• Nem Talált Eredményt

ARTICLE IN PRESS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ARTICLE IN PRESS"

Copied!
10
0
0

Teljes szövegt

(1)

Availableonlineatwww.sciencedirect.com

j our na l h o me p ag e:w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / d e m a

Comparative mechanical behavior of dentin enamel and dentin ceramic junctions assessed by speckle

interferometry (SI)

Michel Fages

a,∗

, Pierre Slangen

b

, Jacques Raynal

a

, Stephane Corn

b

, Kinga Turzo

c

, Jacques Margerit

a

, Frédéric J. Cuisinier

a

aEA4203,DepartmentofBiologicSciences,UniversityofMontpellierI,Montpellier,France

bEcoledesMinesd’Alès,I.L.O.A.,Alès,France

cDepartmentofProsthodonticandOralBiology,UniversityofSzegedDentalSchool,Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received23October2011

Receivedinrevisedform3May2012 Accepted18May2012

Availableonlinexxx

Keywords:

Dentinenameljunction(DEJ) Dentinceramicjunction(DCJ) Speckleinterferometry(SI) Toothcrown

Ceramiccrown

a bs t r a c t

Objective.Thedentin–enameljunction(DEJ)playsacrucialroleindentalbiomechanics;how- ever,littleisknownaboutitsstructureandmechanicalbehavior.Nevertheless,naturalteeth areanecessarymodelforprostheticcrowns.ThemechanicalbehaviorofthenaturalDEJ andthedentinceramicjunction(DCJ)manufacturedwithaCAD-CAMsystemarecompared.

Methods.Thereferencesamplesundergonomodification,whiletheexperimentalsamples weredrilledtoreceiveacementedfeldspathicceramiccrown.Longitudinallycutsamples wereusedtoachieveaplanarobjectobservationandtolook“inside”thetooth.Acom- pleteapparatusenablingthestudyofthecompressivemechanicalbehavioroftheinvolved toothbyanon-contactlaserspeckleinterferometry(SI)wasdevelopedtoallownanometric displacementstobetrackedduringthecompressiontest.

Results.ItisobservedthattheDEJactedasacriticalzoneaccommodatingthemovement betweendentinandenamel.Asmoothtransitionoccursbetweendentinandenamel.In themodeledprosthetic,thesamekindofaccommodationeffectsalsooccurs,butwitha steepertransitionslopebetweendentinandceramic.

Significance. On thenatural tooth, thestress accommodation arises froma differential behaviorbetweenenamelanddentinfromtheDEJ.Intheceramiccrown,thecemented dentin–ceramicjunctionshouldplaythisrole.Thisstudydemonstratesthepossiblereal- izationofprostheticcrownreconstructionsapproachingbiomechanicalbehaviors.

©2012AcademyofDentalMaterials.PublishedbyElsevierLtd.Allrightsreserved.

1. Introduction

Thedentin–enameljunction(DEJ)inteethisthezonebetween twodistinctcalcifiedtissueswithverydifferentbiomechan- icalproperties:enamel and dentin[1]. Enamelishard and brittleandenvelopsthesofterdentin.Theenamelanddentin worktogetherduringthemanyloadcyclesexperiencedbythe

Correspondingauthorat:11AvenueCelestinArnaud,34110LaPeyrade,France.Tel.:+33684855715;fax:+33467486092.

E-mailaddress:mifages@wanadoo.fr(M.Fages).

toothoveritslifetime.Generally,interfacesbetweenmaterials withdissimilarelasticandmechanicalpropertiesrepresent

“weak links” ina structure; however, the DEJacts to suc- cessfullytransferappliedloads(e.g.,masticatoryorimpact) from the enamelto thedentinand inhibits enamelcracks frompropagatingintothedentinandcausingtoothfracture [2,3].

0109-5641/$–seefrontmatter©2012AcademyofDentalMaterials.PublishedbyElsevierLtd.Allrightsreserved.

http://dx.doi.org/10.1016/j.dental.2012.05.006

(2)

Pleasecitethisarticleinpressas:FagesM,etal.Comparativemechanicalbehaviorofdentinenamelanddentinceramicjunctionsassessedby attheDEJ,thusexplainingwhysofewcrackingeventscause

delaminationwhentheyimpingeontheDEJ.Zaslanskyetal.

[8,9] highlighted the importance ofthe DEJ as the binding interfacebetweenenamelanddentin.Theyhaveshownthat adjacenttotheDEJisa200–300mm-thickzoneofdentinofa muchlowerstiffness(compressionelasticmodulus)thanthe bulkofthedentininthetooth.

Restorations that are all ceramic require proper adhe- sive bonding on the dentin to achieve their required life expectancy. All-ceramic restorations are made with felds- pathicor zirconiaceramics.Thestrongestceramicshave a fracturetoughnessofatleast3.0MPam1/2[10],whichisrel- ativelyclosetotheenamelfracturetoughnessof1.3MPam1/2, inadirectionperpendiculartotheenamelrods[8].Neverthe- less,fracturesoftheceramicpartofall-ceramiccrownsare difficulttoprevent, andcrack growth isasignificant prob- lem[11].Thisphenomenoncanbeexplainedbytheabsence ofastressaccommodationzone.Thenaturalstressaccom- modationzoneof200–300␮m-thickdentinhasamuchlower stiffnessthanthebulkofthedentincore[8].

Bondingagentsmust beselectedvery carefullybecause theydeterminenotonlytheadhesionbutalsotheultimate strengthoffull-ceramiccrowns[12–14];therefore,itisimpor- tant to compare the mechanical behavior ofnatural teeth andoftheall-ceramiccrowncementedondentin.Insteadof

“cementjoint”,wewillusetheterm“dentin–ceramicjunction”

(DCJ).

We applied compressive forces representative of those occurringintheoralcavityonnaturalteethandall-ceramic crowns,andwedeterminetherelativemovementofenamel anddentin,orceramiccrownanddentin,respectively.

2. Materials and methods

2.1. Naturalteeth

Intactlowerfirstpremolarsfreeofcarieswerestoredinphys- iological serum after havingbeen extracted as part ofthe routineorthodontic treatmentofyounghealthy adolescent patients(aged<18).Fivesetsoftwosampleseach(onenat- uraltoothandoneprosthetictooth)wereamassed.Rightand leftpremolarsfromthesamepatientwereused.Onewaskept intact,andtheotherwaspreparedtoreceivetheprosthetic crown.

prostheticcrowns[15].Thewholecloningprocessispresented inFig.1.

The Vita MarkII® (Vita Zahnfabrik, Bad Säckingen, Switzerland) ceramic blocks of albite-enriched feldspathic ceramicwereused.Theirabrasioncoefficientisclosetothatof naturaldentalenamel.Aftermilling,theextradoswereglazed (Azkent®,VitaZahnfabrik,BadSäckingen,Switzerland).

Thecrownswerecementedontothepreparedteethusing RelyxUnicem®adhesivecement(3MESPEDentalDivision,St.

Paul,MN,USA)followingthestandardclinicalprotocolofillu- minationofeachsideofthecrown for4sat3000mW/cm2 withaSwissmasterLight®lamp(E.M.S.,Nyons,Switzerland).

2.3. Specimenpreparation

Afterextraction,theteethweredisinfectedandstoredinphys- iological serum with traces of chloroform.The teeth were longitudinally cutinthe vestibular–lingualorientation,and oneofthetworesultingpartswasremovedwithadiamond disc.Longitudinalcutshavebeenusedtoallowplanarobser- vation and toappreciatethe differentbehaviors insidethe toothofthenaturalDEJandoftheDCJinterfaces.Thetooth wasthengluedintothesampleholderwithalayerofAraldite® (HunstmanAdvancedMaterials,TheWoodlands,Texas,USA).

Thesampleholdershavebeencastinchromiumcobaltusing the imprintofaroot. Themechanicalstabilityofthespec- imenholderswasvalidatedbyaspeckleinterferometry(SI) experiment.

2.4. Loadingsystem

The compression test device fulfills the high sensitivityof speckleinterferometryandcopeswiththerigidbodymotions ofthewholesystem.Thesampletoothcementedinthesam- pleholderwasplacedundertheforcetransducer(Model31, HoneywellInternational,Morriston,NJ,USA).Thismid-range precision miniature load cell isslowly translated vertically bythemotor(M-235®,PI.Karlsruhe,Germany).Thesystem cangenerateaforce-drivendisplacement(C-862MercuryPI, Karlsruhe, Germany) or simply a user’s displacement.The compression apparatus communicates with the computer throughaNIUSB-6251port(NationalInstruments,Austin,TX, USA)andisinterfacedwithanin-houseLabViewprogram.The entiremechanical systemwas boltedonto theholographic tabletop(Newport,Irvine,CA,USA).Verysmalldisplacement steps,assmallas1.6nm,cantheoreticallybeachieved.The

(3)

Fig.1–Cloningprocess:theintactnaturalcrownsample(A),opticalprint(B),shaping(C),opticalprintofthesecondtooth preparedtoreceivetheprostheticclone(D),adaptationoftheshapingonthetoothprepared(E),CADfinished,CAMready (F),ceramicblockinthemillingunit(G),theprostheticclonemilled(H),theprostheticclonecementedonthetoothprepared (I),thenaturaltooth(J),verticalcuts(K),prostheticclone(L)naturaltooth.

forcecanbeappliedtothetoothdirectlywiththeforcetrans- ducerorthrougharelayrod.Forcehasalwaysbeenapplied tothesamepartofthelingualcusp.PreliminarytestingbySI showedgoodperformancesofthemechanicalset-upandno spuriousdisplacements.

2.5. SIapparatus

Theopticalset-upwaspreviouslypresentedindetail[16].The frequency-doubledYAGlaseremits50mWat532nmwave- lengthinthegreenrange.Thelaserbeamistheninjectedin aCOTS(commerciallyoff-the-shelf)system(CanadianInstru- ments,Nottingham,UK)offeringinjection,variableintensity couplingintheoutputfibers,andphaseshifting.

Therearetwoinputfibers:oneforinjectionandonefor detectionofthereflectedsignalattheoutputfiberinterfaces.

Partsoftheoutputfibersarebaredandwrappedaroundpiezo- electrictransducers.Thephaseshiftisappliedoneitheror bothofthetwooutputfibersbyapplyingavoltageatthePZT andthusgeneratingatinyextensionofthefiber.Thesystem isprotectedfromthermalandmechanicaleffectsbyaplastic boxandiseasilybreadboardable.Phaseshiftswerecalibrated usingcommonprocedures[16].

Asensitiveopticalfiberin-planeinterferometerhasbeen designedwithsensitivityvectorSv.Horizontalsensitivityis achieved.Two symmetricalbeamsproducean interference signalonthewholeobjectandthenilluminatethesamples.

Theobjectsareopticallyrough-renderedbywhitepowder.An XC70CCDcamera(Sony,Tokyo,Japan)recordsthesamplesur- faceunderloadingforces.Theimagesarethenstoredinlive memoryoronthecomputer’sharddisk.

Theimageprocessingwasperformedusingtheappropri- ate software in LabView, and the results are presented as vectormapsorfalsecolormaps.Isodisplacementmapscan bevisualizedinrealtimeduringtheloadingofthesample.

Thesystemcanhandleareasrangingfrom5mm×5mmto 1m×1mwhenusingtheappropriatetypeoflaserandload- ingsystem.Themeasurementuncertaintyisapproximately 50nm, which iscommon forinterferometricmeasurement inacontrolledenvironment.Thedisplacementresolutionis

approximately10nm,whilethespatialresolutionisdirectly linkedtothemagnificationoftheobjectsceneontheimage sensor(1280×900pixels).

A “4-buckets” phase shifting algorithm leads to phase variationsduringthecompressiontest[17].Duringthetest, the initialphase statewas memory-resident and real-time subtractedfromthe currentstate.Sometimesthereference statewasalsorefreshedbecauseforsomeloadingsteps,the number offringescan betoohigh,and theresultingnoise wouldinterferewiththeinterpretationoftheresultingfringes.

Interferogramsshowthein-planedisplacementsfromphase shiftingspeckleinterferometry.Highestqualityimageswere storedontheharddiskandoverlaidwithupperjawposition andloadvalue(N).

2.6. Typicalexperiments

Specimens were white powdered using Eutest 3Developer Castolin Eutecticpowder (Castolin, Lausanne, Switzerland) togenerateauniformdiffusingsurfaceand toavoiddiffer- entmodulationsbetweendentinandenamelorceramicand dentin.Thesameloadswereappliedtothenaturaltoothand theprostheticcrownsamplestoallowcomparisonsoftheir respectivecompressivebehaviors.

Thestartingloadwasapproximately0N.Thecompression was increasedstepwise,performing discretedisplacements of the transducertip (one stepis approximately 1.6nmof Y-displacement).Therefore,agreaternumberofstepscorre- spondstoahighercompression.Thesamplecanbeloaded orunloaded.Theloadingrangeappliedtothedifferentsam- pleswasbetween5Nand120N.TheCCDcamerarecordsat thesamplesurfacetheinterferencesofthetwoillumination beamscomingfromthetwooutputopticalfibers.Livefringes aredisplayedbetweenareferencestateandthecurrentload state.Betweenminimalandmaximalloading,differentphase mapsarerecordedandstoredinthememory.

Themechanicaldeformationsarecomputedfromthedis- placementmapsgeneratedfromthephasedifferencemaps.

Speckle interferometry is a relative displacement mea- surement. The maximum range between two successive

(4)

Pleasecitethisarticleinpressas:FagesM,etal.Comparativemechanicalbehaviorofdentinenamelanddentinceramicjunctionsassessedby measurementsisapproximately20␮m.Inourexperiments,

weneedtorecord smallerstepsassomemechanicalnoise appears.Therefore, newdisplacement references(zerodis- placementreset)arerecordedduringthetest.

2.7. Displacementcalculations

Different operation modes of SI are commonly used, e.g., subtraction-mode, time-averaged SI, and double-pulsed SI [16].Inthiswork,wefocusonsubtraction-modeSI,ormore specifically, onphase-shifting SI, which is mainlyused for staticdeformationmeasurements.

Combining the primary interference pattern phase changes between the recordings yields new secondary interferencefringes(alsocalledcorrelationfringes).

Thevariableϕsdenotesthestartphase(alsocalledspeckle phase)attheinitialstateoftheobject.Thevariableϕrepre- sentsthephasechangebetweentwostates.

Thesespeckleinterferogramscanbesubtractedandlead tothefollowingequationforthesecondaryinterferencefringe pattern,assumingperfectspatialcorrelationbetweenthetwo primaryspecklepatterns:

I1−I2=2

IrIo(cos(ϕs+ϕ)−cos(ϕs))

Currently,noiselimitstheaccuracyofintensitysubtraction SItoapproximately15nm.Regardingthein-planesensitivity ofthesetup,theangleoftheimpingingbeamisapproxi- mately30anddeterminesthecorrespondencebetweenthe phasegraylevelvariationandthein-planedisplacementux.

Inourinterferometer,thewavelengthofthelaseris532nm, anditsrelationshipwiththein-planedisplacementisgivenby thefollowingequation:

ux= 4sinϕx

The resulting variationof onegray level ofphase ux is approximately2.08nm.

3. Results

Five setsoftwosampleseach(naturaltoothand prosthetic crown)wereproduced.Theexperimentalprotocolwastested andvalidatedwithfourofthem.Presentedresultscorrespond solely tothe fifthsample(for natural tooth and prosthetic clone).

Theinterferometricimagesdistinctlyshow thebehavior of the samplesand confirm the quality ofthe mechanical apparatusandthe integrityofthededicatedsampleholder (Figs.2and3).

AnaturaltoothispresentedinFig.2.Figurecaptionsalso presentthescreenshotnumber(orimagenumber),theforce appliedtothesample,theforcedifferencefromthereference state,andforcefromthereferencestate(orphasereset).

Fig.2Adisplaysthesampleunderwhitelightbeforepaint- ing.Fig.2B–DisSIimagesrecordedatdifferentcompression levels and present typical fringes. Fringesoccur when the displacement inducesan optical phaseof 360–0. The dis- placement inthe Xdirectioniscomputed from theoptical phase.

InFig.2B–D,differentcontinuousgraylinesdemarcatethe DEJ(redarrows)correspondingtotheimagetakeninwhite

Fig.3–Prostheticcrownsampleunderdifferentloads.(A)Whitelightimages.(B)Screenshotno.08:force36.78N,F:

2.57N(newref:41.01N).(C)Screenshotno.15:force77.56N,F:5.29N(newref:82.85N).(D)Screenshotno.33:force 64.09N,F:18.76N(newref:41.01N).

(5)

Fig.4–Naturaltoothbehaviorataloadof38.65N,F=1.74N,newref:40.39N.(A)SIimage:thesinglewhiteline

correspondstotheregionofinterest(ROI)usedforthecalculationofdisplacement.(B)Displacementcurvealongthewhite line,displacementsinnmversuspositioninpixels.Stepisabout43nm.

light(2A).TheDEJisclearlyvisiblewhentheappliedforce reaches35.5N.TheDEJisalwaysmorevisibleinfrontofthe loadingpoint.

Fig.3Apresentsaprosthetic crownsampleunderwhite lightbeforepainting,andFig.3B–Darerecordedatdifferent compression levels and present typical fringesatdifferent loads.

TheDCJappearsfrom38NandisclearlyvisibleinFig.3B–D (redarrows).Fortheprostheticcrowns,itappearsasacontin- uousgraylinecorrespondingtotheimagetakeninwhitelight (Fig.3A).

TheSIimagesdisplayedinFig. 2B–Dshowthatthenat- uralenamelcapmovesindependentlyfromthedentin.This differenceisclearlydelimitedbyalinecorrespondingtothe anatomicallocationofthedentin–enameljunction(DEJ).For theprostheticcrown,intheSIimages(Fig.3B–D)thesame kind ofshift occursatthe cement junctionofthe ceramic crownwiththedentin.TheDEJislesswellmarkedthanthe DCJduetothesmallerassociateddisplacements.Largevaria- tionsinintensity(Fig.3CandD)correspondtofringesresulting fromrigidbodymotion(inplanerotationprojectedontothe sensitivityvector).

Thehighestloadingvaluesenablingthedistinctionofthe interfacezonewere117.4Nfortheprostheticcrownand82.5N forthenaturaltooth.Beyond120N,allsamplesbehavedlike rigidbodies.Around200N,somesamplesweredestroyeddue tofracturesofthe brittlematerials.From allofthescreen- shots,differentimageswerechosenforuseincomputingthe displacementmaps.

In Fig. 4A, from left to right, we denote the transition betweenlightgrayanddarkgraycorrespondingtotheregion betweenthedentinandtheenamel.Onehorizontalwhiteline hasbeen definedasthe regionofinterest(ROI).In Fig.4B, the curve representsthe displacement change innanome- tersversusthepositionalongthewhitestraightlineshown inFig.4A.Therelativedisplacementbetweenthedentinand

the enamel is 52nm for loads between 38.6N and 40.4N (F=1.8N).

InFig.4B,thegraylevelarerisingattheendofthecurveas itisclosetotherightedgeofthetooth,itisclearlyvisibleon thenativeimagewithhighermagnification.Thisisgenerated bythesmoothinplanetiltofthepalatinecuspidfollowingthe upperdisplacementoftheupperjawrodfromthemechanical testingastheforcedecreasesfrom40.39Nto38.65N.

InFig.5A,infrontofthecuspsubjectedtotheload,the delineationmadebytheDEJisvisible,andthegraylevelsdiffer becauseofadifferentaccommodation.

Tocalculatethedisplacementvalue,sixredequalparal- lellinesweredefinedperpendicularlyacrosstheDEJ.Thered linesareseparatedby1pixelonetotheother,andsoappear asaboldredlineonthefigures.Thedisplacementistheaver- agevalueofthesix-stackedprofiles.InFig.5B,theblackcurve isthemeanvaluefittingofthebluecurvevaluesalongthe sixpaths,andthebluecurveisoneofthesixdisplacement curves.Themeanrelativedisplacementbetweenthedentin andtheenamelisabout20nmforloadsbetween39.21Nand 40.39N(F=1.18N).

Thesameanalyticalprocesswasappliedfortheprosthetic crowns(Figs.6–8).

In Fig.6A, onehorizontalblack linewas definedas the regionofinterest,asthetechnicalnoisewaslessprominent than forthe natural tooth.The area of interest is located inafringeinfrontofthestresszonefromleft toright.We denotethetransitionbetweenlightgrayanddarkgraycorre- spondingtotheregionbetweenthedentinandtheceramic cap.InFig.6B,thecurverepresentsthedisplacementchange innanometersversusthepositionalong thewhite straight lineshowninFig.6A.Therelativedisplacementbetweenthe dentinandtheceramiccapis43nmforloadsbetween82.8N and76.3N(F=6.5N).

InFig.7,toevaluatethedisplacementvalues,sixequalpar- allelstraightpathshavebeendefinedintheregionofinterest

(6)

Pleasecitethisarticleinpressas:FagesM,etal.Comparativemechanicalbehaviorofdentinenamelanddentinceramicjunctionsassessedby Fig.5–Naturaltoothbehaviorataloadof39.21N,F=1.18N,newref:40.39N.(A)SIimage:sixredequalparallellines, 1pixelseparated,aredefinedacrosstheDEJ.(B)Displacementcurves:bluecurve:displacementvaluesalongoneofthesix redlines.Blackboldcurveisthemeanvaluefittingofthe6bluecurves.(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthearticle.)

acrosstheDCJinthepalatinezoneinfrontoftheloadingpoint (Fig.7A).ThesixredlinesaredrawnperpendicularlytotheDCJ toaccuratelymeasurethedisplacementvariationacrossthe DCJ.Thisismuchappropriatethanthesinglehorizontalblack lineforFig.6astheredlinesenabletherealcomparisonfrom onesidetotheotherperpendiculartotheDCJ.

InFig. 7B,the displacement isdisplayedas the average valueofthesixstackedprofiles.Theblackcurveisthemedian valuefittingofthebluecurvevalues.Inthiscase,therelative displacementisapproximately95nmforloadsbetween82.8N and72.8N(F=10N).ItshowsclearlytheeffectoftheDCJact- ingasanaccommodationareafortheapplieddisplacement, butwithasharperslopethanthenaturalDEJ.

TheSIimageinFig.8wasselectedtorepresentthecharac- teristicisodisplacementmapofthediscontinuityzonelocated infrontoftheloadingpointforaceramiccrown.Acolored andzoomedimageisalsopresented.Thefringeshiftinthe

region ofinterest clearlydelineates amechanical interface betweentheceramicandthedentin,whichareseparatedby thecement.

Fig.8presentsthecharacteristicfringesobtainedforahuge load difference(30.07N) andthe importantnoise occurring duetosomespeckledecorrelationeffect.ResultsfromFig.8 showitismandatorytomakestepreferencesenablingsmaller displacementloadandthusverylowdecorrelationnoise.

Fig.9showsthenaturaltoothwiththesamechargethan prosthetictooth(Fig.8)andallowstocompareDEJandDCJ.

4. Discussion

TheimportanceoftheDEJasaninterfacebindingtheenamel and dentinsurfaceshaslong beenrecognized(Tylman [2]).

OurunderstandingoftheroleandthelocationoftheDEJhas

Fig.6–Prostheticcrownbehaviorataloadof76.34N,F=6.51N,newref:82.85N.(A)SIimage:asingleblackline correspondstotheregionofinterest(ROI)usedfordisplacementcalculation.(B)Displacementcurvealongtheblackline, displacementsinnmversuspositioninpixels.Stepisabout43nm.

(7)

Fig.7–Prostheticcrownbehaviorunderaloadof72.85N,F=10N,newref:82.85N.(A)SIimage:sixredequalparallel lines,1pixelseparated,aredefinedacrosstheDEJ.(B)Displacementcurves:bluecurve:displacementvaluesalongoneof thesixredlines.Blackboldcurveisthemeanvaluefittingofthe6bluecurves.Thedisplacementisapproximately95nm.

(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

evolvedwithongoingresearch.Theuniquemechanicalprop- ertiesofthiszonewerefirstrecognizedfrommicro-hardness profiles(Craigetal.[18,19]).WangandWeiner[7]measuredthe strainacrossthiszonewhenacompressiveloadwasapplied andsuggestedthatthisisanimportantworkingpartofthe toothduringmastication.Anasymmetrybetweenenameland dentinwasnotedpreviously(Wood etal. [20])but was not quantified.Bechtleetal.explainedthephenomenonofcrack arrestattheDEJusingtheelasticmodulusmismatchbetween thedentinandtheenamel[21].

It was found (Zaslansky [9]) using SI that a com- pressive load applied to the tip of the main cusp of a human premolar caused the entire enamel cap to

move essentially as a stiff body, tilting toward the buccal surface.

Recently,Barak etal. [22]highlighted theimportanceof enamelinawhole-toothdemonstrationthroughafiniteele- mentmodelstudyandvalidatedtheirfindingsbyametrology method.Chattahetal.[23]showedthattheenamelcapina minipig animalmodeliscapableofdeformingandrotating atloadsaslowas16N.Zaslanskyetal.[9]showedthatthe enamelcapofanisolatedhumanpremolardidnotdeformor rotateatloadslowerthan80N.Humanenamelisstifferthan thatoftheminipig,andthecuspsdonotdeformorcrackuntil highloadsarereached.However,inbothcases,theaimwasto preservethefunctionalityofthegrindingsurfacesoverlong

Fig.8–SIimagesample“prostheticcrown”anddisplacementsshowninacontourcoloredmap.Behaviorforaloadof 52.78N,F=30.07N,newref:82.85N.

(8)

Pleasecitethisarticleinpressas:FagesM,etal.Comparativemechanicalbehaviorofdentinenamelanddentinceramicjunctionsassessedby Fig.9–SIimagesample“naturaltooth”.Behaviorfora

loadof52.3N,F=6.5N,newref:58.8N.

periodsoftime.Theuseoftheseopposingstrategiestoachieve thesameendhasbeenattributedtophylogeneticdifferences inmasticatoryfunction.[24,25].Theminipigmolariscapable ofdeformingandrotatingatlowloads,andtheintrinsicreac- tionofthecrowntoeccentricloadingiscomplementedand evenenhancedbythestructuressupportingthetooth[23].

Inourstudy,weconsideredthehalf-cutcrownbecausethis configurationhasthemajoradvantageofobserving thein- planebehavioroftheDEJandtheDCJinanddoingsofrom eitherfarfromorclosetotheloadingzone.Zaslanskyworked withparallelepipedcutsfrom premolars[9], whileChattah etal.[23–25]studiedwholeteeth.OnSIimages,theinterfaces appeardistinctlyalongtheirentirelengths,thusshowingtheir completeloading(from35.5NfortheDEJonthenaturaltooth andfrom 36Nfortheprosthetic crown).Thefirstinterpre- tationconfirms thatthe enamel bulkand the ceramiccap willmoveslightlyunderloadingasrigidbodies.However,the mechanicalresponseisdifferentforthesameappliedload- ingforce,andthedisplacementislargerforceramicthanfor enamel.ThusinFig.8,ataloadof52.7N,theSIimageclearly showsarelativedisplacementbetweenenamelanddentin.In Fig.9,atasimilarload(52.3N),theimageidentifiestheDEJand thedifferingbehaviorsoftheenamelanddentin.However,it doesnotshowarelativedisplacementashighasinFig.8.This displacementisconfirmedinSIpicturesinFigs.6and7,with valuesof83nmand95nm,respectively.Thisbehaviordemon- stratestheaccommodationstrengthoftheDCJandconfirms itsprotectiverolefortheceramiccaps.

Moreover, we emphasize that the displacement of the crown,whetherenamelorceramic,isdifferentifthemea- surementareaisfarfromorclosetotheloadingzone.Ineach case,thelargerdisplacementislocatedoppositetotheload.

Thegraylevelsmapsalsoshowadisplacementoftheopposite cuspidbutofsmallermagnitude.

For the natural tooth, Zaslansky writes, “the asymme- try in stiffness between the buccal and lingual sides may

tainload(117.4Nfortheprostheticcrownand82.6Nforthe naturaltooth),theSIimagesshowthattheDEJandtheDCJ cannotbeobserved.Whentheinterfacesinbothsettingscan nolongeraccommodatetheloadingstress,theteethbeginto actaswholerigidobjects,andhigherloadingforcesgenerate cracksandfracturesofthesamples.

OurworktendstoconfirmbothZaslansky’sandWeiner’s studies:theDEJzoneisanimportantpartofthetoothstruc- ture.Moreover,wehavedemonstratedacomparablebehavior fortheDCJ.Webelievethesezonesarecrucialforthestress resistanceofthecrownstructure,whether naturalor pros- thetic.Formonoblocvitreousceramicprostheticcrowns,load resistanceisaresultofthecementingprocess[27,28].

ThesoftDEJinterfaceisactuallyagradedstructure,and muchremainstobeunderstoodaboutthemannerinwhich thewholetoothbehavesunderload.Figs.6and7showthat theDCJpresentsagradedbehaviorbutwithasharperslope thantheDEJ.Aninterestinguseofdento-prostheticspacing couldbetoselectthecementjointthicknessbaseduponthe cementelasticmodulus.Thiswouldrefineattemptstomimic thephysiologicalbehaviorofthenaturaltooth[29],accord- ingtothebiomimeticconcept[30].Thisseemsalreadyvery importantasseveralauthorshaveinvestigatedtheeffectof differences in the resin-cement elastic moduluson stress- transmissiontoseveralcompositeorceramicreconstructions [31,32]. Other authors have studiedthe influence ofdiffer- entbondingagentsunderstressontheinternalandmarginal adaptationofcompositeorceramicreconstructions[33].

Thebiomimeticprinciplethroughtheuseofreconstruction ceramicsthathavewearcoefficientsclosetothatofnatural enamelresultingfromcementswithanelasticmodulussim- ilartothatofthenaturalDEJ,wecanexpecttheconstruction ofrealbiomimeticprostheticteethinthenearfuture.

5. Conclusion

Speckleinterferometryishighlyrecommendedforperforming displacement measurements fordental biomechanics.The SIapproachallowsforthemeasurementofthemechanical propertiesofbiologicalstructuresandotherbiomaterialsthat areafewhundredmicronsthick.Thestrainaccommodation capacityofthetoothisderivedfromthedifferentialdisplace- mentbetweentheenamelandthedentin.Thedentin–enamel junctionactsasaninterfaceuntilacertainmaximalloading.

Beyondthisthreshold,theloadingaccommodationproperty

(9)

disappears,andthetooththenbehavesasarigidbody.We demonstrateasimilarbehaviorfortheprostheticcrowntooth.

Inthiscase,theenamelisreplacedbytheceramiccrownand thedentin–enameljunctionbythedentin–cementjunction.

ThesebehaviorsindicatetheinterfaceroleoftheDEJandthe DCJinthecapacityofteethtoaccommodatethestressesof theirphysiologicalfunctionsorevenoftheirparafunctions.

Forthecementcharacteristicsandthecementthicknessused inthis paper, the accommodation effect ofthe DCJ isless markedthanthatoftheDEJ.Futurestudywilldealwiththe effectofthecementcharacteristicsandthecementthickness byapplyingSIforsampleshavingdifferentcementsanddiffer- entthicknessofcementjoint,thankstotheCAD/CAMsystem.

ThelimitsofSImeasurementarethesensitivitytorigidbody motionanddecorrelationnoiseaffectingthespatialresolu- tion.Thiscanbeenhancedbyusingsmallerpixelsensorswith higherphotographicmagnification.

references

[1] ImbeniV,KruzicJJ,MarshallGW,MarshallSJ,RitchieRO.The dentin–enameljunctionandthefractureofhumanteeth.

NatureMaterials2005;4:229–32.

[2] TylmanSD.Thedentino-enameljunction.JournalofDental Research1928;8:615–22.

[3] HabelitzS,MarshallSJ,MarshallGW,BaloochM.The functionalwidthofthedentino-enameljunction determinedbyAFM-basednanoscratching.Journalof StructuralBiology2001;135:244–301.

[4] LinCP,DouglasWH.Structure-propertyrelationsandcrack resistanceatthebovinedentin–enameljunction.Journalof DentalResearch1994;73:1072–8.

[5] MeyerJM,Bodier-HoulleP,CuisinierFJG,LesotH,RuchJV.

Initialaspectsofmineralizationatthedentino-enamel junctioninembryonicmouseincisorinvivoandinvitro:a TEMcomparativestudy.InVitroCellularandDevelopmental Biology-Animal1999;35(March(3)):159–68.

[6] MarshallGW,BaloochM,GallagherRR,GanskySA,Marshall SJ.Mechanicalpropertiesofthedentin–enameljunction:

AFMstudiesofnanohardness,elasticmodulusandfracture.

JournalofBiomedicalMaterialsResearch2001;54:87–95.

[7] WangR,WeinerS.Strain–structurerelationsinhumanteeth usingMoiréfringes.JournalofBiomechanics1998;31:135–41.

[8] ZaslanskyP,ShaharR,BarakMM,FriesemA,WeinerS.

Toothandbonedeformation:structureandmaterial propertiesbyESPI.ProceedingsofSPIE2006;6341.

[9] ZaslanskyP,FriesemAA,WeinerS.Structureand mechanicalpropertiesofthesoftzoneseparatingbulk dentinandenamelincrownsofhumanteeth:insightinto toothfunction.JournalofStructuralBiology

2006;153(February(2)):188–99[Epub.2005December9].

[10] BieniekKW,MarxR.Themechanicalloadingcapacityof newall-ceramiccrownandbridgematerials.Schweizer MonatsschriftfurZahnmedizin1994;104(3):284–9.

[11] GonzagaCC,CesarPF,MirandaJrWG,YoshimuraHN.Slow crackgrowthandreliabilityofdentalceramics.Dental Materials2011;27(April(4)):394–406[Epub.2010December 24].

[12] AddisonO,SodhiA,FlemingGJ.Seatingloadparameters impactondentalceramicreinforcementconferredby cementationwithresin-cements.DentalMaterials 2010;26(September(9)):915–21.

[13] AttiaA,KernM.Influenceofcyclicloadingandlutingagents onthefractureloadoftwoall-ceramiccrownsystems.The JournalofProstheticDentistry2004;92(December(6)):551–6.

[14] GuardaGB,Gonc¸alvesLS,CorrerAB,MoraesRR,Sinhoreti MA,Correr-SobrinhoL.Lutingglassceramicrestorations usingaself-adhesiveresincementunderdifferentdentin conditions.JournalofAppliedOralScience2010;18(June (3)):244–8.

[15] FasbinderDJ.TheCerecsystem:25yearsofchairside CAD/CAMdentistry.JournaloftheAmericanDietetic Association2010;141(June(Suppl.2)):3S–4S.

[16] SlangenP,DeVeusterC,RenotteY,BerwartL,LionY.

Computer-aidedinterferometricmeasurementsofdriftand phaseshiftercalibrationforDSPI(digitalspecklepattern interferometry).OpticalEngineering1995;34(12):

3526–30.

[17] CreathK.Phase-measurementinterferometrytechniques.

In:ProgressinopticsXXVI.ElsevierSciencePublisherB.V.;

1988[Chapter5]p.349–393.

[18] CraigR,PeytonFA.Themicro-hardnessofenameland dentin.JournalofDentalResearch1958;37:661–8.

[19] CraigR,GehringP,etal.Relationofstructuretothe microhardnessofhumandentin.JournalofDentalResearch 1959;38:624–30.

[20] WoodJD,WangRZ,etal.Mappingoftoothdeformation causedbymoisturechangeusingMoiréinterferometry.

DentalMaterials2003;19:159–66.

[21] BechtleS,FettT,RizziG,HabelitzS,KlockeA,SchneiderGA.

Crackarrestwithinteethatthedentinoenameljunction causedbyelasticmodulusmismatch.Biomaterials 2010;31(May(14)):4238–47[Epub.2010February18].

[22] BarakMM,GeigerS,ChattahNLT,ShaharR,WeinerS.

Enameldictateswholetoothdeformation:afiniteelement modelstudyvalidatedbyametrologymethod.Journalof StructuralBiology2009;168:511–20.

[23] ChattahLT,ShaharR,WeinerS.Designstrategyofminipig molarsusingelectronicspeckleinterferometry:comparison ofdeformationunderloadbetweenthetoothmandible complexandisolatedtooth.AdvancedMaterials 2009;21:413–8.

[24] StraitDS,RichmondBG,SpencerMA,RossCF,DechowPC, WoodBA.Masticatorybiomechanicsanditsrelevanceto earlyhominidphylogeny:anexaminationofpalatal thicknessusingfinité-elementsanalysis.JournalofHuman Evolution2007;52(May(5)):585–99.

[25] ChattahNL,KupcikK,ShaharR,HublinJJ,WeinerS.

Structure-functionrelationofprimatelowerincisor:astudy ofthedéformationofMacacadentitionusingelectronic specklepatterninterferometry(ESPI).JournalofAnatomy 2011;218(1):87–95.

[26] NakamuraT,WakabayashiK,KinutaS,NishidaH,Miyamae M,YataniH.Mechanicalpropertiesofnewself-adhesive resin-basedcement.JournalofProsthodonticResearch 2010;54(April(2)):59–64[Epub.2009October30].

[27] AttiaA,AbdelazizKM,FreitagS,KernM.Fractureloadof compositeandfeldspathicallceramicCAD/CAMcrowns.

JournalofProstheticDentistry2006;95(February(2)):

117–23.

[28] AttiaA,KernM.Fracturestrengthofallceramiccrowns lutedusingtwobondingmethods.JournalofProsthetic Dentistry2004;91(March(3)):247–52.

[29] UrabeI,NakajimaS,SanoH,TagamiJ.Physicalpropertiesof thedentin–enameljunctionregion.AmericanJournalof Dentistry2000;13(June(3)):129–35.

[30] MagneP,BelserU.Understandingtheintacttoothandthe biomimeticprinciple.In:Magne,Belser,editors.Bonded porcelainrestorationsintheanteriordentition:a

biomimeticapproach.Chicago:QuintessencePublishingCo.;

2002.p.23–55.

(10)

Pleasecitethisarticleinpressas:FagesM,etal.Comparativemechanicalbehaviorofdentinenamelanddentinceramicjunctionsassessedby

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

(2014) Comparison of the mechanical properties of the anterior lens capsule following manual capsulorhexis and femtosecond laser capsulotomy. (2015) Evaluation of the

(2014) Comparison of the mechanical properties of the anterior lens capsule following manual capsulorhexis and femtosecond laser capsulotomy. (2015) Evaluation of the

Properties of the NR/BA nanocomposites were assessed in dynamic mechanical thermal analysis, tensile and fracture mechanical (J-integral) tests.. Differential scanning

In Chapter 1 micro-mechanical properties of micro-pillar comprise of multiple Ti/Au layers and structure stability of micro-cantilevers utilizing the Ti/Au

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Interesting results can be found when teeth are loaded and tested, which highly depend on the mechanical properties (elastic modulus, flexural strength, fracture toughness) of