• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
20
0
0

Teljes szövegt

(1)

volume 5, issue 3, article 74, 2004.

Received 20 January, 2004;

accepted 05 April, 2004.

Communicated by:C. Giordano

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

NOTE ON SOME HADAMARD-TYPE INEQUALITIES

M. KLARI ˇCI ´C BAKULA AND J. PE ˇCARI ´C

Department of Mathematics

Faculty of Natural Sciences, Mathematics and Education University of Split , Teslina 12

21 000 Split, Croatia.

EMail:milica@pmfst.hr Faculty of Textile Technology University of Zagreb Pierottijeva 6, 10000 Zagreb Croatia.

EMail:pecaric@hazu.hr

URL:http://mahazu.hazu.hr/DepMPCS/indexJP.html

c

2000Victoria University ISSN (electronic): 1443-5756 018-04

(2)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

Abstract

Some Hadamard-type inequalities involving the product of two convex functions are obtained. Our results generalize the corresponding results of B.G.Pachpatte.

2000 Mathematics Subject Classification:26D15, 26D20.

Key words: Integral inequalities, Hadamard’s inequality

Contents

1 Introduction. . . 3 2 Results . . . 6

References

(3)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

1. Introduction

Letf be a convex function on[a, b]⊂R. The following double inequality:

(1.1) f

a+b 2

≤ 1 b−a

Z b

a

f(x)dx≤ f(a) +f(b) 2

is known in the literature as Hadamard’s inequality [1, p. 137], [2, p. 10] for convex functions.

Recently B.G.Pachpatte [3] considered some new integral inequalities, anal- ogous to that of Hadamard, involving the product of two convex functions. In [3] the following theorem has been proved:

Theorem 1.1. Letfandgbe nonnegative, convex functions on[a, b]⊂R. Then (i)

(1.2) 1

b−a Z b

a

f(x)g(x)dx≤ 1

3M(a, b) + 1

6N(a, b), (ii)

(1.3) 2f

a+b 2

g

a+b 2

≤ 1 b−a

Z b

a

f(x)g(x)dx+ 1

6M(a, b) + 1

3N(a, b), where M(a, b) = f(a)g(a) +f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a). Inequalities (1.2) and (1.3) are sharp in the sense that equali- ties hold for somef(x)andg(x)on[a, b].

(4)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

In the following Theorem1.2we give a variant of the corresponding Theo- rem 2 in [3].

Theorem 1.2. Letfandgbe nonnegative, convex functions on[a, b]⊂R. Then (i)

(1.4) 3

2 (b−a)2 Z b

a

Z b

a

Z 1

0

f(tx+ (1−t)y)g(tx+ (1−t)y)dtdxdy

≤ 1 b−a

Z b

a

f(x)g(x)dx+1

8[M(a, b) +N(a, b)] ; (ii)

(1.5) 3 b−a

Z b

a

Z 1

0

f

tx+ (1−t)

a+b 2

×g

tx+ (1−t)

a+b 2

dtdx

≤ 1 b−a

Z b

a

f(x)g(x)dx+1

2[M(a, b) +N(a, b)], whereM(a, b)andN(a, b)are as in Theorem1.1.

It should be noted that in [3, Theorem 2] inequalities (3) and (4) are estab- lished. Inequality (3) from [3, Theorem 2] is a variant of our inequality (1.4) in which

1 8

M(a, b) +N(a, b) (b−a)2

(5)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

stands in place of the term 18 [M(a, b) +N(a, b)]. Analogously, inequality (4) from [3, Theorem 2] is a variant of our inequality (1.5) in which

1 4

1 +b−a b−a

[M(a, b) +N(a, b)]

stands in place of the term 12 [M(a, b) +N(a, b)].

However, one can compare inequalities (3) and (4) with (1.4) and (1.5), re- spectively, to find out that estimates given by (1.4) and (1.5) are better (worse) than those given by (3) and (4) in [3, Theorem 2] in case ofb−a <1 (b−a >1).

But on careful inspection of the proof in [3, Theorem 2], the reader can notice some errors in Pachpatte’s calculation, so inequalities (3) and (4) in [3, Theorem 2] are in fact incorrect.

The aim of this paper is to prove some simple generalizations of Theorem 1.1and Theorem1.2, which additionally involve weight functions and also non- linear transformations of the base interval [a, b]. Those generalizations are es- tablished in Theorem 2.1and Theorem 2.2. The above cited Theorem1.1 is a special case of Theorem 2.1, while the above Theorem1.2 is a special case of our Theorem2.2(see Remark2.2).

(6)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

2. Results

Throughout the rest of the paper we shall use the following notation [h;x, y] = h(y)−h(x)

y−x , x6=y eh(t) = th(α+β−t),

bh(t) = th(t)

whereh : [α, β]→ Ris a function,[α, β]⊂R, x, y, t∈ [α, β]. Note that from the above equalities we get

h eh;α, β

i

= βh(α)−αh(β) β−α , h

bh;α, βi

= βh(β)−αh(α) β−α , and, by simple calculation,

(2.1) h

bh;α, βi

−h

eh;α, βi

= (α+β) [h;α, β]. The following results are valid:

Theorem 2.1. Let f be a nonnegative convex function on [m1, M1], g a non- negative convex function on [m2, M2], u : [a, b] → [m1, M1] andv : [a, b] → [m2, M2]continuous functions, and p : [a, b] → Ra positive integrable func- tion. Then

(7)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

(i)

(2.2) 1 P

Z b

a

p(x)f(u(x))g(v(x))dx

≤[f;m1, M1] [g;m2, M2] 1 P

Z b

a

p(x)u(x)v(x)dx + [f;m1, M1] [eg;m2, M2] 1

P Z b

a

p(x)u(x)dx +h

f;em1, M1i

[g;m2, M2] 1 P

Z b

a

p(x)v(x)dx +h

fe;m1, M1i

[eg;m2, M2]. (ii)

(2.3) f

m1+M1 2

g

m2+M2 2

≤ 1 4P

Z b

a

p(x)f(u(x))g(v(x))dx +

Z b

a

p(x)f(M1 +m1−u(x))g(M2+m2−v(x))dx

+ 1 4P

−2 [f;m1, M1] [g;m2, M2] Z b

a

p(x)u(x)v(x)dx + ([bg;m2, M2]−[eg;m2, M2]) [f;m1, M1]

Z b

a

p(x)u(x)dx

(8)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

+h

fb;m1, M1i

−h

f;em1, M1i

[g;m2, M2] Z b

a

p(x)v(x)dx

+1 4

h

fe;m1, M1

i

[bg;m2, M2] + h

fb;m1, M1

i

[eg;m2, M2]

,

whereP =Rb

a p(x)dx.

Proof. For anyx∈[a, b]we can write (2.4) u(x) = M1−u(x)

M1−m1 m1+ u(x)−m1 M1−m1 M1 and

(2.5) v(x) = M2−v(x) M2−m2

m2+ v(x)−m2 M2−m2

M2.

Sincef andg are convex functions we have f(u(x))≤ M1−u(x)

M1−m1 f(m1) + u(x)−m1

M1−m1 f(M1)

= u(x)

M1−m1 (f(M1)−f(m1)) + M1f(m1)−m1f(M1) M1−m1

= [f;m1, M1]u(x) +h

f;em1, M1i (2.6)

(9)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

and

g(v(x))≤ M2 −v(x)

M2−m2 g(m2) + v(x)−m2

M2−m2 g(M2)

= v(x) M2−m2

(g(M2)−g(m2)) + M2g(m2)−m2g(M2) M2−m2

= [g;m2, M2]v(x) + [eg;m2, M2]. (2.7)

Functions f and g are nonnegative by assumption, so after multiplying (2.6) and(2.7)we obtain

(2.8) f(u(x))g(v(x))

≤[f;m1, M1] [g;m2, M2]u(x)v(x) + [f;m1, M1] [eg;m2, M2]u(x) + [g;m2, M2]h

fe;m1, M1i

v(x) +h

fe;m1, M1i

[eg;m2, M2]. Now, multiplying(2.8)by weight p(x), integrating over[a, b]and dividing by P > 0we get (i).

To obtain (ii) we can write m1+M1

2 = 1

2

M1−u(x)

M1−m1 m1 +u(x)−m1 M1−m1 M1 +u(x)−m1

M1−m1 m1+M1−u(x) M1−m1 M1

, m2+M2

2 = 1

2

M2−v(x)

M2−m2 m2+v(x)−m2 M2−m2 M2 +v(x)−m2

M2 −m2 m2+M2 −v(x) M2−m2 M2

.

(10)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

Using the Hadamard inequality (1.1) and the convexity of functions f and g, we get

f

m1+M1 2

g

m2 +M2 2

≤ 1 4

f

M1−u(x)

M1−m1 m1+ u(x)−m1 M1−m1 M1

+f

u(x)−m1

M1−m1 m1+ M1−u(x) M1−m1 M1

×

g

M2−v(x)

M2−m2 m2+v(x)−m2 M2−m2 M2

+g

v(x)−m2

M2−m2 m2+M2−v(x) M2−m2 M2

.

According to(2.4)and(2.5),after some simple calculus we obtain (2.9) f

m1+M1

2

g

m2+M2

2

≤ 1

4[f(u(x))g(v(x)) +f(M1+m1−u(x))g(M2+m2−v(x))]

+ 1 4

f

M1−u(x)

M1−m1 m1+ u(x)−m1

M1−m1 M1

×g

v(x)−m2

M2−m2 m2+ M2−v(x) M2 −m2 M2

(11)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

+f

u(x)−m1

M1−m1 m1+M1 −u(x) M1−m1 M1

×g

M2 −v(x)

M2−m2 m2+ v(x)−m2 M2−m2 M2

.

Using the convexity of functionsf andg,from inequality(2.9)we get (2.10) f

m1+M1 2

g

m2+M2 2

≤ 1

4[f(u(x))g(v(x)) +f(M1+m1−u(x))g(M2+m2−v(x))]

+1 4

M1−u(x) M1−m1

f(m1) + u(x)−m1 M1−m1

f(M1)

×

v(x)−m2 M2−m2

g(m2) + M2−v(x) M2 −m2

g(M2)

+

u(x)−m1 M1−m1

f(m1) + M1−u(x) M1−m1

f(M1)

×

M2−v(x) M2−m2

g(m2) + v(x)−m2 M2−m2

g(M2)

.

With respect to the notation introduced at the beginning of this section, inequal- ity(2.10)becomes

f

m1 +M1 2

g

m2+M2 2

(12)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

≤ 1 4

n

f(u(x))g(v(x))

+f(M1+m1−u(x))g(M2+m2−v(x)) o

+ 1 4

(

[f;m1, M1]u(x) + h

f;em1, M1

i

×

[bg;m2, M2]−[g;m2, M2]v(x)

+h

fb;m1, M1i

−[f;m1, M1]u(x)

×

[g;m2, M2]v(x) + [eg;m2, M2] )

= 1 4

n

f(u(x))g(v(x))

+f(M1+m1−u(x))g(M2+m2−v(x))o + 1

4 (

−2 [f;m1, M1] [g;m2, M2]u(x)v(x) +

[gb;m2, M2]−[eg;m2, M2]

[f;m1, M1]u(x) +h

fb;m1, M1i

−h

f;em1, M1i

[g;m2, M2]v(x) +h

fe;m1, M1i

[gb;m2, M2] +h

f;bm1, M1i

[eg;m2, M2] ) (2.11)

(13)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

Now we multiply both sides of (2.11) by p(x), integrate over [a, b] and divide byP. We thus obtain (ii) and the proof is completed.

Remark 2.1. Pachpatte’s results (1.2) and (1.3) can be obtained from (2.2) and(2.3)respectively if we putp(x) = 1, u(x) = v(x) = xfor allx ∈ [a, b]

(then we have m1 = m2 = a and M1 = M2 = b).In the case of g(x) ≡ 1 inequality (i) becomes the right side of Hadamard’s inequality(1.1).

Theorem 2.2. Let f be a nonnegative convex function on [m1, M1], g a non- negative convex function on [m2, M2], u : [a, b] → [m1, M1] andv : [a, b] → [m2, M2]continuous functions, and p, q : [a, b] → Rpositive integrable func- tions. Then

(i) 1 P Q

Z b

a

Z b

a

Z 1

0

p(x)q(y)f(tu(x) + (1−t)u(y))

×g(tv(x) + (1−t)v(y))dtdxdy

≤ 1 3P Q

Q

Z b

a

f(u(x))g(v(x))p(x)dx +P

Z b

a

f(u(y))g(v(y))q(y)dy

+ 1

3P Q Z b

a

p(x)f(u(x))dx Z b

a

q(y)g(v(y))dy;

(14)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

(ii) 1 P

Z b

a

Z 1

0

p(x)f(tu(x) + (1−t)u)g(tv(x) + (1−t)v)dtdx

≤ 1 3P

Z b

a

p(x)f(u(x))g(v(x))dx+1

3f(u)g(v) + 1

6P

g(v) Z b

a

p(x)f(u(x))dx+f(u) Z b

a

p(x)g(v(x))dx

,

whereu= P1 Rb

a p(x)u(x)dx, v = Q1 Rb

a q(x)v(x)dx.

Proof. Sincef andgare convex functions, fort∈[0,1]we have f(tu(x) + (1−t)u(y))≤tf(u(x)) + (1−t)f(u(y)) (2.12)

g(tv(x) + (1−t)v(y))≤tg(v(x)) + (1−t)g(v(y)). (2.13)

Functionsf andg are nonnegative, so multiplying(2.12)and(2.13)we get (2.14) f(tu(x) + (1−t)u(y))g(tv(x) + (1−t)v(y))

≤t2f(u(x))g(v(x)) + (1−t)2f(u(y))g(v(y))

+t(1−t) [f(u(x))g(v(y)) +f(u(y))g(v(x))]. Integrating(2.14)over[0,1]we obtain

(2.15) Z 1

0

f(tu(x) + (1−t)u(y))g(tv(x) + (1−t)v(y))dt

≤ 1

3[f(u(x))g(v(x)) +f(u(y))g(v(y))]

(15)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

+ 1

6[f(u(x))g(v(y)) +f(u(y))g(v(x))]. Now we multiply (2.15)by p(x)q(y), integrate over [a, b]×[a, b] and divide byP Q, where

P = Z b

a

p(x)dx, Q= Z b

a

q(x)dx, so we get

1 P Q

Z b

a

Z b

a

Z 1

0

p(x)q(y)f(tu(x) + (1−t)u(y))

×g(tv(x) + (1−t)v(y))dtdxdy

≤ 1 3P Q

Z b

a

p(x)f(u(x))g(v(x))dx Z b

a

q(y)dy +

Z b

a

q(y)f(u(y))g(v(y))dy Z b

a

p(x)dx

+ 1

6P Q Z b

a

p(x)f(u(x))dx Z b

a

q(y)g(v(y))dy +

Z b

a

p(y)f(u(y))dy Z b

a

q(x)g(v(x))dx

= 1

3P Q Z b

a

p(x)f(u(x))g(v(x))dx Z b

a

q(y)dy

(16)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

+ Z b

a

q(y)f(u(y))g(v(y))dy Z b

a

p(x)dx

+ 1

3P Q Z b

a

p(x)f(u(x))dx Z b

a

q(y)g(v(y))dy.

(2.16)

This is the desired inequality (i).

To prove inequality (ii), in (2.12) and(2.13) we substitute u(y) andv(y) withuandvrespectively.

Then we obtain

(2.17) f(tu(x) + (1−t)u)g(tv(x) + (1−t)v)

≤t2f(u(x))g(v(x)) + (1−t)2f(u)g(v)

+t(1−t) [f(u(x))g(v) +f(u)g(v(x))]. Integrating(2.17)in respect totover[0,1]we obtain

(2.18) Z 1

0

f(tu(x) + (1−t)u)g(tv(x) + (1−t)v)dt

≤ 1

3[f(u(x))g(v(x)) +f(u)g(v)]

+1

6[f(u(x))g(v) +f(u)g(v(x))].

(17)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

Similarly as before, from(2.18)we get 1

P Z b

a

Z 1

0

p(x)f(tu(x) + (1−t)u)g(tv(x) + (1−t)v)dtdx

≤ 1 3P

Z b

a

p(x)f(u(x))g(v(x))dx+1

3f(u)g(v) + 1

6P

g(v) Z b

a

p(x)f(u(x))dx+f(u) Z b

a

p(x)g(v(x))dx

.

This completes the proof.

Remark 2.2. If in (i) we putu(x) =v(x) = xfor allx∈[a, b], it becomes (2.19) 1

P Q Z b

a

Z b

a

Z 1

0

p(x)q(y)f(tx+ (1−t)y)g(tx+ (1−t)y)dtdxdy

≤ 1 3P Q

Q

Z b

a

p(x)f(x)g(x)dx+P Z b

a

q(y)f(y)g(y)dy

+ 1

3P Q Z b

a

p(x)f(x)dx Z b

a

q(y)g(y)dy, so by using a generalization of Hadamard’s inequality [1, p.138]

(2.20) f

a+b 2

≤ 1 P

Z b

a

p(x)f(x)dx≤ f(a) +f(b) 2

(18)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

which holds forp(a+t) = p(b−t),0≤t ≤ 12(a+b),we obtain from(2.19) the following inequality

1 P Q

Z b

a

Z b

a

Z 1

0

p(x)q(y)f(tx+ (1−t)y)g(tx+ (1−t)y)dtdxdy

≤ 1 3P Q

Q

Z b

a

p(x)f(x)g(x)dx+P Z b

a

q(y)f(y)g(y)dy

+1 3

f(a) +f(b) 2

g(a) +g(b) 2

= 1

3P Q

Q Z b

a

p(x)f(x)g(x)dx+P Z b

a

q(y)f(y)g(y)dy

+ 1

12[M(a, b) +N(a, b)]. (2.21)

Now it is easy to observe that if p(x) = q(x) = 1for allx ∈ [a, b]inequality (2.21)becomes the corrected Pachpatte’s result(1.4).

If we do the same in (ii) we get 1

P Z b

a

Z 1

0

p(x)f

tx+ (1−t)a+b 2

g

tx+ (1−t)a+b 2

dtdx

≤ 1 3P

Z b

a

p(x)f(x)g(x)dx+1 3f

a+b 2

g

a+b 2

+ 1 6P

g

a+b 2

Z b

a

p(x)f(x)dx+f

a+b 2

Z b

a

p(x)g(x)dx

.

(19)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

Using again(2.20)we obtain 1

P Z b

a

Z 1

0

p(x)f

tx+ (1−t)a+b 2

g

tx+ (1−t)a+b 2

dtdx

≤ 1 3P

Z b

a

p(x)f(x)g(x)dx+ 1 3

f(a) +f(b) 2

g(a) +g(b) 2 +1

6

g(a) +g(b) 2

f(a) +f(b)

2 +f(a) +f(b) 2

g(a) +g(b) 2

= 1 3P

Z b

a

p(x)f(x)g(x)dx+1

6(M(a, b) +N(a, b)) Furthermore, in the casep(x) = 1for allx∈[a, b]we get

1 b−a

Z b

a

Z 1

0

f

tx+ (1−t)a+b 2

g

tx+ (1−t)a+b 2

dtdx

≤ 1 3 (b−a)

Z b

a

f(x)g(x)dx+ 1

6(M(a, b) +N(a, b)), which is the corrected Pachpatte’s result(1.5).

(20)

Note on Some Hadamard-Type Inequalities

M. Klariˇci´c Bakula and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of20

J. Ineq. Pure and Appl. Math. 5(3) Art. 74, 2004

http://jipam.vu.edu.au

References

[1] J.E. PE ˇCARI ´C, F. PROSCHAN AND Y.L. TONG, Convex Functions, Par- tial Orderings, and Statistical Applications, Academic Press, Inc. (1992).

[2] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.

[3] B.G. PACHPATTE, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6(E) (2003). [ONLINEhttp://rgmia.vu.edu.au/

v6(E).html].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words: Univalent, Starlike, Convex, Uniformly convex, Uniformly starlike, Hadamard product, Integral means, Generalized hypergeometric functions.. Abstract: Making use of

In this paper, some new nonlinear integral inequalities involving functions of one and two independent variables which provide explicit bounds on unknown func- tions are

The aim of the present note is to establish new integral inequalities, providing approxi- mation formulae which can be used to estimate the deviation of the product of two

B.G. Pure and Appl. Motivated by the results in [10] and [3], in this paper we establish new Ostrowski type inequalities involving the product of two functions. The anal- ysis used

B.G. In this paper we establish new Ostrowski type inequalities involving product of two functions. The analysis used in the proofs is elementary and based on the use of the

In recent years, [2] – [5] considered the strengthened version, generalizations and improvements of inequality (1.1) and Pachpatte [6] built some inequalities similar to

The inequalities, which Pachpatte has derived from the well known Hadamard’s inequality for convex functions, are improved, obtaining new integral inequali- ties for products of

The inequalities, which Pachpatte has derived from the well known Hadamard’s inequality for convex functions, are improved, obtaining new integral inequalities for products of