• Nem Talált Eredményt

thrust uses

N/A
N/A
Protected

Academic year: 2022

Ossza meg "thrust uses"

Copied!
28
0
0

Teljes szövegt

(1)

S I M U L A T I O N O F M A N N E D L U N A R L A N D I N G

1 2 3

E . M a r k s o n , J. B r y a n t and F . B e r g s t e n M a r t i n C o m p a n y , B a l t i m o r e 3, M a r y l a n d A B S T R A C T

A p r e d i c t i v e type of guidance s y s t e m f o r a m a n - i n - t h e - l o o p lunar landing is d e v e l o p e d w h i c h u s e s a n o v e l solution t o t h r e e - d i m e n s i o n a l p a r t i c l e m o t i o n f o r r e p e a t e d p r e d i c t i o n s of t r a j e c t o r y end c o n d i t i o n s . A n e f f i c i e n t E u l e r angle p r o g r a m and an a s s u m p t i o n of constant t r a n s l a t i o n a l thrust e n t e r into the p r e d i c t i o n t e c h n i q u e . T h e p r e d i c t e d end conditions a r e c o m p a r e d t o a set of d e s i r e d end c o n d i t i o n s , and a p p r o p r i a t e e r r o r s i g n a l s a r e g e n e r a t e d f o r p i l o t d i s p l a y and autopilot c o n t r o l s . A d i s c u s s i o n of the r e s u l t s of a s i m u l a t i o n p r o - g r a m using this s y s t e m i s g i v e n , c o v e r i n g the m e c h a n i z a t i o n , the d i s p l a y r e q u i r e m e n t s , and the e f f e c t s of "man in the l o o p . "

During manual o p e r a t i o n , the p i l o t l i t e r a l l y f l i e s the p r e d i c - tions t o the point w h e r e t e r m i n a l d i s p l a y s a r e a c t i v a t e d f o r the final pitchup and d e s c e n t m a n e u v e r o v e r the landing s i t e . A n " o u t - t h e - w i n d o w " a p p r o a c h to d i s p l a y s f o r lunar touch- down i s d i s c u s s e d .

I N T R O D U C T I O N

A n i n v e s t i g a t i o n w a s made of a m a n - i n - t h e - l o o p lunar landing, using a p r e d i c t i v e guidance t e c h n i q u e . T h e d y n a m i c a s p e c t s of the landing w e r e s i m u l a t e d . T h e s i m u l a t i o n w a s p e r f o r m e d w i t h a f i x e d b a s e s i m u l a t o r d e s i g n e d f o r o n e - m a n c o n t r o l .

T h e lunar landing m a n e u v e r i s d i v i d e d into f i v e sequential o p e r a t i o n a l p h a s e s : d e o r b i t , c o a s t i n g d e s c e n t , b r a k i n g , t e r - m i n a l m a n e u v e r and h o v e r t o touchdown. T h e s e p h a s e s a r e P r e s e n t e d at A R S L u n a r M i s s i o n s M e e t i n g , C l e v e l a n d , July

17-19, 1962.

"'"Engineering S p e c i a l i s t . 2

E n g i n e e r i n g S p e c i a l i s t .

^Senior E n g i n e e r .

(2)

MARKSON, BRYANT, A N D BERGSTEN

i l l u s t r a t e d in F i g . 1. T h e landing i s a s s u m e d t o take p l a c e after a d e o r b i t f r o m a 100-naut m i c i r c u l a r o r b i t a b o v e the m o o n1 s s u r f a c e . F r e e c o a s t i s a s s u m e d f r o m the t i m e d e - o r b i t i s c o m p l e t e t o the point of thrust i n i t i a t i o n f o r the l a n d - ing m a n e u v e r .

Range a n g l e s f r o m 45° t o 180° a r e c o n s i d e r e d f o r the

c o a s t , r e s u l t i n g in i n i t i a l c o n d i t i o n s f o r the b r a k i n g m a n e u v e r as shown in F i g . 2. T h e b r a k i n g phase i s r e q u i r e d to r e - m o v e on the o r d e r of 98% of the t o t a l v e l o c i t y , ending n o m i - nally w i t h the v e h i c l e at 1000 ft a b o v e the s u r f a c e w i t h a v e l o c i t y l e s s than 150 f p s .

The t e r m i n a l m a n e u v e r i s s t a r t e d w h e r e the b r a k i n g m a - n e u v e r s t o p s . Due t o the flat c h a r a c t e r i s t i c s of landing t r a - j e c t o r i e s made f r o m a c i r c u l a r o r b i t , the thrust v e c t o r at the initiation of the t e r m i n a l phase i s g e n e r a l l y at an a n g l e l e s s than 30°, r e l a t i v e t o the h o r i z o n t a l . T h u s , the p r i m a r y p u r - p o s e of the t e r m i n a l m a n e u v e r i s t o null the l a t e r a l v e l o c i t i e s , w h i l e s m o o t h l y pitching the thrust v e c t o r o v e r t o a v e r t i c a l , or h o v e r i n g , attitude. T h e final d e s c e n t i s v e r t i c a l and i s made at v e l o c i t i e s r a n g i n g f r o m about 50 fps to a touchdown speed of a p p r o x i m a t e l y 6. 75 f p s .

The p o r t i o n of the lunar landing m a n e u v e r r e p o r t e d h e r e s t a r t s during the c o a s t i n g d e s c e n t phase 30 s e c b e f o r e the b r a k i n g thrust i s i n i t i a t e d . During the b r a k i n g m a n e u v e r , c o n t r o l i n f o r m a t i o n i s p r e s e n t e d to the p i l o t in the f o r m of p r e d i c t e d p o s i t i o n r e l a t i v e t o the t a r g e t . A n a c c e p t a b l e safe band of t e r m i n a l altitudes h^ and h ^ , defined by sinking speed o v e r the t a r g e t , p r o v i d e s the p r i m a r y pitch c o m m a n d . The p r e d i c t e d t e r m i n a l altitude h^, b a s e d on p r e s e n t E u l e r angle r a t e s that a r e a s s u m e d constant during a p r e d i c t i o n , p r o v i d e the p r i m a r y c o m m a n d f o r p i t c h r a t e . Y a w angle and yaw r a t e c o n t r o l s a r e b a s e d on p r e d i c t e d l a t e r a l r a n g e e r - r o r s . T h r o t t l i n g c o m m a n d s a r e made in r e s p o n s e t o d o w n - r a n g e e r r o r s .

A s i n g l e c o n t r o l , then, is p r o v i d e d f o r e a c h c o o r d i n a t e - - v e r t i c a l , longitudinal r a n g e and l a t e r a l r a n g e . T h e d i s p l a y s and c o c k p i t , as m e c h a n i z e d f o r the s i m u l a t i o n , a r e d e s c r i b e d in F i g s . 3 and 4.

T h r e e t y p e s of s t a b i l i z a t i o n and c o n t r o l s y s t e m s w e r e p r o v i d e d f o r the s i m u l a t i o n . T h e f i r s t w a s a p r o p o r t i o n a l damping c o n t r o l , w h i c h o p e r a t e d only when the p i l o t made an input c o m m a n d in pitch o r y a w . R o l l c o n t r o l w a s o v e r - damped with no p i l o t input and undamped w i t h p i l o t input.

(3)

T h e s e c o n d type of c o n t r o l p r o v i d e d a c o n v e n t i o n a l , c o n v e r - gent l i n e a r s y s t e m w i t h the p i l o t in the l o o p . T h e t h i r d w a s a c o n v e n t i o n a l c l o s e d l o o p f o r automatic c o n t r o l .

It w a s found that the p i l o t could p e r f o r m his a s s i g n e d task as w e l l as the autopilot s y s t e m , and his fuel usage w a s c o m - p e t i t i v e with the automatic s y s t e m . In g e n e r a l , the p i l o t i m - p r o v e d t o t a l s y s t e m p e r f o r m a n c e , in t h a t - - w i t h m a r g i n a l i n i - t i a l c o n d i t i o n s - - h e w a s able t o take c o m m a n d of the v e h i c l e and r e c o v e r f r o m a p o t e n t i a l i m p a c t .

G U I D A N C E D E V E L O P M E N T

The d e v e l o p m e n t of the guidance philosophy f o r this s i m u - lation w a s r o o t e d in the b e l i e f that man can a c c o m p l i s h a lunar landing if he i s g i v e n the r i g h t i n f o r m a t i o n , a p p r o p r i a t e l y d i s - p l a y e d . P a r t of the study, then, w a s d e v o t e d t o finding the r i g h t i n f o r m a t i o n . D i s p l a y o p t i m i z a t i o n w a s w e l l beyond the s c o p e of an e x p l o r a t o r y i n v e s t i g a t i o n of this t y p e .

B a s i c a l l y , t w o t y p e s of c o n t r o l i n f o r m a t i o n can be used t o guide the p i l o t1 s inputs. T h e f i r s t i s t o fly a p r e d e t e r m i n e d , n o m i n a l flight path w i t h no f r e e d o m of c h o i c e . W i t h this t y p e of c o n t r o l i n f o r m a t i o n , the p i l o t i s a d e x t e r o u s " z e r o - m e t e r r e a d e r . 11 T h e s e c o n d type of c o n t r o l i n f o r m a t i o n i s b a s e d on adaptive path c o n t r o l . C o n t r o l of t h i s type i s much m o r e

" f o r g i v i n g " than a d o w n - t h e - w i r e a p p r o a c h and is m o r e suited to manual o p e r a t i o n , p r o v i d i n g , as it d o e s , a w i d e band of conditions under w h i c h a safe landing can be a c c o m p l i s h e d .

The p r e s e n t study used a d a p t i v e path c o n t r o l as connoting the h i g h e s t p r o b a b i l i t y of e x p l o r i n g the r a n g e of f e a s i b l e i n i - t i a l conditions shown in F i g . 2.

B r a k i n g P h a s e

N o t i n g the s u c c e s s of a r e - e n t r y guidance technique using a p r e d i c t i o n a p p r o a c h , a n a l y s i s w a s initiated in S e p t e m b e r

1961 t o d e t e r m i n e the a p p l i c a b i l i t y of this a p p r o a c h t o the lunar landing. T w o p r o b l e m a r e a s r e q u i r e d r e s o l u t i o n b e f o r e definite c o n c l u s i o n s could be d r a w n . F i r s t , what thrust v e c - t o r c o n t r o l w a s m o s t suitable f o r manual o p e r a t i o n and, s e c - ond, what solution t o the equations of m o t i o n w a s a m e n a b l e t o r e p e t i t i v e solution with the s e l e c t e d flight path c o n t r o l .

T h r u s t V e c t o r C o n t r o l

The thrust v e c t o r must be c o n t r o l l e d in such a m a n n e r that the r a n g e and r a n g e r a t e go t o s p e c i f i c v a l u e s s i m u l t a n e o u s l y .

(4)

MARKSON, BRYANT, A N D BERGSTEN

The thrust magnitude should e x p e r i e n c e as s m a l l a v a r i a t i o n as is p r a c t i c a l to m i n i m i z e the r e q u i r e m e n t s f o r engine t h r o t t l i n g . T o c o m p l e t e the l i s t of r e q u i r e m e n t s , fuel c o n - sumption must not be p e n a l i z e d by the thrust v e c t o r c o n t r o l . In f a c t , it should be r e l a t i v e l y c l o s e to a m i n i m u m , so as t o make p o s s i b l e a r e a l i s t i c e v a l u a t i o n of the p e n a l t i e s i n c u r r e d by manual c o n t r o l .

T h e s e r e q u i r e m e n t s a r e not c o m p a t i b l e . F o r e x a m p l e , 4 m i n i m u m fuel consumption d i c t a t e s constant thrust ( 1 ) , but r a n g e c o n t r o l d i c t a t e s v a r i a b l e t h r u s t . A g a i n , m i n i m u m fuel consumption w i t h a r a n g e r e s t r a i n t d i c t a t e s a c o m p l i c a t e d thrust v e c t o r i n g s y s t e m , w h e r e a s the guidance i n f o r m a t i o n must be d i s p l a y e d s i m p l y and be instantaneously a s s i m i l a b l e by a human i n t e l l i g e n c e . T h e r e a r e other c o n f l i c t i n g r e q u i r e - m e n t s . A r e a s o n a b l e c o m p r o m i s e has b e e n a c h i e v e d and is h e r e d e s c r i b e d . L a w d e n ( 2 ) has noted that an e x t r e m u m of

s o m e payoff function i s obtainable f o r a point p a r t i c l e in a constant g f i e l d w i t h m a s s a function of t i m e , if the thrust v e c t o r d i r e c t i o n is r e p r e s e n t e d by a t i m e - d e p e n d e n t function of the f o r m

, Q a - bt

tan θ = Τ Γ

c - dt

w h e r e θ is the thrust v e c t o r angle in an i n e r t i a l t w o - d i m e n - sional a x i s s y s t e m . F r i e d ( 3 ) has shown that d = 0 f o r r a n g e u n r e s t r a i n e d , and P e r k i n s ( 4 ) has indicated that it i s a p p l i - cable to a b r a k i n g type of m a n e u v e r . It can be shown that a s i m i l a r f o r m is obtained when a t h r e e - d i m e n s i o n a l r e s o l u t i o n of the thrust v e c t o r i s m a d e .

A notable c h a r a c t e r i s t i c of solutions f o r a and b in this function is that the product ( b t ) is g e n e r a l l y s m a l l f o r b r a k i n g t r a j e c t o r i e s in s e l e n o c e n t r i c s p a c e - - a n d with i n i t i a l d e c e l e r a - tions g r e a t e r than 15 f p s / s e c . W i t h this o b s e r v a t i o n , it is p o s s i b l e to l i n e a r i z e and w r i t e

θ = θ + è t ο Ψ = Ψ0 + Ψ t

T h i s c o n c l u s i o n i s supported, in p a r t , by R e f . 5.

4 N u m b e r s in p a r e n t h e s e s indicate R e f e r e n c e s at end of p a p e r .

(5)

[1]

S u m m a r i z i n g the o b s e r v a t i o n s made a b o v e , the authors postulate that a E u l e r angle p r o g r a m having constant f i r s t d e r i v a t i v e s r e p r e s e n t s an e f f i c i e n t thrust v e c t o r c o n t r o l . F u r t h e r m o r e , the r e q u i r e m e n t that r a n g e and r a n g e r a t e be d r i v e n to a s p e c i f i e d value s i m u l t a n e o u s l y is s a t i s f i e d in t w o of the t h r e e d i m e n s i o n s . T h e t h i r d (longitudinal r a n g e ) i s s a t i s f i e d if the thrust magnitude and i g n i t i o n point a r e a l l o w e d to v a r y within s p e c i f i c bounds t o a c c o m m o d a t e e r r o r s in i g - nition t i m e and s y s t e m p e r f o r m a n c e . F i n a l l y , an E u l e r a n g l e p r o g r a m l i k e that g i v e n p r e v i o u s l y i s quickly a s s i m i l a t e d and understood by a human o b s e r v e r - o p e r a t o r .

P r e d i c t i o n Equations

Solution of the d i f f e r e n t i a l equations of m o t i o n f o r guidance p u r p o s e s needs t o be a p p r o x i m a t e o n l y , p r o v i d e d that a c o n - v e r g e n t a p p r o x i m a t i o n i s a c h i e v e d . That i s , as the v e h i c l e a p p r o a c h e s the t a r g e t , it b e c o m e s m o r e a c c u r a t e . It i s n e c e s s a r y that the i n i t i a l i n a c c u r a c i e s do not j e o p a r d i z e the l a t e r s t a g e s of the t r a j e c t o r y . In addition, the p r o p o s e d s y s - t e m e x h i b i t s a c l o s e d - l o o p r e s p o n s e , so that i n a c c u r a c i e s due t o constant e r r o r s o r computational roundoffs a r e d r i v e n to z e r o .

The d i f f e r e n t i a l equation of m o t i o n , in v e c t o r notation, is g i v e n by

d2 r _ _ μ ^ . Τ

—Τ " " 3 " r + Ί Ξ d t r

F o r p r e s e n t p u r p o s e s , the f o l l o w i n g a p p r o x i m a t i o n s can be made: 1) constant thrust and m a s s f l o w ; 2) point p a r t i c l e and 3 ) the change in μ / r i s s m a l l when c o m p a r e d to F / m .

F o r t h e s e a s s u m p t i o n s , E q . 1 b e c o m e s

( D

2

+ ω

2

) Γ = ^ _

mQ - m t w h e r e

3 1 / 2

co — (μ / R ) = constant

T h i s f o r m of d i f f e r e n t i a l equation in s c a l a r s i s a m e n a b l e to solution by the method of v a r i a t i o n of p a r a m e t e r s . It i s shown in R e f . 6, that this method m a y a l s o be a p p l i e d t o v e c t o r s . T h e solution i s obtained as

(6)

M A R K S O N , BRYANT, A N D BERGSTEN

r = (r - — \ — sinο ω J m cot d t ) cos ω τ ο τ

+ — ( r ^ + \ — cos cot d t ) sin ω τ

co Ο

Ο

τ

r = ( r + \ — cos ωΐο J m d t ) cos ω τ ο

τ _^

- (cor" - \ — sin cot d t ) sin ο J m

ο

F o r the case w h e r e burning t i m e s a r e b r i e f sin ω τ ~ ω τ

cos co τ -ν 1 and Eq. 2 reduces to

τ

- - Γ r ^ r cos ω τ ο

ϊ Γ + \ — d t - (ν - \ ο J m \ ° J

F . . , \ 2

— t a t ω τ m /

[2]

[3]

Equations 3 satisfy the r e q u i r e m e n t s for the approximate prediction equations in X and Y . It is n e c e s s a r y , h o w e v e r ,

2

to retain s o m e second-order t e r m s (ω τ ) , in the Ζ d i r e c t i o n , indicated by the remaining cosine t e r m .

Solution f o r Euler A n g l e s and R a t e s

It is assumed that approximate initial values are a v a i l - able for θ^, ô^, and ψ^. A f i r s t p r e d i c t i o n f o r T a n d r i s made f r o m E q s . 3, using t h e s e v a l u e s . T h e d e s i r e d end c o n - ditions at the t a r g e t , r*j. and r£, a r e then c o m p a r e d with the p r e d i c t e d data; the E u l e r angle r a t e s e n s i t i v i t i e s a r e g e n e r a - ted, and the r a t e s a r e updated in the f o l l o w i n g manner:

(7)

θ = θ

C C n " ( n- 1 ) + 9 Ζ / 9 Θ Yt - Y

V V l >

+ 8Y/8

*

The c o m m a n d e d E u l e r angle r a t e s a r e i n t e g r a t e d w i t h r e s p e c t t o t i m e t o p r o v i d e updated v a l u e s f o r and ψ^. T h e c o m m a n d e d v a l u e s f o r the E u l e r a n g l e s p r o v i d e the inputs to the l i n e a r a u t o p i l o t , w h i c h g e n e r a t e the a p p r o p r i a t e e r r o r s i g n a l s f o r use in the automatic m o d e of f l i g h t .

During the manual m o d e , the p r e d i c t i o n s a r e a c t e d upon d i r e c t l y by t h e#p i l o t . N o w , although he has not used the a n g l e s and θ^, he has s e e n the e f f e c t that his p r e s e n t body a n g l e s and body r a t e s w i l l have on his " b u r n o u t "5 c o n d i t i o n s . T h e n , using the a p p r o p r i a t e c o n t r o l , he adjusts his attitude until the p r e d i c t i o n i s f a v o r a b l e . In a s e n s e , the p i l o t is

s o l v i n g f o r the c o r r e c t attitude and attitude r a t e s w i t h his p r e d i c t i v e d i s p l a y s by t r i a l and e r r o r .

T h i s v o l u m e of t e c h n i c a l p a p e r s d o e s not p e r m i t sufficient space t o a l l o w p r e s e n t a t i o n of the final s y s t e m d e s i g n - - a n a n a l y t i c solution w h i c h d o e s not r e q u i r e high-speed i n t e g r a - tion t o s o l v e f o r the d i s p l a y inputs. See R e f . 6 f o r additional i n f o r m a t i o n .

Guidance Inputs f o r D i s p l a y

The guidance i n f o r m a t i o n d i s p l a y e d t o the p i l o t in this study w a s in the f o r m of (r" - r ^ ) . T h i s w a s a c h i e v e d f r o m Eq. 3 by f i r s t e s t i m a t i n g the p r o p e l l a n t r e q u i r e d to d r i v e the quantity |r~- t o z e r o . T h i s e s t i m a t e of p r o p e l l a n t m a s s a l l o w e d a p r e d i c t i o n of t i m e t o g o ( τ ) b a s e d on actual thrust l e v e l . T h i s v a l u e of τ w a s then used in E q . 3 t o p r o d u c e the p r e d i c t e d altitude h^., the p r e d i c t e d longitudinal d i s p l a c e m e n t f r o m the t a r g e t S^, and the p r e d i c t e d l a t e r a l d i s p l a c e m e n t L when the burnout condition i s r e a c h e d .

"Burnout" i s used throughout t o indicate the point in a phase of flight w h e r e c e r t a i n conditions have b e e n s a t i s f i e d . It d o e s not m e a n that the engine i s a c t u a l l y shut down.

(8)

M A R K S O N , BRYANT, A N D BERGSTEN

T h e s e s i g n a l s , h^., and L , w e r e d i s p l a y e d in the c o o r d i - nated p a t t e r n shown in F i g . 4b.

A second p r e d i c t i o n .for burnout altitude (denoted this t i m e as h ) w a s made using θ and the actual value of Θ, so

° ° ( n . - l )

that an u p - t o - d a t e value of θ could be obtained f r o m E q . 4.

η

T h i s w a s done e v e n when the a u t o m a t i c mode w a s i n a c t i v e and the manual m o d e in u s e . T h i s updated value f o r w a s u s e d , t o g e t h e r w i t h the actual value of Θ, t o make a p r e d i c t i o n f o r hc, which is the r a t e of c l i m b at the end of burning f o r a t r a j e c t o r y flown with the c o r r e c t value of θ .

Since it i s d e s i r e d to have a z e r o , o r s l i g h t l y n e g a t i v e , r a t e of c l i m b at the end of burning, the p i l o t w a s g i v e n a p r e d i c t i o n of burnout altitude at w h i c h he would have s o m e p r e v i o u s l y s p e c i f i e d ( i . e . , n o m i n a l ) value of r a t e of c l i m b . T h e s p e c i f i e d v a l u e s w e r e +100 fps and -50 f p s , g i v e n by h^

and h , r e s p e c t i v e l y - - o b t a i n e d f r o m E q . 5 and d i s p l a y e d as

1_J

in F i g . 4b:

h = h + (100 + h )

u c x c

hL= h c- ( 5 0 + hc)

δ Ζ / θ θ δ Ζ / θ θ θ Ζ / δ θ δ Ζ / δ é

It w i l l be w e l l to pause here and consider the physical meaning of the altitude scale in F i g . 4b. The display indi- cates that the v e h i c l e w i l l end up at the altitude indicated by hj. and with a final rate of c l i m b between +100 fps and -50 fps. T h i s is a safe condition, if h^ is at the d e s i r e d altitude.

Suppose, h o w e v e r , that the h^ blip w e r e above ( o r b e l o w ) h^

(or h ^ ) . T h i s would indicate an a r r i v a l at h^ with a rate of c l i m b g r e a t e r than h (or l e s s than hT ) . T h i s is an unsafe

& u L

condition. Both of these e x a m p l e s assume that h and hT u L are in the vicinity of the d e s i r e d burnout altitude. T h i s w i l l be so only if the actual body attitude is c o r r e c t . If the nose of the v e h i c l e is too low on the h o r i z o n , the predicted a l t i - tudes h^ and h ^ w i l l appear low on the display, and v i c e v e r s a for the nose-high condition.

(9)

The g e n e r a t i o n s of the s i g n a l s h,, L , h T and L T a r e b e s t suited t o e v a l u a t i o n by a b i n a r y c o m p u t e r . T h e s e d i s - p l a y s g e n e r a l l y should not be c o n s i d e r e d f o r analog s i m u l a - t i o n , unless h y b r i d computation i s a v a i l a b l e .

The manner in w h i c h this guidance i n f o r m a t i o n is used is d e s c r i b e d in d e t a i l under " D i s p l a y s D e s c r i p t i o n . " V e r y b r i e f l y , if the altitude b a r s , h^ and h ^ , a r e not at the d e - s i r e d t e r m i n a t i o n a l t i t u d e , the p i l o t must pitch the v e h i c l e up to b r i n g the b a r s up and p i t c h down t o l o w e r t h e m . A s he p e r f o r m s this pitchup o r pitchdown m a n e u v e r , he i s o v e r c o n - t r o l l i n g on h^., his p r e d i c t e d a l t i t u d e . T h e c o n t r o l on h^, of c o u r s e , i s v e r y s e n s i t i v e t o Θ, O v e r c o n t r o l l i n g in pitch o r yaw has a v i o l e n t r e a c t i o n on the altitude o r l a t e r a l r a n g e p r e d i c t i o n . H o w e v e r , this r e a c t i o n is a t r a n s i e n t e f f e c t and

s e t t l e s out once h^ and h ^ a r e p o s i t i o n e d .

In c o n t r o l l i n g the thrust l e v e l , the p i l o t d e t e r m i n e s the c o r r e c t t h r o t t l e setting by d r i v i n g the d i s p l a y e d e r r o r in r a n g e t o z e r o . F o r e x a m p l e , if the r a n g e is t o o g r e a t , a h i g h e r d e c e l e r a t i o n r a t e is n e e d e d , and the t h r o t t l e is m o v e d f o r w a r d t o i n c r e a s e the b r a k i n g t h r u s t .

T e r m i n a l P h a s e

B e c a u s e of the l o g i c a l a r r a n g e m e n t of o p e r a t i o n a l p h a s e s , it w a s p o s s i b l e t o t r e a t the t e r m i n a l phase s e p a r a t e l y - - a n a - l y t i c a l l y and p h y s i c a l l y . T h i s phase w a s a r b i t r a r i l y defined as b e i n g the point in the b r a k i n g t r a j e c t o r y w h e r e the h o r i - z o n t a l v e l o c i t y w a s r e d u c e d t o 150 f p s . N o t only d o e s this s i m p l i f y the m o t i o n e q u a t i o n s , but it a l l o w s the e n t i r e p r o b l e m to be r e s c a l e d t o l e v e l s that a r e m o s t a p p r o p r i a t e t o this phase of f l i g h t . T h i s i m p r o v e s a c c u r a c y t o the point w h e r e r e l i a b l e r e a d i n g s on v e l o c i t y at touchdown w e r e obtained and used as inputs f o r landing g e a r d e s i g n .

A s in the b r a k i n g p h a s e , p r o v i s i o n s w e r e made f o r both automatic and manual c o n t r o l . T h e automatic c o n t r o l i n f o r - mation w a s a l w a y s a v a i l a b l e t o the p i l o t , w h e t h e r he e l e c t e d to use it o r not. T h e guidance law w a s taken d i r e c t l y f r o m Ref. 7 and i s p r e s e n t e d h e r e f o r c o m p l e t e n e s s :

R (S -

s

t

)

T K1 - K2 S [ 6 ]

I R I (1 + h / hQ)

(10)

MARKSON, BRYANT, A N D BERGSTEN

w h e r e K2 / 0 f o r h > 200 ft and K2 = 0 f or h < 200 f t . A U T O P I L O T D E S C R I P T I O N

T h r e e t y p e s of c o n t r o l w e r e p r o v i d e d f o r in the s i m u l a - t i o n . T h e f i r s t w a s a p r o p o r t i o n a l damping c o n t r o l that o p - e r a t e d only when the p i l o t i n s e r t e d a pitch o r y a w c o m m a n d . R o l l c o n t r o l w a s o v e r d a m p e d w i t h no p i l o t input and undamped with p i l o t input. Attitude c o n t r o l w a s a c h i e v e d , in pitch and y a w , by d i f f e r e n t i a l thrusting of v e r n i e r e n g i n e s canted at an angle with the longitudinal a x i s to i n c r e a s e the a v a i l a b l e m o m e n t a r m . R o l l c o n t r o l m o m e n t s w e r e a s s u m e d t o be p r o v i d e d by pulse modulation of c i r c u m f e r e n t i a l attitude j e t s . The second autopilot s y s t e m w a s p r o v i d e d by a c o n v e n t i o n a l , c o n v e r g e n t l i n e a r s y s t e m w i t h the p i l o t in the l o o p . T h e third s y s t e m w a s c l o s e d l o o p t o i m p l e m e n t the automatic c o n t r o l .

A d a p t i v e c o n t r o l s w e r e not c o n s i d e r e d f o r two r e a s o n s : f i r s t , equipment r e q u i r e m e n t s w e r e p r o h i b i t i v e ; and s e c o n d , the computations f o r m o m e n t adaption a r e difficult to p e r f o r m by analog c o m p u t e r . H y b r i d computation would h a v e made this c o n t r o l m o r e a t t r a c t i v e f o r study.

E s s e n t i a l l y , the p i l o t had t w o manual c o n t r o l m o d e s . T h e f i r s t , mentioned p r e v i o u s l y , w a s an " a c c e l e r a t i o n s t i c k " w i t h a b u i l t - i n l e a d on c o n t r o l r a t e s . T h e s e c o n d w a s a c o m p l e t e l y c o n v e n t i o n a l "position s t i c k , " w i t h r a t e

s t a b i l i z a t i o n . It is of distinct i n t e r e s t t o note that the p i l o t could d i s c e r n no distinguishable d i f f e r e n c e b e t w e e n c o n t r o l m o d e s during the b r a k i n g r u n s . T h i s w a s due e n t i r e l y , it is f e l t , to the l o w body r a t e s e x p e r i e n c e d during this phase of f l i g h t .

D I S P L A Y S D E S C R I P T I O N

T h e a c t i v e d i s p l a y c l u s t e r is outlined in F i g . 3. P r e - dominantly c e n t e r e d in the c l u s t e r i s the t e l e v i s i o n s c r e e n on which the c o o r d i n a t e d d i s p l a y s w e r e p r e s e n t e d . T h e use of the c l o s e d - c i r c u i t t e l e v i s i o n m a k e s p r a c t i c a l a w i d e v a r i a t i o n of e x p e r i m e n t a l d i s p l a y s w i t h a m i n i m u m of e q u i p - ment v a r i a t i o n s in the c o c k p i t . Sketches of the t w o f i n a l i z e d d i s p l a y s a r e shown in F i g . 4.

Surmounting the T V s c r e e n i s the t h r e e - a x i s attitude m e t e r . T h i s i n s t r u m e n t p r o v i d e s i n f o r m a t i o n on the i n e r t i a l attitude of the v e h i c l e r e f e r e n c e d t o an a x i s s y s t e m a l i g n e d with the l o c a l v e r t i c a l at the landing s i t e . Surrounding the attitude i n d i c a t o r a r e m e t e r s p r o v i d i n g component i n f o r m a -

(11)

t i o n on v e l o c i t y , g r o s s altitude and r o l l attitude. On the panel b e l o w the s c r e e n i s a p r e c i s i o n a l t i m e t e r , the i g n i t i o n s w i t c h and a r a n g e - t o - i g n i t i o n m e t e r - - w h i c h r e g i s t e r s p r e - i g n i t i o n v a l u e s of S^.

T h r o t t l e c o n t r o l s a r e on the l e f t . T h e l o w e r t h r o t t l e bar c o n t r o l s the m a i n t r a n s l a t i o n e n g i n e s w i t h a ± 10% v a r i a t i o n about t h e i r n o m i n a l thrust l e v e l . T h e s e c o n d , s m a l l e r t h r o t - tle in front of the m a i n one c o n t r o l s the mean thrust l e v e l of the v e r n i e r e n g i n e s . T o a s s i s t the r e a d e r in understanding the s e q u e n c e of e v e n t s as they o c c u r to the p i l o t , an a b b r e - v i a t e d f o r m of the flight p r o c e d u r e s and a b r i e f d e s c r i p t i o n of the p i l o t t a s k a r e p r e s e n t e d h e r e .

On e n t e r i n g the c o c k p i t , c h e c k i g n i t i o n s w i t c h t o c e n t e r p o s i t i o n , main t h r o t t l e to c e n t e r p o s i t i o n , v e r n i e r t h r o t t l e to off. C h e c k a l l w a r n i n g l i g h t s off. Signal to s t a r t p r o b l e m . C h e c k r a n g e - t o - i g n i t i o n m e t e r , o p e r a t i n g and a p p r o a c h i n g z e r o . F o c u s attention on the t h r e e - a x i s attitude m e t e r s . P i t c h e r r o r i s indicated by a d i s p l a c e m e n t of the h o r i z o n t a l b a r , and pitch r a t e e r r o r a p p e a r s on the left-hand v e r t i c a l m e t e r ( A P - t h e t a e r r o r ) . Y a w e r r o r is g i v e n by d i s p l a c e - ment of the v e r t i c a l b a r , and y a w r a t e e r r o r a p p e a r s on the l o w e r h o r i z o n t a l m e t e r ( s e e F i g . 4 ) .

T o c o r r e c t a n e g a t i v e e r r o r in Δ Θ , p l a c e the v e r t i c a l p o i n t e r o p p o s i t e the h o r i z o n t a l b a r by a p p l y i n g f o r w a r d p r e s -

s u r e on the attitude s t i c k . A s the b a r m o v e s t o w a r d the c e n t e r , apply back p r e s s u r e t o the attitude s t i c k t o keep the v e r t i c a l i n d i c a t o r o p p o s i t e the b a r . T h i s routine w i l l null both the angle and angle r a t e e r r o r s s i m u l t a n e o u s l y . A s i m i l a r e x e r c i s e i s a p p l i e d f o r y a w e r r o r s . F o r a p o s i t i v e e r r o r in Δ ψ , p l a c e the l o w e r h o r i z o n t a l i n d i c a t o r o p p o s i t e the v e r t i c a l bar by a p p l y i n g p r e s s u r e on the r i g h t p e d a l . Use left p e d a l t o keep the i n d i c a t o r o p p o s i t e the v e r t i c a l b a r .

The r a n g e - t o - i g n i t i o n m e t e r u n d e r g o e s a s c a l e change a u t o m a t i c a l l y , when S^ i s l e s s than 25, 000 ft. T h i s a l s o turns on the i g n i t i o n w a r n i n g l i g h t a b o v e the t h r e e - a x i s i n - d i c a t o r . W h e n the w a r n i n g l i g h t c o m e s on, turn on the v e r n i e r s t o 10% of full t h r u s t . Ignite the m a i n e n g i n e s when the r a n g e - t o - i g n i t i o n g o e s through z e r o .

A p p r o x i m a t e l y 1 s e c a f t e r i g n i t i o n , the T V d i s p l a y i s a c t i v a t e d and a p p e a r s r o u g h l y as sketched in the upper half of F i g . 4. If the altitude s c a l e on the r i g h t i s i g n o r e d , the S - L c o o r d i n a t e s m a y be c o n s i d e r e d as b e i n g an o v e r h e a d

(12)

MARKSON, BRYANT, A N D BERGSTEN

v i e w of the t a r g e t a r e a . T h e b l i p r e p r e s e n t s the p r e d i c t e d landing point ( P L P ) . If a map of the t e r r a i n surrounding the landing a r e a w e r e a v a i l a b l e , it would be p o s s i b l e t o s u p e r i m p o s e this i m a g e and c o m p l e t e the p i c t u r e .

Adjust the main engine t h r o t t l e so that the P L P i s c e n t e r e d in the S, o r d o w n r a n g e , d i r e c t i o n . If the P L P i s in the upper half of the d i s p l a y (the P L P i s l o n g ) , m o v e the t h r o t t l e f o r w a r d . If the P L P is in the l o w e r half of the d i s - p l a y , m o v e the t h r o t t l e aft. Do not t r y to c o r r e c t the l a t e r a l e r r o r y e t .

N e x t , o b s e r v e the altitude s c a l e . T h e b a r s , h and hT ,

9 u L

a r e the d e s i r e d altitude at which the b r a k i n g m a n e u v e r is to be c o m p l e t e d and the t e r m i n a l m a n e u v e r s t a r t e d . A p p l y f o r - w a r d o r aft p r e s s u r e on the attitude s t i c k t o m o v e the b a r s down o r up, r e s p e c t i v e l y , until h ^ l i e s on the 1000-ft m a r k - e r . A f t e r doing t h i s , the b l i p on the h^. s c a l e , w h i c h i s highly s e n s i t i v e t o m o t i o n s of the attitude s t i c k , i s m o v e d into p o s i - tion to r e s t on the h ^ b a r . A g a i n , f o r w a r d p r e s s u r e on the attitude s t i c k m o v e s the b l i p down; aft p r e s s u r e m o v e s it up.

A p h y s i c a l i n t e r p r e t a t i o n of this d i s p l a y would be t o r e a d the h ^ bar in r e l a t i o n to the 1000-ft m a r k e r . If this is l o w , the nose of the ship is t o o l o w and back p r e s s u r e is r e q u i r e d to pull it up.

N o w , o b s e r v e the l a t e r a l d i s p l a c e m e n t of the P L P . If the P L P i s t o the r i g h t of the t a r g e t , apply r i g h t p e d a l , and v i c e v e r s a . T h e c o n t r o l s e q u e n c e - - t h r o t t l e , r o l l , p i t c h , y a w - - is r e p e a t e d c y c l i c a l l y , until the h o r i z o n t a l v e l o c i t y is r e - duced b e l o w 150 f p s . B e c a u s e of u n r e a l i s t i c s c a l i n g b e l o w this point in the t r a j e c t o r y , the b r a k i n g run w a s discontinued and the t e r m i n a l m a n e u v e r begun w i t h new s c a l i n g on a l l v a r i a b l e s .

The s c o p e d i s p l a y is no l o n g e r t a r g e t - c e n t e r e d - - b u t i s a s y m b o l i c b o d y - r e l a t i v e d i s p l a y such as might appear on an o p t i c a l s c o p e . T h e s t r a i g h t l i n e is the p r o j e c t i o n ( i . e . , s h a d o w ) of the longitudinal a x i s of the v e h i c l e on the ground b e l o w . T h i s d i s p l a y p r o v i d e s the p i l o t with the s a m e type of v i s u a l m o t i o n and p h y s i c a l o r i e n t a t i o n which would be obtained w i t h the sun d i r e c t l y o v e r h e a d and the t a r g e t in v i e w through an o p t i c a l d e v i c e .

T h e guidance i n f o r m a t i o n i s a l w a y s a v a i l a b l e through the attitude i n d i c a t o r , should the p i l o t e l e c t to land "blind. " T h e

(13)

b a s i c o b j e c t i v e of this p o r t i o n of the manual m a n e u v e r w a s not t o t e s t his a b i l i t y to f l y the attitude i n d i c a t o r but t o d e t e r - mine if he could p e r f o r m the t a s k without the guidance c o m - puter in the l o o p .

M E C H A N I Z A T I O N

The lunar landing s i m u l a t i o n w a s m e c h a n i z e d in a c c o r d - ance w i t h the b a s i c b l o c k d i a g r a m p r e s e n t e d in F i g . 5a. T h e only d e t a i l i n g included in the b a s i c b l o c k d i a g r a m is the c o n - necting link t o the p i l o t d i s p l a y s . T h e s e have b e e n expanded t o point out what i s f e l t t o be the m i n i m a l i n f o r m a t i o n r e q u i r e - ments f r o m the p i l o t1 s point of v i e w . T h e s i m u l a t i o n r e - q u i r e d a t o t a l of 294 o p e r a t i o n a l a m p l i f i e r s , using four R e a c C - 4 0 0 ' s , t w o R e a c C - 1 0 0 ' s , and an expanded E A 231 R c o m - puter c a p a b l e of r e p e t i t i v e o p e r a t i o n . A n attempt w a s made to s e p a r a t e f o r c e , m o t i o n , g u i d a n c e , and d i s p l a y d r i v e r e - q u i r e m e n t s t o f a c i l i t a t e static and d y n a m i c c h e c k i n g .

Of p a r t i c u l a r i n t e r e s t in the m e c h a n i z a t i o n w a s the use of the E A 231 R c o m p u t e r , s i m u l a t i n g the onboard c o m p u t e r c a p a c i t y and computational function. T h e r e q u i r e d t o t a l s t o r a g e and computation is c o n s i d e r e d to be w e l l within the c a p a c i t y and c a p a b i l i t y of t o d a y1 s s m a l l , l i g h t w e i g h t onboard c o m p u t e r s . T h e 231 R w a s used in the r e p e t i t i v e o p e r a t i o n m o d e , computing the e n t i r e t r a j e c t o r y at 500 t i m e s t r u e t i m e . T h e c o m p u t e r w a s d r i v e n in t h i s m o d e by an e x t e r n a l l y f u r - nished t r i a n g u l a r w a v e .

T h e w a v e , t r i g g e r points,and c o m p u t e r - s t o r e s e q u e n c e s a r e shown in F i g . 5b. T h e f i r s t h a l f - c y c l e w a s used t o compute the s u b s i d i a r y i n t e g r a l s and t o g e n e r a t e new v a l u e s f o r and h^.. A c t u a l r e a l t i m e v a l u e s f o r t h r u s t , fuel f l o w , E u l e r a n g l e s , and E u l e r angle r a t e s w e r e used in t h e s e c o m - putations. During the s e c o n d h a l f - c y c l e , the v a l u e s f o r h^.

and L w e r e computed a g a i n , using the l a s t known v a l u e s of the c o m m a n d r a t e s , θ and ψ , t o obtain h and L .

c( n - l ) C( n - 1 ) c c

T h e n the r a t e d e r i v a t i v e s w e r e obtained t o g e t h e r w i t h the d i s - play s i g n a l s , h^, h ^ and tic, a l l computed with the l a s t known v a l u e of the c o m m a n d r a t e . T h e c o m m a n d r a t e s a r e then up- dated.

T h i s a p p r o a c h r e s u l t e d in an e f f e c t i v e t i m e s h a r e r e - q u i r e m e n t of the c o m p u t a t i o n a l e q u i p m e n t , using the f i r s t h a l f - c y c l e to compute and s t o r e the v a l u e s of c o m m a n d g u i d - ance and the s e c o n d h a l f - c y c l e f o r d i s p l a y . T h e m i c r o s t o r e

(14)

MARKSON, BRYANT, A N D BERGSTEN

units of the 231 R w e r e used in conjunction w i t h m i c r o s e c o n d r e l a y s to e f f e c t the t i m e s h a r e of usable e q u i p m e n t .

A v a r i a t i o n of p r o g r a m m i n g and a change in the o r d e r and sequence of the s t o r e units had t o be made a f t e r e x p e r i m e n t a - t i o n w i t h the s y s t e m . F o r e x a m p l e , the i n i t i a l d i s p l a y v a l u e s of h , h , as they w e r e s t o r e d , had a tendency t o d r i f t o r

U L

p i c k up a b i a s v a l u e . D y n a m i c b a l a n c i n g of the c a p a c i t o r s did l i t t l e t o a l l e v i a t e this c o n d i t i o n . T h i s b i a s e d v a l u e w a s a c t e d upon, and an e r r a t i c d i v e r g e n t r e a c t i o n w a s o c c a s i o n e d in the c o n t r o l of the v e h i c l e .

P i l o t a c c e p t a n c e of this i n i t i a l e r r a t i c d i s p l a y b e h a v i o r and use of his a b i l i t y t o act as a s m o o t h i n g f i l t e r went a l o n g w a y in e f f e c t i n g an a c c e p t a b l e landing t r a j e c t o r y . During the final s t a g e s of the e x p e r i m e n t , a change w a s made t o the m i c r o - s t o r e s and the c o m p u t e - s t o r e t r i g g e r s i g n a l s . F l i p - f l o p s w e r e f i n a l l y used to a c t i v a t e and sequence the s t o r e units.

T h i s final change in the s y s t e m r e s u l t e d in s m o o t h e d , i n - t e l l i g e n t d i s p l a y s i g n a l s that enabled the p i l o t t o make a w e l l c o n t r o l l e d m a n e u v e r .

The a n t i c i p a t e d r e p e a t a b l e p r e c i s i o n l e v e l s f r o m the analog a r e on the o r d e r of ± 1 % . T h e s e a c c u r a c i e s a r e the b e s t that can be e x p e c t e d in the t i m e s c a l e and computation method that was u s e d .

S I M U L A T I O N R E S U L T S

A lunar landing c r a f t in the 100, 0 0 0 - l b c l a s s w a s u s e d . The i n i t i a l conditions w e r e s e l e c t e d t o c o r r e s p o n d w i t h the data shown in F i g . 2. T h i s landing t r a j e c t o r y is c h a r a c t e r i s - t i c a l l y flat and s t a r t s at v e l o c i t i e s n e a r c i r c u l a r s p e e d . Specific s e n s o r s used f o r guidance inputs w e r e outside the scope of the study but should in no w a y affect the r e s u l t s .

Sample t r a j e c t o r y data a r e p r e s e n t e d in F i g s . 7 - 1 1 . Both automatic and manual t r a j e c t o r i e s a r e p r e s e n t e d in the b r a k i n g p h a s e . A tabulation of v e l o c i t y c o m p o n e n t s at touchdown f r o m the t e r m i n a l phase f o r v a r i o u s runs i s g i v e n in T a b l e 1.

F u e l consumption during the manual b r a k i n g runs w a s g e n e r a l l y within 2% of the fuel consumption f o r an i d e n t i c a l automatic run. T h e c o m p a r a t i v e a c c u r a c i e s a r e s o m e w h a t questionable at the r e c o r d i n g l e v e l s used and disqualify a p r e c i s e e v a l u a t i o n of this p a r a m e t e r .

(15)

Body D y n a m i c s

T w o distinguishing a r e a s w e r e i n v e s t i g a t e d f o r thrust l e v e l e f f e c t s on p i l o t p e r f o r m a n c e and m i s s i o n a c c o m p l i s h m e n t . M o m e n t L e v e l s

A s e r i e s of b r a k i n g m a n e u v e r s w a s p e r f o r m e d , using v a r i o u s c o r r e c t i o n m o m e n t l e v e l s in the manual c o n t r o l m o d e . T h e s e m o m e n t l e v e l s p r o d u c e d m a x i m u m body a c c e l e r a t i o n

-2 2 -3 2 l e v e l s r a n g i n g f r o m 10 r a d / s e c t o 10 r a d / s e c . In a l l c a s e s , manual p e r f o r m a n c e w a s i m p r o v e d with the l o w e r c o r - r e c t i n g m o m e n t s for both the pitch and y a w a x e s . T h i s r e - q u i r e m e n t f o r a c o m p a r a t i v e l y l o w c o r r e c t i n g m o m e n t during the b r a k i n g phase must be made c o m p a t i b l e w i t h indicated r e - q u i r e m e n t s f o r the t e r m i n a l and h o v e r i n g p h a s e s .

, 2 A n g u l a r a c c e l e r a t i o n l e v e l s on the o r d e r of 0. 07 r a d / s e c w e r e found t o be n e c e s s a r y during the t e r m i n a l phase t o e n - s u r e an adequate c o n t r o l m a r g i n . T h i s d i s p a r i t y b e t w e e n c o n - t r o l r e q u i r e m e n t s f o r the t w o landing phases is due m a i n l y t o the h i g h e r angular r a t e s r e q u i r e d during the t e r m i n a l phase.

A n g u l a r r a t e s during the b r a k i n g phase w e r e a l w a y s l e s s than 1 d e g / s e c , w h e r e a s r a t e s as high as 7 d e g / s e c w e r e not un- usual during the t e r m i n a l p h a s e . T h i s can be s e e n quite e a s i l y in F i g . 10, which shows the pitch angle as a function of t i m e for s e v e r a l landing m a n e u v e r s .

The m a r k e d d i f f e r e n c e b e t w e e n the b r a k i n g and t e r m i n a l phase m o m e n t r e q u i r e m e n t s points to the n e c e s s i t y f o r one o r m o r e of the f o l l o w i n g d e s i g n f e a t u r e s :

1) A c o m p l e t e l y adaptive c o n t r o l s y s t e m capable of han- dling the r e q u i r e d r a n g e of gains a s s o c i a t e d with a l l phases of lunar landing.

2) A c o m p l e t e l y automatic landing s y s t e m , in c o m b i n a t i o n with a c a r e f u l l y s i z e d v e r n i e r engine attitude c o n t r o l s y s t e m . T h i s p r o v i s i o n would e l i m i n a t e the p i l o t e d manual c o n t r o l s e n - s i t i v i t y p r o b l e m , in that an automatic s y s t e m could be d e s i g n e d t o the r e q u i r e d s e n s i t i v i t y .

3) A c o n t r o l s t i c k s e n s i t i v i t y s e l e c t o r , which w i l l a l l o w the pilot t o manually change s e n s i t i v i t y in f l i g h t . T h i s has been shown t o be p r a c t i c a l in s u p e r s o n i c b o m b e r a p p l i c a t i o n s , w h i c h e x p e r i e n c e m o r e s e v e r e c o n t r o l disruption than is p r e s e n t l y under d i s c u s s i o n . H o w e v e r , p i l o t adaptation t o l a r g e , r a p i d changes in c o n t r o l s e n s i t i v i t y is a definite p r o b l e m . It has

(16)

MARKSON, BRYANT, A N D BERGSTEN

b e e n known t o cause s e v e r e d i s t u r b a n c e s in an o t h e r w i s e smooth o p e r a t i o n .

T r a n s l a t i o n a l T h r u s t L e v e l s

A v a r i e t y of thrust l e v e l s , w i t h a t h r o t t l i n g r a n g e of ± 1 0 % , w e r e included in the study of the manual c o n t r o l s y s t e m . N o p r o v i s i o n f o r t h r o t t l i n g w a s i n c o r p o r a t e d in the automatic s y s - t e m , although the " n o m i n a ln thrust l e v e l s f o r c o m p a r a t i v e runs w e r e i d e n t i c a l . N o p r o b l e m w a s e n c o u n t e r e d , i n s o f a r as handling o r r e s p o n s e c h a r a c t e r i s t i c s w e r e c o n c e r n e d , f o r e i t h e r the automatic o r manual s y s t e m , in the r a n g e of thrust l e v e l s i n v e s t i g a t e d .

The m o s t s i g n i f i c a n t e f f e c t of thrust l e v e l on m i s s i o n p e r - f o r m a n c e w a s found to be f r o m the standpoint of m a n e u v e r a b i l - ity and fuel e c o n o m y . F u e l e c o n o m y w a s a o n e - w a y t r a d e , as shown in F i g . 7 by the m i n i m u m Δ ν l i n e . T h e h i g h e r thrust p r o v i d e s a c h e a p e r landing. M a n e u v e r a b i l i t y , on the other hand, p r e s e n t e d an a l t o g e t h e r d i f f e r e n t p i c t u r e . If the thrust l e v e l w a s t o o high, an insufficient amount of r a n g e c o n t r o l w a s a c h i e v e d , and flight t i m e s w e r e t o o s h o r t . F u r t h e r m o r e , ignition altitudes w e r e r e s t r i c t e d t o a r e l a t i v e l y s m a l l band for e f f i c i e n t o p e r a t i o n . On the other hand, t o o low a thrust l e v e l l e d to a l i m i t e d amount of thrust e x c e s s o v e r the g r a v i - tational a c c e l e r a t i o n . A l t h o u g h g r e a t e r r a n g e c o n t r o l w a s a c h i e v e d , ignition altitudes w e r e r e s t r i c t e d t o r e l a t i v e l y high l e v e l s a s s o c i a t e d with high g r a v i t a t i o n a l l o s s e s in p e r f o r m i n g the landing m a n e u v e r .

P i l o t C o n t r o l P i l o t d i s p l a y s

The d i s p l a y m e c h a n i z a t i o n p r e s e n t s a low l e v e l of c o n t r o l i n f o r m a t i o n to a v o i d saturating the o p e r a t o r w i t h superfluous data. It w a s r e a l i z e d , f r o m p r e v i o u s s t u d i e s , that the c o n t r o l of t h r e e a x e s c o m e s v e r y c l o s e t o e x c e e d i n g m a n ' s a b i l i t y to c o o r d i n a t e his a c t i o n s . It w a s n e c e s s a r y , t h e r e f o r e , t o m i n i - m i z e and s e p a r a t e t a s k r e s p o n s i b i l i t y by a s s i g n i n g a s i n g l e - channel, uncoupled conditioning t o a m i s s i o n w h i c h , in f a c t , w a s multichannel, w i t h a l l channels c o u p l e d .

It is w e l l known that d i f f i c u l t i e s i n v o l v e d with m o s t s y s t e m t a s k s can be o v e r c o m e if sufficient t i m e i s spent in t r a i n i n g t o d e v e l o p t e c h n i q u e s . T h e p r e d i c t i v e d i s p l a y p r o v i d e d f e e d - back i n f o r m a t i o n which e f f e c t i v e l y s h o r t - c i r c u i t e d a l a r g e p o r t i o n of the t r a i n i n g p e r i o d . T h e nature of the p r o b l e m a l -

(17)

l o w e d a t r a n s f e r of s k i l l s a c q u i r e d in other situations that used b a s i c flight i n s t r u m e n t a t i o n .

In m o s t c a s e s , a " s a f e " flight w a s flown on the second o r t h i r d a t t e m p t . Habit i n t e r f e r e n c e w a s encountered in one p a r t i c u l a r c a s e ; h o w e v e r , a highly s u c c e s s f u l run w a s made on the sixth flight and i s shown in F i g . 8.

A s i s mentioned in the s e c t i o n on " M e c h a n i z a t i o n , M the b e h a v i o r of d i s p l a y s i g n a l s h and hT f o r the b r a k i n g m a n e u v e r

U LJ

was highly e r r a t i c throughout m o s t of the study. T h i s w a s un- fortunate in s e v e r a l r e s p e c t s , not the l e a s t of w h i c h w a s the p a r t i a l disruption of the p i l o t1 s a b i l i t y t o d i s t r i b u t e his a t t e n - tion e v e n l y t o a l l the d i s p l a y s . T h i s highly a c t i v e , dancing s i g n a l a t t r a c t e d o v e r 70% of the attention of the s e v e r a l sub- j e c t s who flew the s i m u l a t o r . T h i s made p r e c i s i o n flight much m o r e difficult than it need have b e e n .

A m o r e r e c e n t s i m u l a t i o n done in August of 1962 m e c h a - n i z e d the final s y s t e m d e s i g n d i s c u s s e d in R e f . 6. T h e d i s - p l a y s w e r e s m o o t h and i n d i c a t e d an a c c e p t a b l e s i g n a l - t o - n o i s e r a t i o . A l l p i l o t s flew a c c e p t a b l e f l i g h t s on the f i r s t a t t e m p t .

E x p e r i e n c e with h^ and h ^ computation and d i s p l a y i n d i - c a t e s that future w o r k r e q u i r e s only a s i n g l e b a r i n d i c a t o r . A s i m i l a r b a r - t y p e i n d i c a t o r must a l s o be p r o v i d e d f o r l a t e r a l c o n t r o l .

P i l o t p e r f o r m a n c e

The p i l o t w a s able to p e r f o r m the r e q u i r e d c o n t r o l maneu- v e r s . H i s p e r f o r m a n c e w a s b e s t when augmenting the auto- m a t i c s y s t e m , and his i n c l u s i o n , in g e n e r a l , i m p r o v e d the t o t a l s y s t e m p e r f o r m a n c e . In s o m e c a s e s , w i t h m a r g i n a l i n i t i a l c o n d i t i o n s , the p i l o t w a s able to r e c o v e r c o n t r o l and s a v e the v e h i c l e in a situation in w h i c h the automatic s y s t e m i m p a c t e d .

T y p i c a l e r r o r d i s p e r s i o n s r e s u l t i n g f r o m manual c o n t r o l a r e shown in F i g . 6. T h e s e d i s p e r s i o n s , taken f r o m the l a t e r s i m u l a t i o n r e f e r r e d t o p r e v i o u s l y , w e r e obtained by f l y i n g a g r e a t many s i m u l a t e d runs w i t h the s a m e i n i t i a l c o n - ditions and the s a m e d e s i r e d end c o n d i t i o n s , but flown by s e v e n d i f f e r e n t p i l o t s . T h e s e data a r e c o n s i d e r e d t o be a v a l i d i n d i c a t i o n of the m a n - i n - t h e - l o o p p r e c i s i o n o b t a i n a b l e .

(18)

M A R K S O N , BRYANT, A N D BERGSTEN

Mane u v e r ab i l ity

The m a n e u v e r a b i l i t y of the v e h i c l e is used h e r e as the c o n t r o l l e d d e v i a t i o n f r o m a n o m i n a l t r a j e c t o r y . T h i s d e f i n i - tion is i l l u s t r a t e d g r a p h i c a l l y in F i g . 8, w h e r e s e v e r a l runs a r e r e c o r d e d , g i v i n g m a x i m u m , m i n i m u m , and n o m i n a l r a n g e c o n d i t i o n s . T h e s m a l l engine t h r o t t l i n g r a n g e p r o v i d e s an adequate c o n t r o l m a r g i n to a c c o m m o d a t e e r r o r s in thrust i n i t i a t i o n . T h e highest n o m i n a l thrust l e v e l i n v e s t i g a t e d p r o - v i d e d a r a n g e potential of 111, 000 ft. T h e l o w e s t l e v e l p r o - v i d e d a potential of 180, 000 ft. E x t r e m e s in l a t e r a l r a n g e c o n t r o l w e r e not obtained. H o w e v e r , it is felt that 70, 000 ft i s within r e a s o n f o r a n o - p e n a l t y fuel r e q u i r e m e n t .

Range c o n t r o l during the t e r m i n a l p h a s e - - a s distinguished f r o m the b r a k i n g p h a s e - - h a s b e e n shown t o be quite f e a s i b l e ( F i g . 11) but i s v e r y e x p e n s i v e in t e r m s of fuel consumption.

It i s the opinion of the authors that g r o s s r a n g e c o n t r o l should not be attempted during the t e r m i n a l m a n e u v e r - - o n l y v e r n i e r c o n t r o l of the touchdown point.

A s the m i s s i o n p r o g r e s s e s and e n t e r s into the final v e r t i c a l descent t o touchdown, the p i l o t tends t o b e c o m e o v e r c a u t i o u s . T o a v o i d e x c e s s i v e fuel consumption during the final maneu- v e r , he should be g i v e n a f i r m r a t e - o f - d e s c e n t p r o g r a m , which would be a m e m o r i z e d step function.

C O N C L U S I O N S

A d i s c u s s i o n has been p r e s e n t e d of a d y n a m i c s i m u l a t i o n of the manned lunar landing. It has b e e n found that the e n t i r e landing m a n e u v e r can be a c c o m p l i s h e d manually w i t h a g u i d - ance c o m p u t e r in the l o o p . A new method f o r adaptive flight c o n t r o l has been p r e s e n t e d , as w e l l as an analog m e c h a n i z a - t i o n , w i t h the r e q u i r e d mockup d i s p l a y s . T h e c o n t r o l t e c h - nique m a k e s it p o s s i b l e t o a c h i e v e a c o m p l e t e l y f l e x i b l e lunar m i s s i o n c a p a b i l i t y .

A C K N O W L E D G M E N T

The authors w i s h to e x p r e s s t h e i r a p p r e c i a t i o n to a l l those individuals of the M a r t i n Company and E l e c t r o n i c s A s s o c i a t e s , Inc., w h o s e outstanding e f f o r t s made the m e c h a n i z a t i o n of this p r o g r a m a r e a l i t y .

N O M E N C L A T U R E

—>

F = thrust v e c t o r

(19)

g r a v i t a t i o n a l a c c e l e r a t i o n at the s u r f a c e

p r e d i c t e d altitude at end of burning b a s e d on p r e s - ent thrust v e c t o r and its r a t e of change of o r i e n t a - t i o n

upper and l o w e r p r e d i c t e d a l t i t u d e s , at end of burning, at w h i c h a r a t e of c l i m b of +100 and -50 fps can be a c h i e v e d b a s e d on p r e s e n t thrust v e c t o r thrust s e n s i t i v i t y c o e f f i c i e n t s used in t e r m i n a l m a - n e u v e r . V a l u e s used in this e x p e r i m e n t w e r e Κχ = 0. 18 ( s e c "1) and K2 = 0. 001 ( s e c "2) l a t e r a l d i s p l a c e m e n t of P L P f r o m landing s i t e , b a s e d on p r e s e n t thrust v e c t o r and its r a t e of change of o r i e n t a t i o n

l a t e r a l d i s p l a c e m e n t of P L P at w h i c h a s p e c i f i e d l a t e r a l r a t e ( n o m i n a l l y z e r o ) can be a c h i e v e d b a s e d on p r e s e n t thrust v e c t o r

m a s s

c e n t r a l body r a d i u s v e c t o r t o landing site c e n t r a l body r a d i u s v e c t o r to v e h i c l e slant r a n g e v e c t o r f r o m t a r g e t t o v e h i c l e

longitudinal d i s p l a c e m e n t of P L P f r o m landing s i t e , b a s e d on p r e s e n t thrust v e c t o r and its r a t e of change of o r i e n t a t i o n

t i m e

i n e r t i a l , t a r g e t c e n t e r e d , C a r t e s i a n c o o r d i n a t e s y s t e m ( s e e F i g . 1)

c o - a n g l e b e t w e e n thrust v e c t o r and Z - a x i s 2

lunar g r a v i t a t i o n a l constant = g R t i m e - t o - g o

—>

angle b e t w e e n X - a x i s and p r o j e c t i o n of F in X - Y plane

(20)

MARKSON, BRYANT, A N D BERGSTEN

ω = mean m o t i o n

S u p e r s c r i p t s

C ) = d e r i v a t i v e with r e s p e c t to t i m e

= v e c t o r quantity S u b s c r i p t s

c = c o m m a n d value

η = value c o r r e s p o n d i n g to nth step ο = at t i m e z e r o

t = at landing site

R E F E R E N C E S

1 B e r m a n , L . J. , " O p t i m u m soft landing t r a j e c t o r i e s , P a r t 1, A n a l y s i s , " M a s s . Inst. T e c h . , A i r F o r c e Office Scientific R e s e a r c h , 519 ( M a r c h 1961).

2 L a w d e n , D. F . , " D y n a m i c p r o b l e m s of i n t e r p l a n e t a r y f l i g h t , " A e r o n a u t . Q u a r t e r l y , £, 165-180 ( 1 9 5 5 ) .

3 F r i e d , B . D . , " T r a j e c t o r y o p t i m i z a t i o n for p o w e r e d flight in t w o o r t h r e e d i m e n s i o n s , " Space T e c h n o l o g y (John W i l e y & Sons, Inc. , N e w Y o r k , 1959X

4 P e r k i n s , C . W . , "Optimum r e t r o - t h r u s t t r a j e c t o r i e s , "

M . S . T h e s i s , M a s s . Inst. T e c h . (June 1961).

5 P f e i f f e r , C . G. , " T h e o r y and a p p l i c a t i o n of the c r i t i c a l d i r e c t i o n method of t r a j e c t o r y o p t i m i z a t i o n , " I A S S y m p o s i u m on V e h i c l e S y s t e m s O p t i m i z a t i o n , G a r d e n C i t y , Ν . Υ . , ( N o - v e m b e r 1961),

6 M a r k s o n , Ε . E., Bryant, J., and B e r g s t e n , F . , " S i m - ulation of manned lunar landing, " A R S L u n a r M i s s i o n s M e e t - ing, C l e v e l a n d , P r e p r i n t N o . 2482-62 (July 1962).

7 M a r k s o n , Ε . Ε . , "Thrust p r o g r a m m i n g f o r t e r m i n a l m a n e u v e r s in s o a c e , " P r o c . of I A S M e e t i n g on A e r o s p a c e Support and O p e r a t i o n s , O r l a n d o , F l a . ( D e c e m b e r 1961).

(21)

Table 1 Representative touchdown conditions Terminal phase initial conditions Final conditions h, h, Vx, Vy, Θ, m, t, h, Vx, Vy, Θ, m. ft fps fps fps deg Ø slugs sec fps fps fps deg slugs 1000 -50 150 0 22.0 180 2155 38.36 -7.33 1.55 -0.15 85.5 2114 2000 -50 150 0 22.0 180 2155 82.76 -5.52 -0.64 -0.24 90.0 2076 3000 -50 150 0 22.0 180 2155 115.20 -5.44 -1.45 -0.06 90.0 2050 1000 +50 150 0 22.0 180 2155 160.00 -5.55 1.31 +0.02 87.8 2014 1000 +100 150 0 22.0 180 2155 203.00 -4.95 -0.28 0.01 90.0 1995 1000 +150 150 0 22.0 180 2155 229.00 -4.96 -0.66 -0.09 90.0 1978 1500 -100 150 0 22.0 180 2155 27.56 -12.72 8.09 -0.07 73.1 2117 2000 -100 150 0 22.0 180 2155 64.50 -4.96 -1.88 -0.16 90.0 2082 1000 -50 130 0 22.0 180 2155 41.05 -8.19 -3.15 -1.04 90.0 2110 1000 -50 75 75 22.0 180 2155 35.50 -8.95 0.16 0.10 85.5 2114 1000 -50 0 130 22.0 180 2155 36.60 -8.75 0.15 0.08 84.4 2105 1000 -50 -75 150 22.0 180 2155 42.70 -6.25 0.17 0.11 87.8 2102 1000 -50 -130 130 22.0 180 2155 42.10 -6.67 0.17 0.11 87.8 2102 1000 -50 -150 75 22.0 180 2155 41.50 -6.23 0.21 2.10 85.5 2105 1000 -50 150 0 22.0 165.7 2155 39.20 -6.69 0.15 0.53 90.0 2115

(22)

START OF

30-SEC FREE FALL

F i g . 1 O p e r a t i o n a l p h a s e s of flight

5800 r

5200 h

-5 -10 FLIGHT PATH ANGLE (DEGREES)

F i g . 2 Range of i n i t i a l c o n d i t i o n s

(23)

F i g . 3 L a y o u t of cockpit

(24)

M A R K S O N , BRYANT, A N D BERGSTEN

(a)

TARGET POSITION RELATIVE

\ Τ 0 PREDICTED LANDING POINT

(b)

_ TARGET POSITION IN BODY-RELATIVE

\ C O O R DINATES

Xb

±

SHADOW OF VEHICLE'S LONGITUDINAL AXIS

(c)

F i g . 4 Guidance d i s p l a y s g e n e r a t e d on C R T and t r a n s m i t t e d on c l o s e d c i r c u i t T V to mockup: a ) t h r e e - a x i s a t t i - tude m e t e r ; b ) f o r braking m a n e u v e r ; c ) f o r t e r m i n a l m a n e u v e r

ALTITUDE

RATE OF CLIMB

Ábra

Table 1 Representative touchdown conditions  Terminal phase initial conditions Final conditions  h, h, Vx, Vy, Θ, m, t, h, Vx, Vy, Θ, m

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The reaction of dialkyl H-phosphonates (A) with aliphatic alcohols under mild conditions (lower alcohol excess and lower temperature) afforded the derivatives with different

This teaching material has been made at the University of Szeged, and supported by the European Union by the project nr. EFOP-3.6.2-16-2017-00007, titled Aspects on the

Keywords: delay differential equations, constant discrete delay, smooth dependence on delay, history spaces of Sobolev type, differentiability of translation in L p.. 2010

Under submerged conditions, the upstream water level is influenced by the tailwater, hence here, Q is not only a func- tion of H u , but H d (downstream total head measured from the

Catalytic and reusability tests of the hydrocalumites (6 h reaction time) and Ca 3 In 4 -hydroxide-chloride side-product (72 h reaction time), reaction conditions: reflux (~90

O n the other hand, very little is known about the effect of environmental factors under field conditions on the development of bacterial diseases among insect populations.. T h

magnetic materials can retain some magnetization in zero field and this distinguishes t h e m fundamentally from paramagnetic substances.. Typical magnetization curves for t h

If the given θ angle value does not exceed the limiting conditions, calculated according to the procedure shown in Chapters 2 and 3, the system’s time response will certainly