• Nem Talált Eredményt

Additionally, for some particular cases we study their relationship witht- successive associated Stirling numbers and theirq-analogue

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Additionally, for some particular cases we study their relationship witht- successive associated Stirling numbers and theirq-analogue"

Copied!
16
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 20 (2019), No. 1, pp. 99–114 DOI: 10.18514/MMN.2019.2536

THE GENERALIZED t-COMTET NUMBERS AND SOME COMBINATORIAL APPLICATIONS

HAC `ENE BELBACHIR, CAROLINA FORERO, AND JOS ´E L. RAM´IREZ Received 22 February, 2018

Abstract. In the present article we use a combinatorial approach to generalize the Comtet num- bers. In particular, we establish some combinatorial identities, recurrence relations and gen- erating functions. Additionally, for some particular cases we study their relationship witht- successive associated Stirling numbers and theirq-analogue.

2010Mathematics Subject Classification: 11B83; 11B73; 05A15; 05A19

Keywords: Stirling numbers of the second kind,t-successive associated Stirling numbers, Comtet numbers, combinatorial identities

1. INTRODUCTION

It is well-known that the Stirling numbers of the second kind˚n

k count the number of partitions of a set withnelements intoknon-empty blocks. This sequence satisfies the recurrence relation

(n k )

Dk (n 1

k )

C (n 1

k 1 )

; with the initial conditions˚0

0 D1and˚n

00

n D0.

The Stirling numbers˚n

k can be generalized to theassociated Stirling numbers of the second kind ˚n

k m (cf. [1,4,7,8,10,11,18,20])) by means of a restriction on the size of the blocks. In particular, this sequence gives the number of partitions ofnelements intokblocks, such that each block contains at leastmelements. It is clear that˚n

k 1n

k . This combinatorial sequence has been applied to the study of some special polynomials such as generalized Bernoulli and Cauchy polynomials, (see, e.g., [12–16]).

Recently, Belbachir and Tebtoub [2] considered a variation for the associated Stirl- ing numbers. They introduced the2-successive associated Stirling numbers of the second kind˚n

k

Œ2. This new sequence counts the number of partitions ofnelements

The research of Jos´e L. Ram´ırez was partially supported by Universidad Nacional de Colombia, Project No. 37805.

c 2019 Miskolc University Press

(2)

intokblocks, with the additional condition that each block contains at least two con- secutive elements. Moreover, the last elementn must either form a block with its predecessor or belong to another block satisfying the previous conditions. In [2], the authors derived the recurrence

(n k

)Œ2

Dk (n 1

k )Œ2

C (n 2

k 1 )Œ2

; n2k;

with the initial conditions˚0 0

Œ2D1,˚ n n 1

Œ2D0and˚n

0 D0forn1.

Inspired by these results, in this paper we aim to investigate the sequence faŒt .n; k/gn;k0, defined by the recurrence relation

aŒt .n; k/DukaŒt .n 1; k/CaŒt .n t; k 1/; nt k; (1.1) with the initial conditionsaŒt .0; 0/D1; aŒt .n; n `/D0for`D1; 2; : : : ; t 1and aŒt .n; 0/D0, forn1. Moreover,fungis a sequence of real numbers.

We will call the sequence faŒt .n; k/gn;k0 the generalized t-Comtet numbers.

The reason for this name is that fortD1we recover the Comtet numbers (see, e.g., [9,21]). Note that if uk Dk, then aŒt .n; k/D˚n

k

Œt . This sequence is called by Belbachir and Tebtoub [3] as the t-successive associated Stirling numbers. IftD2 anduk Dk, thenaŒ2.n; k/D˚n

k

Œ2. IftD1anduk Dk, thenaŒ1.n; k/D˚n k . In this paper our goal is to give the recurrence relation, the generating function and some combinatorial identities. For some particular cases, we give combinatorial interpretations.

2. BASIC PROPERTIES

From the recurrence relation (1.1) we obtain the following generating function.

Theorem 1. Fork1, AŒt k .x/WD X

nt k

aŒt .n; k/xnD xt k

.1 u0x/.1 u1x/.1 u2x/ .1 ukx/; (2.1) withAŒt 0 .x/D1 u10x.

Proof. Multiplying both sides of (1.1) byxnand summing overnt k, we have AŒt k .x/Duk X

nt k

aŒt .n 1; k/xnC X

nt k

aŒt .n t; k 1/xn Dukx X

nt k

aŒt .n; k/xnC X

nt k t

aŒt .n; k 1/xnCt DukxAŒt k .x/CxtAŒt k 1.x/:

(3)

THE GENERALIZED -COMTET NUMBERS 101

Then

AŒt k .x/DxtAŒt k 1.x/

1 ukx :

Iterating this last recurrence, we obtain (2.1).

From the above relation, we have the following combinatorial expression.

Corollary 1. The generalizedt-Comtet numbers are given by the explicit identity aŒt .n; k/D X

i1Ci2CCikDn t k

ui11ui22 uikk; (2.2) fornt k.

Theorem 2. The generalizedt-Comtet numbers satisfy the following recurrence relation

aŒt .n; k/D

n t k

X

iD0

uikaŒt .n i t; k 1/: (2.3) Proof. Fornt k;

a.n; k/ Duka.n 1; k/ Ca.n t; k 1/;

uka.n 1; k/ Du2ka.n 2; k/ Cuka.n 1 t; k 1/;

u2ka.n 2; k/ Du3ka.n 3; k/ Cu2ka.n 2 t; k 1/;

::: ::: ::: ::: :::

un t k 1k a.t kC1; k/Dun t kk a.t k; k/ Cun t k 1k a.t kC1 t; k 1/;

un t kk a.t k; k/ Dun t kk C1a.t k 1; k/Cun t kk a.t .k 1/; k 1/;

by summing, we get the result.

Theorem 3. We have the following rational explicit formula

aŒt .nCt k; k/D

k

X

jD0

ujkCn Q

i¤j.uj ui/; (2.4) which is independent fromt.

Proof. We have

AŒt k .x/D X

nt k

aŒt .n; k/xnDxt kX

n0

aŒt .nCt k; k/xn;

(4)

then

X

n0

aŒt .nCt k; k/xnD 1

.1 u0x/.1 u1x/ .1 ukx/

D

k

X

jD0

˛j

1 ujx D

k

X

jD0

ujk Q

i¤j.uj ui/ X

n0

ujnxn

DX

n0

0

@

k

X

jD0

ujkCn Q

i¤j.uj ui/ 1 Axn;

which gives the result.

Corollary 2. The dual expression depending ont aŒt .n; k/D

k

X

jD0

ujnCk.t 1/

Q

i¤j.uj ui/: (2.5)

2.1. Exponential generating function for the t-Comtet numbers

Let u1; : : : ; uk be a sequence of complex numbers and let .Am/mD1;:::;n be the sequence of matrices such thatAmismm-matrix

AmD 2 6 6 6 4

uk m uk mC1 uk 1

uk mC1 uk

::: : :: : :: 0

uk 1 uk 0 0

3 7 7 7 5

;

with the convention thatu<0D0.

Consider also

j D. 1/j X

1k1<k2<<kjk

uk1 ukj;

(the alternate sequence of elementary symmetric function associated tou1; u2; : : : ; uk).

We have.p u1/.p u2/ .p uk/DpkC1pk 1C2pk 2C Ck. Now we can state the following lemma which will be used to establish the main result of this subsection.

Lemma 1. We have the following decomposition 1

pn.p u1/ .p uk/ D

n

X

iD0

˛n i

pi C

k

X

jD1

ˇj

p uj

; (2.6)

(5)

THE GENERALIZED -COMTET NUMBERS 103

with˛iD. 1/b.iC1/=2c

kiC1 det.Ai/,˛0D1=k, andˇj D 1 ujn

k

Y

iD1 i¤j

.uj ui/ .

Proof. We leave the proof to the reader.

LetCkŒt .x/WD X

nt k

aŒt .n; k/xn

nŠ, withC0Œt .x/D1. We have

@t

@xtCkŒt .x/D X

nt .k 1/

aŒt .nCt; k/xn nŠ; which gives using relation (1.1),

@t

@xtCkŒt .x/Duk @t 1

@xt 1CkŒt .x/CCk 1Œt  .x/: (2.7) To solve the linear recurrence differential equation we use Laplace transform. Using the fact that

CkŒt .0/D @

@xCkŒt .y/

ˇ ˇ ˇ ˇy

D0

D D @t 1

@xt 1CkŒt .y/

ˇ ˇ ˇ ˇy

D0

D0;

we get

k

Y

iD1

.pt uipt 1/L.CkŒt .y//DL.Ck 1Œt  /;

whereL.CkŒt .y//D Z 1

0

CkŒt epy@y:

Thus by recursion, we get p.t 1/k

k

Y

iD1

.p ui/L.CkŒt .y//DL.C0Œt .y//DL.u.y//;

whereu.t /is the Heaviside function. Using Lemma1, we have L.CkŒt .y///DL.u.y//

2 4

.t 1/k

X

iD0

˛i

pi C

k

X

jD1

ˇj

p uj

3 5: The inverse Laplace transform gives,

CkŒt .y/D

.t 1/k

X

iD1

˛i

yi 1 .i 1/ŠC

k

X

jD1

ˇjeujy: (2.8)

(6)

Theorem 4. The exponential generating function oft-Comtet numbers is given by X

nt k

aŒt .n; k/xn nŠ D

.t 1/k

X

iD1

˛i

xi 1 .i 1/ŠC

k

X

jD1

ˇjeujx: (2.9) 3. THE2-SUCCESSIVE ASSOCIATEDr-WHITNEY NUMBERS

In this section, we study the particular caseukDkmCr. Letn; r0be integers.

Let˘r.n; k/denote the set of partitions of the setŒnCrWD f1; : : : ; n; nC1; : : : ; nC rgintokCrblocks, such that, the firstrelements are in distinct blocks. The elements f1; 2; : : : ; rgwill be called special elements. A block of a partition of the above set is called special if it contains special element. The cardinality of ˘r.n; k/ is the r-Stirling numbers of the second kind [5].

The 2-successive associated r-Whitney numbers of the second kind, denoted Wm;rŒ2.n; k/, count the number of partitions in˘r.n; k/, such that:

theknon-special blocks contain at least two consecutive numbers,

all the elements but the last one and its predecessor in non-special blocks are coloured with one ofmcolours independently,

the elements in the special blocks are not coloured,

the last elementnCrmust either form a block with its predecessor or belong to another block (special or not-special) satisfying the previous conditions.

We denote by˘r;mŒ2.n; k/the set of partitions in˘r.n; k/that satisfying the previous conditions. It is clear that ifrD0andmD1, thenW1;0Œ2.n; k/D˚n

k

Œ2, (see [2]).

For example,W2;3Œ2.5; 2/D15with the partitions being (themD2different colours of the elements will be fixed asredandblue, and therD3special elements are1; 2 and3):

˚f1g;f2g;f3g;f4; 5; 6g;f7; 8g ; ˚

f1g;f2g;f3g;f4; 5; 6g;f7; 8g ;

˚f1; 6g;f2g;f3g;f4; 5g;f7; 8g ; ˚

f1g;f2; 6g;f3g;f4; 5g;f7; 8g ;

˚f1g;f2g;f3; 6g;f4; 5g;f7; 8g ; ˚

f1; 4g;f2g;f3g;f5; 6g;f7; 8g ;

˚f1g;f2; 4g;f3g;f5; 6g;f7; 8g ; ˚

f1g;f2g;f3; 4g;f5; 6g;f7; 8g ;

˚f1; 8g;f2g;f3g;f4; 5g;f6; 7g ; ˚

f1g;f2; 8g;f3g;f4; 5g;f6; 7g ;

˚f1g;f2g;f3; 8g;f4; 5g;f6; 7g ; ˚

f1g;f2g;f3g;f4; 5; 8g;f6; 7g ;

˚f1g;f2g;f3g;f4; 5; 8g;f6; 7g ; ˚

f1g;f2g;f3g;f4; 5g;f6; 7; 8g ;

˚f1g;f2g;f3g;f4; 5g;f6; 7; 8g : Theorem 5. Forn2k, we have

Wm;rŒ2.n; k/D.kmCr/Wm;rŒ2.n 1; k/CWm;rŒ2.n 2; k 1/: (3.1)

(7)

THE GENERALIZED -COMTET NUMBERS 105

Proof. For any set partition of ˘r;mŒ2.n; k/, there are three options: either nCr form a block with its predecessor.nCr 1/, ornCr is in a special block ornCr is in a non-special block. In the first case, there areWm;rŒ2.n 2; k 1/possibilities.

In the second case, the elementnCr can be place into one of ther special blocks and the remaining elements can be chosen inWm;rŒ2.n 1; k/. Altogether, we have rWm;rŒ2.n 1; k/possibilities. For the third case, we can follow a similar argument,

then we obtainkmWm;rŒ2.n 1; k/possibilities.

A comparison of (3.1) and (1.1) shows thataŒ2.n; k/DWm;rŒ2.n; k/forukDkmC r. Therefore, from Theorem1and Corollary1we get the following corollaries.

Corollary 3. Fork1, WkŒ2.x/WD X

n2k

Wm;rŒ2.n; k/xn

D x2k

.1 rx/.1 .mCr/x/.1 .2mCr/x/ .1 .kmCr/x/; (3.2) withW0Œ2.x/D1 rx1 . Moreover, the2-successive associatedr-Whitney numbers of the second kind are given by the explicit identity

Wm;rŒ2.n; k/D X

i0Ci1Ci2CCikDn 2k

ri0.mCr/i1 .kmCr/ik; (3.3) forn2k.

In particular, for mD1 and r D0 we obtain the generating function of the 2- successive associated Stirling numbers of the second kind.

Corollary 4. (see [2, Theorem 2.3 and Corollary 2.4] and [3, Theorem 18]) For k1,

Ak.x/WD X

n2k

(n k

)Œ2

xnD x2k

.1 x/.1 2x/ .1 kx/; (3.4) withA0.x/D1. Moreover,

(n k

)Œ2

D X

i1Ci2CCikDn 2k

1i12i2 kik:

Our next identity expressesWm;rŒ2.n; k/in terms of˚i

k

Œ2forin.

(8)

Theorem 6. Letn; k0, Wm;rŒ2.n; k/D

n

X

iD2k

rn i n k n i

! mi 2k

(i k

)Œ2

: (3.5)

Proof. From (3.2) we have X

n2k

Wm;rŒ2.n; k/xnD x2k

.1 rx/.1 .mCr/x/.1 .2mCr/x/ .1 .kmCr/x/

D x2k

.1 rx/kC1 1 1 rxmx

1 1 rx2mx

1 1 rxkmx D.1 rx/k 1

m2k

mx 1 rx

2k

1 1 rxmx

1 1 rx2mx

1 1 rxkmx D.1 rx/k 1

m2k

y2k

.1 y/.1 2y/ .1 kmy/; whereyD1 rxmx .

Therefore from (3.4), we have X

n2k

Wm;rŒ2.n; k/xnD.1 rx/k 1 m2k

X

i2k

(i k

)Œ2

yi

D X

i2k

(i k

)Œ2

mi 2kxi .1 rx/i kC1 D X

i2k

X

j0

mi 2k i kCj i k

! rj

(i k

)Œ2

xiCj:

Comparing the coefficients ofxn, we obtain (3.5).

Combinatorial proof:We can construct any set partition of˘r;mŒ2.n; k/as follows:

we putn i elements in the special blocks. Then there are n ki k

rn i possibilities.

Note that we have to subtractkelements ofnbecause in the non-special blocks there are at least two consecutive numbers. The remaining i elements (i 2k) can be chosen in mi 2k˚i

k ways. The factor mi 2k accounts for thei 2k non-minimal elements within these blocks that are each to be colored in one ofmways.

From Theorem5and by induction onnwe obtain the following identity.

(9)

THE GENERALIZED -COMTET NUMBERS 107

Theorem 7. Forn2kwe have Wm;rŒ2.n; k/D 1

mk

k

X

jD0

. 1/k j k j

!

.mjCr/n k: Proof. Let,

Wm;rŒ2.n; k/D.mkCr/

mk

k

X

jD0

. 1/k j k j

!

.mjCr/n 1 k

C 1 mk 1

k

X

jD0

. 1/k 1 j k 1 j

!

.mjCr/n 1 k

D.mkCr/

mk 1

k

X

jD1

. 1/k j k 1 j 1

!

.mjCr/n 1 k

C r mk

k

X

jD0

. 1/k j k j

!

.mjCr/n 1 k

D 1 mk

n 1 k

X

iD0

rn 1 k imi 2 4

k

X

jD0

. 1/k jjiC1 k j

! m

C

k

X

jD0

. 1/k jjir k j

!3 5

D 1 mk

k

X

jD0

. 1/k j k j

!

.mjCr/n k:

3.1. Relations with ther-Whitney numbers

Ther-Whitney numbers of the second kindWm;r.n; k/were defined by Mez˝o [17]

as the connecting coefficients between some particular polynomials.

For non-negative integersn; kandrwithnk0and for any integerm > 0 .mxCr/nD

n

X

kD0

mkWm;r.n; k/xk; (3.6) wherexnDx.x 1/ .x nC1/forn1, andx0D1.

Ther-Whitney numbers of the second kind satisfy the recurrence [17]

Wm;r.n; k/DWm;r.n 1; k 1/C.kmCr/Wm;r.n 1; k/: (3.7)

(10)

Comparing (3.7) and (3.1) we have the following relation.

Corollary 5. [2, Theorem 4.1] Forn2k,

Wm;rŒ2.n; k/DWm;r.n k; k/: (3.8) Mez˝o and Ram´ırez [19] studied the r-Whitney matrices of the second and the first kind and they derived several identities for these matrices. In particular, the r-Whitney matrix of the second kind is defined by

ŒWm;r.n; k/n;k0D 2 6 6 6 6 6 6 6 4

1 0 0 0 0

r 1 0 0 0

r2 mC2r 1 0 0

r3 m2C3rmC3r2 3mC3r 1 0

r4 m3C4rm2C6r2mC4r3 7m2C12rmC6r2 6mC4r 1

::: ::: :::

3 7 7 7 7 7 7 7 5 :

Notice that the sequence.Wm;rŒ2.n; k//k corresponds with the sequence of elements on rays in direction.1; 1/over ther-Whitney matrix of the second kind.

4. THEt-SUCCESSIVE ASSOCIATEDr-WHITNEY NUMBERS

In this section, we consider the rays in direction.s; 1/, i.e., we are going to study the sequence fWm;r.n sk; k/g. We denote by Wm;rŒt  .n; k/the number Wm;r.n sk; k/, wheret DsC1. We call this new sequencethet-successive associatedr- Whitney numbers of the second kind. It is possible to show that the t-successive associatedr-Whitney numbers count the number of partitions in˘r.n; k/, such that:

theknon-special blocks contain at leastt consecutive numbers,

all the elements but the last one and its t 1 predecessors in non-special blocks are coloured with one ofmcolours independently,

the elements in the special blocks are not coloured,

the last elementnCr must either form a block with its t 1-predecessors or belong to another block (special or not-special) satisfying the previous conditions.

Reasoning in a similar manner as in Theorem5we obtain the following results.

Theorem 8. Fornt k, we have

Wm;rŒt .n; k/D.kmCr/Wm;rŒt  .n 1; k/CWm;rŒt  .n t; k 1/: (4.1) Fork1,

WkŒt .x/WDX

n0

Wm;rŒt  .n; k/xn

D xt k

.1 rx/.1 .mCr/x/.1 .2mCr/x/ .1 .kmCr/x/; (4.2)

(11)

THE GENERALIZED -COMTET NUMBERS 109

withW0Œt .x/D1 rx1 . Moreover, fornt kwe have Wm;rŒt  .n; k/D 1

mk

k

X

jD0

. 1/k j k j

!

.mjCr/n .t 1/k: (4.3) As corollary fortD2we get [3, Theorem 4, Theorem 6 and Theorem 7].

It is not difficult to generalize the relation given in Theorem6.

Theorem 9. Ifn; k0, then Wm;rŒt  .n; k/D

n

X

iDt k

rn i n k n i

! mi t k

(i k

)Œt 

: (4.4)

Consequence.From Equation (4.2) we deduce thatWm;rŒt .nC.t 1/k; k/are the classicalr-Whitney numbersWm;r.n; k/.

From the explicit formula given in (4.3) we get the exponential generating function of thet-successive associatedr-Whitney numbers.

Theorem 10. The exponential generating function of thet-successive associated r-Whitney numbers is

WkŒt .x/WD X

nt k

Wm;rŒt  xn nŠ D

k

X

jD0

k j

!. 1/k j kŠmk

e.j mCr/x

.j mCr/.t 1/k: (4.5) Corollary 6. For the2-successive associatedr-Whitney numbers,

WkŒ2.x/D

k

X

jD0

k j

!. 1/k j kŠmk

e.j mCr/x

.j mCr/k: (4.6)

These two result are more specified expressions as relation (2.9) of Theorem4.

Proof. (Theorem10) We use the derivation.t 1/ktimes according toxand using the consequence property, we get

@.t 1/k

@.t 1/kxWk.x/D X

nt k .t 1/k

Wm;rŒt  .nCk.t 1/; k/xn nŠ D 1

kŠmkerx.emx 1/k D 1

kŠmkerx

k

X

jD0

k j

!

. 1/k jej mx

D

k

X

jD0

k j

!. 1/k j

kŠmk e.j mCr/x:

(12)

Theorem 11. Fornk, we have

Wm;rŒt  .nC.t 1/k; k/D X

i1CCinDn k i1;;in2f0;1g

n 1

Y

jD0

.rCm.j

j

X

`D1

i`//ijC1: (4.7)

Proof. By induction overn, we suppose that the identity is true untiln 1 X

i1CCinDn k i1;;in2f0;1g

n 1

Y

jD0

.rCm.j

j

X

lD1

il//ijC1

D X

i1CCin 1D.n 1/ .k 1/

i1;;in 12f0;1g

n 2

Y

jD0

.rCm.j

j

X

lD1

il//ijC1

C 0 B B

@

X

i1CCin 1D.n 1/ k i1;;in 12f0;1g

n 2

Y

jD0

.rCm.j

j

X

lD1

il//ijC1 1 C C A

.rCmk/:

We have

Wm;rŒt  .nC.t 1/k; k/

D.mkCr/Wm;rŒt .n 1C.t 1/k; k/CWm;rŒt  .n 1C.t 1/.k 1/; k/;

which gives the desired result.

Corollary 7. Fornt k, we have Wm;rŒt  .n; k/D X

i1CCin .t 1/kDn t k i1;;in .t 1/k2f0;1g

n .t 1/k 1

Y

jD0

.rCm.j

j

X

`D1

i`//ijC1; (4.8)

with empty sum equal zero.

Example1. ForkDtD2we have the following formula Wm;rŒ2.n; 2/D X

i1CCin 2Dn 4

ri1.rCm.1 i1//i2.rCm.2 i1 i2//i3 .rCm.n 3 i1 i2 in 3//in 2;

Wm;rŒ2.4; 2/D X

iCjD0

ri.rCm.1 i //j D1;

(13)

THE GENERALIZED -COMTET NUMBERS 111

Wm;rŒ2.5; 2/D X

iCjCkD1

ri.rCm.1 i //j.rCm.2 i j //kD3.rCm/;

Wm;rŒ2.6; 2/D X

iCjCkC`D2

ri.rCm.1 i //j.rCm.2 i j //k.rCm.3 i j k//` D6r2C12mrC7m2:

Theorem 12. We have the following explicit formula

Wm;rŒt  .nCt k; k/D 1 mk

k j

X

jD0

. 1/k j k j

!

.mjCr/nCk; (4.9) and thus

Wm;rŒt  .n; k/D 1 mk

k

X

jD0

. 1/k j k j

!

.mjCr/n .t 1/k: (4.10) Proof. It suffices to setukDmkCrthen

uj ui Dm.j i /

in Theorem3.

FortD2we get Theorem7.

Theorem 13. Expression oft-successiver-Whitney numbers in terms of binomials and Stirling numbers.

Wm;rŒt .nCt k; k/Dr m

knCk

X

iD0

nCk i

! rn imi

(i k

)

: (4.11)

Proof.

Wm;rŒt .nCt k; k/D 1 mk

k

X

jD0 nCk

X

iD0

. 1/k j k j

! nCk i

!

.mj /irnCk i

D 1 mk

nCk

X

iD0

mirnCk i nCk i

! k X

jD0

. 1/k j k j

! ji

D 1 mk

nCk

X

iD0

mirnCk i nCk i

!(i k

) : Notice thatPk

jD0. 1/k j kj

ji D0fori < k.

5. Aq-ANALOGUE OF THEt-SUCCESSIVE ASSOCIATEDSTIRLING NUMBERS

Finally, we considerer aq-analogue of thet-successive associated Stirling num- bers of the second kind. For this purpose, we use a similar statistic studied by Carlitz [6], see also [21].

(14)

LetDB1=B2= =Bkbe any block representation of a set partition in˘0;1Œt .n; k/WD

˘Œt .n; k/, with min.B1/ <min.B2/ < <min.Bk/. We define the following stat- istic on the set˘Œt .n; k/.

wŒt ./WD

k

X

iD1

.i 1/.jBij tC1/:

We now define theq-analogue of thet-successive associated Stirling numbers of the second kind.

Definition 1. Define˚n k

Œt 

q as the distribution polynomial for thewŒt  statistic on the set˘Œt .n; k/, that is,

(n k

)Œt 

q

D X

2˘Œt .n;k/

qwŒt ./; n; k0;

whereqis an indeterminate.

It is clear that˚n k

Œt  1n

k Œt .

For example, in the set˘Œ2.7; 3/we have the following partitions:

ff1; 2g;f3; 4; 5g;f6; 7gg; ff1; 2; 3g;f4; 5g;f6; 7gg; ff1; 2; 5g;f3; 4g;f6; 7gg; ff1; 2g;f3; 4g;f5; 6; 7gg; ff1; 2g;f3; 4; 7g;f5; 6gg; ff1; 2; 7g;f3; 4g;f5; 6gg: Therefore,

(7 3

)Œ2

q

Dq4Cq3Cq3Cq5Cq4Cq3D3q3C2q4Cq5: Let us introduce the following notations.

ŒnqD1CqC Cqn 1; ŒnqŠDŒ1qŒ2q Œnq and

"

n k

#

q

D ŒnqŠ ŒkqŠŒn kqŠ: The last coefficient is calledq-binomial coefficient. IfqD1, thenn

k

1D nk . Theorem 14. Fornt k, we have

(n k

)Œt 

q

DŒkq (n 1

k )Œt 

q

Cqk 1 (n t

k 1 )Œt 

q

: (5.1)

Proof. For any set partition of ˘Œt .n; k/, there are two options: either n form a block with its t 1-predecessors, or n is in a block that satisfies the conditions.

In the first case, there are qk 1˚n t

k 1 Œt 

q possibilities. In this case, the size of the last block Bk is t, then this block contributes a factor qk 1. In the second case,

(15)

THE GENERALIZED -COMTET NUMBERS 113

the element n can be place into one of the k blocks and thus contributes a factor 1CqCq2C Cqk 1DŒkq. Moreover, the remaining elements can be chosen in

˚n 1 k

Œt 

q ways. Altogether, we haveŒkq˚n 1 k

Œt 

q possibilities.

From above theorem, we obtain the following corollaries.

Corollary 8. Fork1, X

nt k

(n k

)Œt 

q

xnD xt kq.k2/

.1 x/.1 Œ2qx/.1 Œ3qx/ .1 Œkqx/: (5.2) Moreover, theq-analogue of thet-successive associatedr-Stirling numbers are given by the explicit identity

(n k

)Œt 

q

Dq.k2/ X

i1Ci2CCikDn t k

Œ1iq1Œ2iq2 Œkiqk; (5.3) fornt k.

Corollary 9. Fornt kwe have (n

k )Œt 

q

D 1 ŒkqŠ

k

X

jD1

. 1/k j

"

k j

#

q

q.k2j/.Œj q/n .t 1/k:

ACKNOWLEDGEMENT

The authors would like to thank the anonymous referee for some useful comments.

REFERENCES

[1] H. Belbachir and I. E. Bousbaa, “Associated Lah numbers and r-Stirling numbers.”

arXiv:1404.5573, pp. 1–24, 2014.

[2] H. Belbachir and A. F. Tebtoub, “Les nombres de Stirling associ´es avec succession d’ordre 2, nombres de Fibonacci-Stirling et unimodalit´e.”C. R., Math., Acad. Sci. Paris, vol. 353, no. 9, pp.

767–771, 2015, doi:doi.org/10.1016/j.crma.2015.06.008.

[3] H. Belbachir and A. F. Tebtoub, “The t-successive associated Stirling numbers, t-Fibonacci–

Stirling numbers, and unimodality.”Turkish J. Math., vol. 41, no. 5, pp. 1279–1291, 2017, doi:

doi.org/10.3906/mat-1506-83.

[4] M. B´ona and I. Mez˝o, “Real zeros and partitions without singleton blocks.”Eur. J. Comb., vol. 51, pp. 500–510, 2016, doi:doi.org/10.1016/j.ejc.2015.07.021.

[5] A. Z. Broder, “The r-Stirling numbers.” Discrete Math., vol. 49, pp. 241–259, 1984, doi:

doi.org/10.1016/0012-365X(84)90161-4.

[6] L. Carlitz,Generalized Stirling numbers. Combinatorial Analysis Notes, Duke University, 1968.

[7] J. Y. Choi, L. Long, S.-H. Ng, and J. Smith, “Reciprocity for multirestricted Stirl- ing numbers.” J. Comb. Theory, Ser. A, vol. 113, no. 6, pp. 1050–1060, 2006, doi:

doi.org/10.1016/j.jcta.2005.10.001.

(16)

[8] J. Y. Choi and J. D. H. Smith, “On the combinatorics of multi-restricted numbers.”Ars Comb., vol. 75, pp. 45–63, 2005.

[9] L. Comtet, “Nombres de Stirling g´en´eraux et fonctions sym´etriques.”C. R. Acad. Sci., Paris, S´er.

A, vol. 275, pp. 747–750, 1972.

[10] L. Comtet,Advanced combinatorics. D. Reidel Publishing Co. (Dordrecht, Holland), 1974.

[11] F. T. Howard, “Associated Stirling numbers.”Fibonacci Quart., vol. 18, pp. 303–315, 1980.

[12] T. Komatsu, I. Mez˝o, and L. Szalay, “Incomplete Cauchy numbers.”Acta Math. Hung., vol. 149, no. 2, pp. 306–323, 2016, doi:10.1007/s10474-016-0616-z.

[13] T. Komatsu, “Incomplete poly-Cauchy numbers.”Monatsh. Math., vol. 180, no. 2, pp. 271–288, 2016, doi:10.1007/s00605-015-0810-z.

[14] T. Komatsu, K. Liptai, and I. Mez˝o, “Incomplete poly-Bernoulli numbers associated with incom- plete Stirling numbers.”Publ. Math., vol. 88, no. 3-4, pp. 357–368, 2016.

[15] T. Komatsu and J. L. Ram´ırez, “Generalized poly-Cauchy and poly-Bernoulli numbers by using incompleter-Stirling numbers.”Aequationes Math., vol. 91, no. 6, pp. 1055–1071, 2017, doi:

10.1007/s00010-017-0509-4.

[16] T. Komatsu and J. L. Ram´ırez, “Incomplete poly-Bernoulli numbers and incomplete poly-Cauchy numbers associated to theq-Hurwitz-lerch zeta function.”Mediterr. J. Math., vol. 14, no. 3, p. 19, 2017, doi:10.1007/s00009-017-0935-5.

[17] I. Mez˝o, “A new formula for the Bernoulli polynomials.” Result. Math., vol. 58, no. 3-4, pp.

329–335, 2010, doi:10.1007/s00025-010-0039-z.

[18] I. Mez˝o, “Periodicity of the last digits of some combinatorial sequences.”J. Integer Seq., vol. 17, no. 1, pp. article 14.1.1, 18, 2014.

[19] I. Mez˝o and J. L. Ram´ırez, “The linear algebra of ther-Whitney matrices.”Integral Transforms Spec. Funct., vol. 26, no. 3, pp. 213–225, 2015, doi:10.1080/10652469.2014.984180.

[20] V. H. Moll, J. L. Ram´ırez, and D. Villamizar, “Combinatorial and arithmetical properties of the restricted and associated Bell and factorial numbers.”J. Comb., vol. 9, no. 4, pp. 693–720, 2018, doi:10.4310/JOC.2018.v9.n4.a7.

[21] C. G. Wagner, “Partition statistics andq-Bell numbers.qD 1/.”J. Integer Seq., vol. 7, no. 1, pp. art. 04.1.1, 12, 2004.

Authors’ addresses

Hac`ene Belbachir

USTHB, Faculty of Mathematics, RECITS Laboratory. P.B. 32, El Alia, 16111, Bab Ezzouar, AL- GERIA

E-mail address:hbelbachir@usthb.dz; hacenebelbachir@gmail.com

Carolina Forero

Universidad Sergio Arboleda, Departamento de Matem´aticas, Bogot´a, COLOMBIA E-mail address:tcarolinafc@gmail.com

Jos´e L. Ram´ırez

Universidad Nacional de Colombia, Departamento de Matem´aticas, Bogot´a, COLOMBIA E-mail address:jlramirezr@unal.edu.co

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Keywords: Padovan numbers, Perrin numbers, Pell numbers, Pell-Lucas num- bers, Linear form in logarithms, reduction method2. AMS Subject Classification:

In [5], Marques obtained the order of appearance (rank) of Fibonacci numbers modulo powers of Fibonacci and Lucas numbers and derived the formula of r(L k n ) in some cases..

Keywords: Odd perfect numbers, infinitary superperfect numbers, unitary divisors, infinitary divisors, the sum of divisors.. MSC:

We study analogues of the Miki, Matiyasevich, and Euler identities for the Apostol-Bernoulli numbers and obtain the analogues of the Miki and Euler identities for the

Given a positive integer m, let Ω r,m (n, k) denote the set of r- permutations of [n + r] having k + r cycles in which elements within the following two classes are each assigned one

As a consequence of the Binet formula for balancing, cobalancing, square triangular, Lucas-balancing and Lucas-cobalancing numbers, we provide some formulas for these

For h = 2 t all h-perfect numbers are dependent on a sequence of certain prime numbers being similar to Mersenne prime numbers..

Lengyel, On divisibility properties of some differences of the central binomial coefficients and Catalan numbers, INTEGERS, Electronic Journal of Combinatorial Number Theory