f, g

,weshallonsider ertaingener-

alizedsolutionsoftheproblem

(1)−(3)

.Namely,byusingthesuggestionsofthereferee,

(3)

we introdue the spaes

D s (0, l)

,

s ∈ R

mentioned in the abstrat (see [2℄). Given an arbitrary real number

s

, on the linear span

D

of the funtions

sin l x

,

n = 1, 2, ...,

onsider the followingEulidean norm:

X

n=1

c n sin( nπ l x)

s

:=

X

n=1

n 2s |c n | 2

! 1 2 .

Completing

D

withrespettothisnorm,weobtainaHilbertspae

D s

.Oneanreadily

verify that for

s ≥ 0

,

D s

is a losedsubspae of the Sobolevspae

H s (0, l)

, namely

D s = {u ∈ H s (0, l) : u (2i) (0) = u (2i) (l) = 0, i = 0, 1, ..., [(s − 1)/2]}.

If we identify

D 0 = L 2 (0, l)

with its dual, then

D −s

is the dual spae of

D s

. Some

of the results of [2℄ (see Setion 1.1-1.3) and [10℄ say that for arbitrary

s ∈ R

with

(ϕ, ψ) ∈ D s+1 × D s

the generalized mixed problem

(1) − (3)

has a unique solution

u

satisfying

u ∈ C( R , D s+1 ) ∩ C 1 ( R , D s ) ∩ C 2 ( R , D s−1 )

givenbytheFourierseries

(5)

withoeients

α n , β n

denedby

(7)

and

(8)

.Hereand

belowallFourierexpansions for

ϕ, ψ, f

,

g

and

u

are understood inthe spaes

D s (0, l)

.

2. NEW RESULTS

Denition 1. The observation problem posed for the Klein-Gordon equation is the

following. The initial funtions

ϕ

,

ψ

are unknown, but suh funtions

f(x)

and

g(x)

are given for whih one of the followingfour onditions holds:

(9) u(x, t 1 ) = f(x), u(x, t 2 ) = g(x), 0 ≤ x ≤ l;

(10) u t (x, t 1 ) = f (x), u(x, t 2 ) = g(x), 0 ≤ x ≤ l;

(11) u(x, t 1 ) = f (x), u t (x, t 2 ) = g(x), 0 ≤ x ≤ l;

(12) u t (x, t 1 ) = f(x), u t (x, t 2 ) = g(x), 0 ≤ x ≤ l.

Here

u

is the solution of the generalized problem

(1) − (3)

, and the given funtions

f, g

are said to be the partial state of the string at distint time instants

t 1

and

t 2

,

−∞ < t 1 < t 2 < ∞

. Now the problem is to nd the initialfuntions

ϕ

,

ψ

interms of

f(x)

,

g (x)

.

(4)

(13) f ∈ D s+2 , g ∈ D s+2 , where s ∈ R ,

(14) t 2 − t 1 = p

q 2l

a ,

where

p, q

are positive integers and they are relative primes. Inaddition, suppose that

(15) sin

(t 2 − t 1 ) r

( nπ

l a) 2 − c

6= 0, ∀n ∈ N .

Then the observation problem

(1) − (3)

under ondition

(9)

has a unique solution for

(ϕ, ψ) ∈ D s+1 × D s

. They are represented by their Fourier expansions in the proof below.

Theorem 2. Suppose that

(16) f ∈ D s+1 , g ∈ D s+2 , where s ∈ R ,

ondition

(14)

holds and

(17) cos

(t 2 − t 1 ) r

( nπ

l a) 2 − c

6= 0, ∀n ∈ N .

Thenthe observation problem

(1) − (3)

underondition

(10)

has a unique solution for

(ϕ, ψ) ∈ D s+1 × D s

. They are represented by their Fourier expansions in the proof below.

Theorem 3. Suppose that

(18) f ∈ D s+2 , g ∈ D s+1 , where s ∈ R ,

and onditions

(14)

and

(17)

hold. Thenthe observation problem

(1) − (3)

under on-

dition

(11)

has a uniquesolution for

(ϕ, ψ) ∈ D s+1 × D s

. They are represented bytheir Fourier expansionsin the proof below.

Theorem 4. Suppose that

(19) f ∈ D s+1 , g ∈ D s+1 , where s ∈ R ,

and onditions

(14)

and

(15)

hold. Thenthe observation problem

(1) − (3)

under on-

dition

(12)

has a uniquesolution for

(ϕ, ψ) ∈ D s+1 × D s

. They are represented bytheir Fourier expansionsin the proof below.

(5)

Lemma 1. If ondition

(14)

holds, then there exist

N ∈ N

and

m ∈ R

suh that

1

|sin(ω n (t 2 − t 1 ))| < n

m , ∀n > N.

Proof. First,we deal with the denominator of the left-hand side of the inequality

(20) sin(ω n (t 2 − t 1 )) = sin

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) h

ω n − nπ l a i

=

= sin

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) ω n 2 − ( l a) 2 ω n + l a

= sin

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

.

It follows from the ondition

(14)

that

(t 2 − t 1 ) nπ

l a = p q 2nπ,

and that ittakeson atmost

q

dierent values

(

mod

2π)

as

n

varies. Let

z n := (t 2 − t 1 ) nπ

l a

and

d 1 := min

n, sin z n 6=0 {|sin (z n )|}.

Dueto the absolutevalue bars, there isa real number

d 2

suh that

sin(d 2 ) = d 1 , 0 < d 2 ≤ π 2 .

It iseasy tosee, that

(t 2 − t 1 ) −c

ω n + l a = O( 1

n )

as

n → ∞.

Therefore, there existonstants

N ∈ N

,

m ∈ R +

suh that

(21) πm

2n <

(t 2 − t 1 ) −c ω n + l a

< d 2

2

and

m

n < sin d 2

2

, ∀n > N.

So, if

sin

(t 2 − t 1 ) nπ l a

6= 0

, then

sin

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

>

sin

d 2 − d 2 2

= sin d 2

2

> m n ,

whenever

n > N

,by virtue of

(21)

.

On the other hand, if

sin

(t 2 − t 1 ) nπ l a

= 0

, then

sin

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

=

sin

(t 2 − t 1 ) −c ω n + l a

>

> 2 π

(t 2 − t 1 ) −c ω n + l a

> m

n , ∀n > N,

(6)

due to

(21)

and the inequality

(22) |sin t| > 2

π |t| ,

if

0 < |t| < π 2 .

Combining the two ases just above, weget that

sin

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

> m

n , ∀n > N.

Lemma 2. If ondition

(14)

holds, then there exist

N ∈ N

and

m ∈ R

suh that

1

|cos(ω n (t 2 − t 1 ))| < n

m , ∀n > N.

Proof. Similarlyto

(20)

inthe proof of Lemma 1,now we obtainthat

cos(ω n (t 2 − t 1 )) = cos

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

.

Let

z n := (t 2 − t 1 ) nπ

l a

and

d 1 := min

n, cos z n 6=0 {|cos z n |}.

Dueto the absolutevalue bars, there isa real number

d 2

suh that

cos(d 2 ) = d 1 , 0 ≤ d 2 < π 2 .

Similarly to

(21)

in the proof of Lemma 1, there exist onstants

N ∈ N

and

m ∈ R +

suh that

(23) πm 2n <

(t 2 − t 1 ) −c ω n + l a

<

π 2 − d 2

2

and

m n < cos

π 2 + d 2

2

, ∀n > N.

In this manner, if

cos

(t 2 − t 1 ) nπ l a

6= 0

, we obtainagain that

cos

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

>

cos

d 2 +

π 2 − d 2

2

= cos π

2 + d 2

2

> m n ,

whenever

n > N

,by virtue of

(23)

.

On the other hand, inthe ase when

cos

(t 2 − t 1 ) nπ l a

= 0

, we get

cos

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

=

sin

t 2 − t 1 ) −c ω n + l a

>

> 2 π

(t 2 − t 1 ) −c ω n + l a

> m

n , ∀n > N,

due to

(22)

and

(23)

.

(7)

cos

(t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c ω n + l a

> m

n , ∀n > N.

4.PROOFSOF THE THEOREMS

1 − 4

Proof of Theorem1. Sineanyofthesolutions

u

ofproblem

(1)−(3)

hasrepresentation

(5)

with some oeients

α n , β n ; n ∈ N

, the observation problem an be redued to the problemof the appropriatehoies of

α n

and

β n

suhthat

(9)

is satised. Forthis

reason,we substitute

t 1

and

t 2

into

(5)

, and use the two onditionsin

(9)

. Asa result,

weget the followingneessary onditions for

α n , β n

:

(24) f(x) = u(x, t 1 ) =

X

n=1

[α n cos(ω n t 1 ) + β n sin(ω n t 1 )] sin( nπ

l x), x ∈ [0, l],

(25) g (x) = u(x, t 2 ) =

X

n=1

[α n cos(ω n t 2 ) + β n sin(ω n t 2 )] sin( nπ

l x), x ∈ [0, l],

where

ω n

isdened in

(6)

.

The assumption

(13)

guarantees that the oeients of the sine Fourier expansions of

the funtions

f(x), g(x)

are unambiguously determined and omparing these Fourier series with

(24)

and

(25)

, for

α n , β n

we get the followingonditions:

(26)

α n cos(ω n t 1 ) + β n sin(ω n t 1 ) = 2 l

Z l

0

f(x) sin( nπ

l x)dx, n ∈ N , α n cos(ω n t 2 ) + β n sin(ω n t 2 ) = 2

l Z l

0

g(x) sin( nπ

l x)dx, n ∈ N .

The linearsystem

(26)

an be uniquely solved forthe unknown oeients

α n

and

β n

due toassumption

(15)

:

(27)

α n = sin(ω n t 2 ) 2 l R l

0 f (x) sin( l x)dx − sin(ω n t 1 ) 2 l R l

0 g(x) sin( l x)dx

sin(ω n (t 2 − t 1 )) ,

β n = − cos(ω n t 2 ) 2 l R l

0 f (x) sin( l x)dx + cos(ω n t 1 ) 2 l R l

0 g(x) sin( l x)dx

sin(ω n (t 2 − t 1 )) .

So the unknown initial funtions

ϕ

and

ψ

are uniquely determined and found in the

form of

(7)

and

(8)

. It remains to show that

ϕ, ψ

are from the lasses

D s+1 , D s

,

respetively, i.e. toshow that the followinginequality holds:

(28) max{kϕk 2 s+1 , kψk 2 s } < ∞.

(8)

D n := 2 l

Z l

0

f (x) sin( nπ l x)dx, E n := 2

l Z l

0

g(x) sin( nπ l x)dx.

Sine

(f, g) ∈ D s+2 × D s+2

, we havethe following inequality:

(29)

X

n=1

n 2s+4 max{|D n | 2 , |E n | 2 } < ∞.

Byusing Lemma 1,for every

n > N

we get

|α n | =

sin(ω n t 2 )D n − sin(ω n t 1 )E n

sin(ω n (t 2 − t 1 ))

<

n m D n

+

n m E n

,

|β n | =

− cos(ω n t 2 )D n + cos(ω n t 1 )E n

sin(ω n (t 2 − t 1 ))

<

n m D n

+

n m E n

,

whih meansthat

(30) max{|α n |, |β n |} < c 1 n max{|D n |, |E n |} n ∈ N ,

with asuitable onstant

c 1

.

Let

M ≥ 1

be aonstant suh that

ω n < Mn, ∀n ∈ N

. Combining

(29)

,

(30)

and the

denition of the norm

k.k s

we get the desired inequality

(28)

:

max{kϕk 2 s+1 , kψk 2 s } = max{

X

n=1

n 2s+2 |α n | 2 ,

X

n=1

n 2s |ω n β n | 2 } ≤

X

n=1

M 2 n 2s+2 max{|α n | 2 , |β n | 2 } < c 2 1 M 2

X

n=1

n 2s+4 max{|D n | 2 , |E n | 2 } < ∞.

Remark 1. In the lassial ase when the given state funtions are ontinuously dif-

ferentiable, aording to Theorem 1, the initialfuntions are also ontinuously dier-

entiable.More preisely, if

u(x, t 1 ) = f (x) ∈ C 4 [0, l], u(x, t 2 ) = g(x) ∈ C 4 [0, l], f, g| 0,l = f ′′ , g ′′ | 0,l = 0,

then

f, g ∈ D 4

and the observation problemhas a unique lassialsolution

u(x, 0) = ϕ(x) ∈ D 3 ⊂ C 2 , u t (x, 0) = ψ(x) ∈ D 2 ⊂ C 1 .

(9)

Remark2. Takingintoaount

(20)

,ondition

(15)

anbewrittenintothefollowing

form:

(31) sin ((t 2 − t 1 )ω n ) = sin (t 2 − t 1 ) nπ

l a + (t 2 − t 1 ) −c

p ( l a) 2 − c + l a

! 6= 0

forall

n ∈ N

.AnalysingtheproofofLemma1,itiseasytoseethattheaboveondition isertainly satisedfor all

n

large enough, say

n > N

.

Ifwe want toget aneasily veriableondition insteadof

(15)

, whih is not neessary

then

(32) (t 2 − t 1 ) −c

p ( π l a) 2 − c + π l a < π q

is suh a suient ondition. We justify this laim as follows. The rst term in the

argument of the sine funtion in

(31)

is either

0 (

mod

2π)

, or its distane is at least

π

q

fromitszeroes, and the seond term inthe argument of the sine funtionin

(31)

is

positiveandmonotone dereasingfuntionof

n

.So, ifweassumethat theseond term

isalready smaller than

π

q

for

n = 1

, whihis atually the ase in

(32)

,then ondition

(31)

issatised for eah

n ≥ 1

.

Nevertheless, wean see fromthis simplerondition

(32)

,thatifthe parameters

|c|

and

a

inequation

(1)

aresuhthateither

c

issmallor

a

isgreatenough, thenondition

(31)

is always satised. Similar observations an be made in the following Theorems

2 − 4

.

Proof of Theorem 2. In an analogous way asin the proof of Theorem 1, nowwestart

with the following equalities:

f (x) = u t (x, t 1 ) =

X

n=1

[−α n ω n sin(ω n t 1 ) + β n ω n cos(ω n t 1 )] sin( nπ

l x), x ∈ [0, l],

g(x) = u(x, t 2 ) =

X

n=1

[α n cos(ω n t 2 ) + β n sin(ω n t 2 )] sin( nπ

l x), x ∈ [0, l].

Hene we get the followingneessary onditions for the oeients

α n

,

β n

:

−α n ω n sin(ω n t 1 ) + β n ω n cos(ω n t 1 ) = 2 l

Z l

0

f (x) sin( nπ

l x)dx, n ∈ N , α n cos(ω n t 2 ) + β n sin(ω n t 2 ) = 2

l Z l

0

g(x) sin( nπ

l x)dx, n ∈ N .

Thelinear equations justreeived an beuniquely solved for the unknown oeients

α n

and

β n

,due to assumption

(17)

:

(10)

α n = − sin(ω n t 2 ) 2 l R l

0 f (x) sin( l x)dx + cos(ω n t 1 )ω n 2 l

R l

0 g(x) sin( l x)dx

ω n cos(ω n (t 2 − t 1 )) ,

β n = cos(ω n t 2 ) 2 l R l

0 f (x) sin( l x)dx + sin(ω n t 1 )ω n 2 l

R l

0 g(x) sin( l x)dx ω n cos(ω n (t 2 − t 1 )) .

So the unknown initial funtions

ϕ

and

ψ

are uniquely determined and found in the

form of

(7)

and

(8)

. It remains to show that

ϕ, ψ

are from the lasses

D s+1 , D s

,

respetively. To this eet, it isenough toshow that

(28)

holds.

Again, let

D n := 2 l

Z l

0

f (x) sin( nπ l x)dx, E n := 2

l Z l

0

g(x) sin( nπ l x)dx.

Sine

(f, g) ∈ D s+1 × D s+2

, we havethat the inequality

(29 )

holds:

(29 )

X

n=1

n 2s+4 max{| 1

n D n | 2 , |E n | 2 } < ∞.

Byusing Lemma 2,for every

n > N

we have

|α n | =

− sin(ω n t 2 )D n + cos(ω n t 1 )ω n E n

ω n cos(ω n (t 2 − t 1 ))

<

1 ω n

n m D n

+

n m E n

,

|β n | =

cos(ω n t 2 )D n + sin(ω n t 1 )ω n E n

ω n cos(ω n (t 2 − t 1 ))

<

1 ω n

n m D n

+

n m E n

,

whih meansthat

(30 ) max{|α n |, |β n |} < c 2 n max{| 1

n D n |, |E n |} n ∈ N ,

with asuitable onstant

c 2

.

Combining

(29 )

,

(30 )

andthedenition ofthenorm

k.k s

wegetthedesiredinequality

(28)

:

max{kϕk 2 s+1 , kψk 2 s } = max{

X

n=1

n 2s+2 |α n | 2 ,

X

n=1

n 2s |ω n β n | 2 } ≤

X

n=1

M 2 n 2s+2 max{|α n | 2 , |β n | 2 } < c 2 2 M 2

X

n=1

n 2s+4 max{| 1

n D n | 2 , |E n | 2 } < ∞.

Proof of Theorem3. Thisproofgoesalongthesamelines asthatofTheorem2,exept

that here wehave tointerhange the roles of the oeients

α n

and

β n

.

(11)

f (x) = u t (x, t 1 ) =

X

n=1

[−α n ω n sin(ω n t 1 ) + β n ω n cos(ω n t 1 )] sin( nπ

l x), x ∈ [0, l], g(x) = u t (x, t 2 ) =

X

n=1

[−α n ω n sin(ω n t 2 ) + β n ω n cos(ω n t 2 )] sin( nπ

l x), x ∈ [0, l],

whene the neessary onditions for the oeients

α n

,

β n

are the following:

−α n ω n sin(ω n t 1 ) + β n ω n cos(ω n t 1 ) = 2 l

Z l

0

f (x) sin( nπ

l x)dx, n ∈ N ,

−α n ω n sin(ω n t 2 ) + β n ω n cos(ω n t 2 ) = 2 l

Z l

0

g(x) sin( nπ

l x)dx, n ∈ N .

Thelinear equations justreeived an beuniquely solved for the unknown oeients

α n

and

β n

,due to assumption

(15)

:

α n = cos(ω n t 2 ) 2 l R l

0 f(x) sin( l x)dx − cos(ω n t 1 ) 2 l R l

0 g(x) sin( l x)dx ω n sin(ω n (t 2 − t 1 )) , β n = sin(ω n t 2 ) 2 l R l

0 f(x) sin( l x)dx − sin(ω n t 1 ) 2 l R l

0 g(x) sin( l x)dx ω n sin(ω n (t 2 − t 1 )) .

So the unknown initial funtions

ϕ

and

ψ

are uniquely determined and found in the

form of

(7)

and

(8)

. It remains to show that

ϕ, ψ

are from the lasses

D s+1 , D s

,

respetively. To this eet, it isenough toshow that

(28)

holds.

Again, let

D n := 2 l

Z l

0

f (x) sin( nπ l x)dx, E n := 2

l Z l

0

g(x) sin( nπ l x)dx.

Sine

(f, g) ∈ D s+1 × D s+1

, we havethat the inequality

(29 ′′ )

holds:

(29 ′′ )

X

n=1

n 2s+2 max{|D n | 2 , |E n | 2 } < ∞.

Byusing Lemma 1,for every

n > N

we get

|α n | =

cos(ω n t 2 )D n − cos(ω n t 1 )E n

ω n sin(ω n (t 2 − t 1 ))

<

1 ω n

n m D n

+

1 ω n

n m E n

,

|β n | =

sin(ω n t 2 )D n − sin(ω n t 1 )E n

ω n sin(ω n (t 2 − t 1 ))

<

1 ω n

n m D n

+

1 ω n

n m E n

,

whih meansthat

(30 ′′ ) max{|α n |, |β n |} < c 4 max{|D n |, |E n |} n ∈ N ,

(12)

with asuitable onstant

c 4

.

Combining

(29 ′′ )

,

(30 ′′ )

andthedenitionofthenorm

k.k s

wegetthedesiredinequality

(28)

:

max{kϕk 2 s+1 , kψk 2 s } = max{

X

n=1

n 2s+2 |α n | 2 ,

X

n=1

n 2s |ω n β n | 2 } ≤

X

n=1

M 2 n 2s+2 max{|α n | 2 , |β n | 2 } < c 2 4 M 2

X

n=1

n 2s+2 max{|D n | 2 , |E n | 2 } < ∞.

ACKNOWLEDGEMENTS

We would like to sinerely thank Professor Feren Móriz for his enouragement

andonstanthelponapreviousdraft.Wealsothanktheanonymousreferee forareful

reading of the previous draft and his/her suggestions whih resulted in the present

version of this paper.

REFERENCES

[1℄ Lions,J.L.,Contrleoptimaldesystemes gouvernéspar deséquationsauxdérivées

partielles (Étudesmathématiques), Paris: Dunod,1968.

[2℄ Komornik,V., Exat ontrollability andstabilization. The multiplier method., Re-

searh inApplied Mathematis 36. Chihester: Wiley. Paris: Masson, 1994.

[3℄ Komornik,V.,Exat ontrollability in shorttimefor thewaveequation,Ann. Inst.

Henri Poinaré, Anal.Non Linéaire6, No.2, pp. 153-164,1989.

[4℄ Joó, I., On the vibration of a string., Studia Si. Math. Hungar 22, No. 1-4, pp.

1-9, 1987.

[5℄ Horváth,M.,Vibrating stringswith freeends,Ata Math.Hungar51,No.1-2,pp.

171-180,1988.

[6℄ Il'in, V.A., Boundary ontrol of the vibration proess at two ends, Dokl. Aad.

Nauk369, No.5, pp. 592-596,1999.

[7℄ Moiseev,E.I.,Kholomeeva,A.A.,Optimalboundarydisplaementontrolofstring

vibrations with nonloal oddness ondition of therst kind,DierentialEquations

46,No. 11,pp. 1624-1630, 2010.

(13)

UspekhiMat. Nauk 60,No. 6,pp. 89-114, 2005.

[9℄ Lions, J.L., Exat ontrollability, stabilization and perturbations for distributed

systems, SIAM Rev. 30,No. 1,pp. 1-68, 1988.

[10℄ Lions, J.L., Magenes, E., Probl

`

emes aux limites non homog

`

enes et appliations I-III,Dunod,Paris, 1968-1970.

[11℄ Znamenskaya,L.N.,Stateobservability ofelastistringvibrationsunderthebound-

aryonditionsof therstkind,DierentialEquations46,No.5,pp.748-752,2010.

(Reeived Marh30, 2011)

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Elbert, A half-linear seond order dierential equation, Qualitative. Theory of Dierential

[16] Chengjun Yuan, Multiple positive solutions for (n-1, 1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations, Electronic Journal

The study of oscillation theory for various equations like ordinary and partial differential equations, difference equation, dynamics equation on time scales and fractional

Sofonea; Analysis of Two Dynamic Frictionless Contact Problems for Elastic-Visco-Plastic Materials, Electronic Journal of Differential Equations, Vol.. Boutechebak; Analysis of

Xu Growth of meromorphic solutions of higher-order linear differential equations , Electronic Journal of Qualitative Theory of Dif- ferential Equations., 1 (2009), 1–13..

El-Maghrabi, Stability of a monotonic solution of a non- autonomous multidimensional delay differential equation of arbitrary (fractional) order, Electronic Journal of

linear dierential equation, variational method, weighted Hardy type

Electronic Journal of Qualitative Theory of Differential Equations