• Nem Talált Eredményt

Open questions

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Open questions"

Copied!
36
0
0

Teljes szövegt

(1)

Open questions

OQ. 3154. Ifxk∈[0,1] (k= 1,2, ..., n), yk∈[−1,1] (k= 1,2, ..., n) such that Pn

k=1

1 +yk Qn

i=1

xi m

≥1.

Mih´aly Bencze OQ. 3155. Ifα, xk>0 (k= 1,2, ..., n) then

Qn k=1

x2k

(α+1)n n P

cyclic

x1x2

! .

Mih´aly Bencze OQ. 3156. Ifxk, ak >0 (k= 1,2, ..., n) then a1x1x2+ax2x2x3+...+anxnx1

2+...+xn + +a1x2x3+ax2x3x4+...+anx1x2

3+...+x1 +...+a1xnx1+ax2x1x2+...+anxn1xn

1+...+xn1na1+an2+...+a1 n. Mih´aly Bencze OQ. 3157. Ifxk>0 (k= 1,2, ..., n), then

vu ut P

cyclic

xn11x2

! P

cyclic

x1xn21

!

≥(n−2) Qn

k=1

xk+ n

r Q

cyclic

(xn1 +x1x2...xn).

Mih´aly Bencze and Zhao Changjian OQ. 3158. Ifxi>0 (i= 1,2, ..., n),then

P

cyclic

x1x2...xk

xk+1(x1+xk+1)(x2+xk+1)...(xk−1+xk+1) ≥ P

cyclic

x1

x2+x3

k1

,for all k∈ {2,3, ..., n−1}.

Mih´aly Bencze and Shanhe Wu OQ. 3159. Ifxi>0 (i= 1,2, ..., n),then

P

cyclic

k

qxk1 +x 1

2+...+xk+1k q

1 +nk+1k .

Mih´aly Bencze and Yu-Dong Wu

(2)

OQ. 3160. Ifxi>0 (i= 1,2, ..., n),then determine allα >0 such that the inequality P

1i1<...<ikn

xi1xi2...xik ≤α+ nk

−αnk Qn

k=1

xk is the best possible.

Mih´aly Bencze OQ. 3161. 1). If x, y >0 then determine alla, b >0 such that

1

(x+y)a +(x+2y)1 a +...+(x+ny)1 a(x(x+ny))n b.

2). If x >0, then determine alla, b, c >0 such that Pn

k=1 1

(1+kx)a ≤n(1 +bnx)c.

Mih´aly Bencze OQ. 3162. In all triangleABC denoteN the Nagel point, H is orthocentre, O is circumcentre, I is incentre. Determine all x, y >0 such that

max{(N I)x(HI)y; (N I)y(HI)x} ≤(x+y) (OI)x+y.

Mih´aly Bencze OQ. 3163. Ifxk∈(−1,1) (k= 1,2, ..., n),then

1). Qn 1 k=1

(1xk)

+ Qn 1 k=1

(1+xk) ≥2

2). If yk, zk ∈[−1,1] (k= 1,2, ..., n) such that Pn

k=1

yk= Pn

k=1

zk= 0,then

n 1 Q

k=1

(1+xkyk)

+ Qn 1 k=1

(1+xkzk) ≥2.

Mih´aly Bencze OQ. 3164. Ifxi>0 (i= 1,2, ..., n) andSk = P

1i1<...<ikn

xi1xi2...xik,then

S1

(n1) ≥

S2

(n2) 12

S3

(n3) 13

≥...≥

Sn

(nn) n1

.

Mih´aly Bencze OQ. 3165. In all triangleABC hold 9R2 2

≤Pa2b2

c2

Pr2a

a2

9R2 4r

2

.

(3)

OQ. 3166. Ifxk>0 (k= 1,2, ..., n),then n

P

k=1

xk 2

P

cyclic

x1x2

!n1

nn+13n Q

cyclic

x21+x1x2+x22 .

Mih´aly Bencze OQ. 3167. Ifxk>0 (k= 1,2, ..., n) andS = Pn

k=1

xk,then 1). Pn

k=1 xk

Sxk

n Pn

k=1

x2k (n1) P

cyclic

x1x2 2). Pn

k=1

xk

Sxk

2

nPn

k=1

x2k (n1)2 P

cyclic

x1x2

Mih´aly Bencze OQ. 3168. Ifa,xk>0 (k= 1,2, ..., n) and

A1 = aa1x1+a2x2+...+anxn

nx1+a1x2+...+an−1xn, A2 = aa2x1+a3x2+...+a1xn

1x1+a2x2+...+anxn, ..., An= aanx1+a1x2+...+an1xn

n−1x1+anx2+...+an−2xn,then max{A1, A2, ..., An} ≥1≥min{A1, A2, ..., An}.

Mih´aly Bencze OQ. 3169. Ifxk∈R (k= 1,2, ..., n) and A⊆ {1,2, ..., n},then

P

iA

xi k

≤ P

1i1<...<ikn

(xi1+...+xi2)...(xi1 +...+xik).

Mih´aly Bencze OQ. 3170. Ifxk>0 (k= 1,2, ..., n) then

P

cyclic

x1(x1−x2)...(x1−xn)≥ (n+1)|(x1x2)n−1(x2x3)n−1...(xnx1)n−1|

Q

cyclic

(x1+x2) 0

@1

˛˛

˛˛

˛ Q

cyclic x1x2 x1+x2

˛˛

˛˛

˛

n11 A

.

Mih´aly Bencze OQ. 3171. Ifxk, pk>0 (k= 1,2, ..., n) and

f(pi1, ..., pik;xi1, ..., xik) = pi1xpi1+...+pikxik

i1+...+pik ,then Pn

k=1

(−1)k1 P

1i1<...<ikn

lnf(pi1, ..., pik;xi1, ..., xik)≤0.

(4)

OQ. 3172. Ifxk>0 (k= 1,2, ..., n) and Qn

k=1

xk= 1,then Pn

k=1

q

1 + (a2−1)x2k≤aPn

k=1

xk for all a≥1.

Mih´aly Bencze OQ. 3173. Ifxk>0 (k= 1,2, ..., n) then

2 P

cyclic

x1xn21≥n Qn k=1

xk+ P

cyclic

xn11x2.

Mih´aly Bencze OQ. 3174. Letf :I →R (I ⊆R) be a convex function, and xk∈I

(k= 1,2, ..., n). DenoteSk= nk1 P

1i1<...<ikn

fx

i1+...+xik k

,then

determine allai∈R (i=a,1, ..., m) such that Pm

i=0

(−1)iaiSi+1 ≥0.

Mih´aly Bencze OQ. 3175. Ifxk>0 (k= 1,2, ..., n) then P

cyclic

ax21+x2x3

(x1+x2)2n(a+1)4 for all a >0.

Mih´aly Bencze OQ. 3176. Ifxk>0 (k= 1,2, ..., n) and

Pn k=1

xk= 1 then determine all ak>0 (k= 1,2, ..., n) such that, the inequalities

Pn k=1

x2k≥ P

cyclic

x1 a1+a2x2+...+anxn21

≥x1x2+x2x3+...+xnx1 are the best possible.

Mih´aly Bencze OQ. 3177. Determine all yk>0 (k= 1,2, ..., n) for which

Pn j=1

n1 P

i=1

xyijPn n

i=1

(nx1x2...xn)yi

for allxk>0 (k= 1,2, ..., n).

Mih´aly Bencze

(5)

OQ. 3178. Ifxk∈[0,1] (k= 1,2, ..., n) then determine the minimum and the maximum of the expression

Q

cyclic

(1+x1+x1x2) Q

cyclic

(1+x2+x1x2).

Mih´aly Bencze OQ. 3179. Ifxk>0 (k= 1,2, ..., n) andS = Pn

k=1

xk then Pn

k=1

(sxk) xk(s+xk)

(n1)2n

n P

k=1

xk

«n−1

n(n+2) Q

cyclic

(x1+x2) .

Mih´aly Bencze OQ. 3180. Ifxk>0 (k= 1,2, ..., n) andS = Pn

k=1

xk, then Pn

k=1 xk

xnk+(sxk)n

Pn k=1

xk

Pn k=1

x3k+n! P

1≤i<j<kn

xixjxk

.

Mih´aly Bencze OQ. 3181. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

xk= 1 then P

cyclic x1

1x2 ≥√ 2 Pn

k=1

√xkn+2n+1.

Mih´aly Bencze

OQ. 3182. Ifxk>0 (k= 1,2, ..., n) andα≥1, then

s n

Pn k=1

xk

Pn k=1

xαk−1

Pn k=1

xα+1k Pn k=1

xαk

.

Mih´aly Bencze OQ. 3183. Ifxk>0 (k= 1,2, ..., n) then determine alla, b, c >0 such that

P

cyclic x1

(x1+ax2)b

!1b

≥P

x1x2(xc1+xc2)

2

c+21 .

(6)

OQ. 3184. If 0< α≤1 andxk>0 (k= 1,2, ..., n), S= Pn

k=1

xk, then Pn

k=1

xk

Sxk

α

(nn1)α.

Mih´aly Bencze OQ. 3185. Ifxk>0 (k= 1,2, ..., n) then determine allα >0 such that

Pn k=1

1

xk ≥ P

cyclic x21αx22 x31+αx32.

Mih´aly Bencze OQ. 3186. Determine all Ak∈Mm(C) (k= 1,2, ..., n) such that

An11=A2A3...An, An21=A1A3...An, ..., Ann1=A1A2...An1 for all n, m≥3.

Ifn is odd thenA1 =A, A2=εA, A32A, ..., Ann1A,where ε= cosn +isinn is a solution.

Mih´aly Bencze OQ. 3187. Determine all A, B∈Mn(C) for which

rang(AB)−rang(BA) =n

2

−1,where [·] denote the integer part.

Mih´aly Bencze OQ. 3188. Determine all A, B∈Mn(R) for which

det A2k+A2k1B+...+AB2k1+B2k

≥0 for allk≥1.We have the following result, ifAB=BAthen the affirmation is true.

Mih´aly Bencze OQ. 3189. Ifxk>0 (k= 1,2, ..., n) then P

cyclic x1

x2

P

cyclic

x1x2

n P

k=1

xk

«2 ≥n+ αn, whereα >0.

Mih´aly Bencze

(7)

OQ. 3190. Ifxk>0 (k= 1,2, ..., n) then P

cyclic

xn11

xn2+xn3+x1x2...xnn vu ut

Pn k=1

xnk P

cyclic

xn1xn2.

Mih´aly Bencze OQ. 3191. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

xk=a, Pn

k=1

x2k=b >1,then 1 + Qbn1

k=1

xk

a1 P

cyclic x1

x2.

Mih´aly Bencze OQ. 3192. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

√xk= 1,then P

cyclic

xr1+x2x3...xr+1

x1rx2+...+xr+1n2r2−1rn2rr,for all r∈ {2,3, ..., n−1}.

Mih´aly Bencze OQ. 3193. Determine all Ak∈Mn(R) (k= 1,2, ..., n) such that

det m

P

k=1

AtkAk

= 0.

Mih´aly Bencze OQ. 3194. Ifxk>0 (k= 1,2, ..., n) then

min



Pn k=1

x3k P

cyclic

x21x2;

Pn k=1

x3k P

cyclic

x1x22



+n−1≥ P

cyclic x1+x2

x2+x3.

Mih´aly Bencze OQ. 3195. LetA1A2...A2nA2n+1 be a convex polygon andB1, B2, ..., B2n+1 are on the sides An+1An+2, An+2An+3, ..., A2nA2n+1, ..., AnAn+1 such that A1B1, A2B2, ..., A2n+1B2n+1 are ceviens of rank p in triangles

An+1A1An+2, An+2A2An+3, ..., A2n+1AnA1, ..., AnA2n+1An+1.

Prove that if A1B1, A2B2, ..., A2nB2n are concurent in pointM, then M ∈A2n+1B2n+1.

(8)

OQ. 3196. If−1≤xk ≤1 (k= 1,2, ..., n) then determine the best constantsm, M >0 such thatm≤ P

cyclic|f(x1) +f(x2)−2f(x3)| ≤M, when f(x) = 4x3−3x+ 1.

Mih´aly Bencze OQ. 3197. DenoteR1, R2, R3 the distances from an arbitrary pointM to the verticesA, B, C of the triangle ABC.

Prove aR21+bR22+cR23

bR21+cR22+aR23

cR21+aR22+bR23

abc(a3b+b3c+c3a)(a3c+b3a+c3b)

(a+b+c)2 .Can be strongened this inequality?

Mih´aly Bencze OQ. 3198. Determine all xk>0 (k= 1,2, ..., n) for which from

Pn k=1

xk> P

cyclic x1

x2 holds Pn

k=1

xk < P

cyclic x2

x1.

Mih´aly Bencze OQ. 3199. Ifxk∈(0,1)∪(1,+∞) (k= 1,2, ..., n), then determine all a, b >0 such that P

cyclic xa1

(x21)2b ≥1.

Mih´aly Bencze OQ. 3200. Ifxk>0 (k= 1,2, ..., n) then

2 P

cyclic

px21−x1x2+x22 ≥ P

cyclic

px21+x1x2+x22.

Mih´aly Bencze OQ. 3201. Ifxk∈R (k= 1,2, ..., n) and Pn

k=1

xk=a, Pn

k=1

x2k=b, then determine the best mr, Mr∈R (r = 1,2) such that m1 ≤ P

cyclic

x21x2 ≤M1 and m2 ≤ P

cyclic

x1x22 ≤M2.

Mih´aly Bencze

(9)

OQ. 3202. Ifxk >0 (k= 1,2, ..., n) then determine the best m, M >0 such thatm≤ P

cyclic

x1

r

xr1+(ar1)x2x3...xrxr+1 ≤M where r∈ {2,3, ..., n−1} and a≥2.

Mih´aly Bencze OQ. 3203. Ifxk>0 (k= 1,2, ..., n) and

Pn k=1

xk= 1,then determine max P

cyclic

(x1x2...xp)α

1(x2x3...xp+1)β,where α, β >0 and p∈ {2,3, ..., n−1}.

Mih´aly Bencze OQ. 3204. Ifxk>0 (k= 1,2, ..., n) then

P

cyclic

x1x2...xp

! P

cyclic x1

xp2+x3

!

np−1n+1,for all p∈ {2,3, ..., n−1}.

Mih´aly Bencze OQ. 3205. LetABC be a triangle, then determine

max P

cyclic

(sinA)b(sinB)c(sinC)a.

Mih´aly Bencze OQ. 3206. Ifxk>0 (k= 1,2, ..., n), Pn

k=1

xk = 1,then determine the maximal constantα >0 such that P

cyclic

q

x1+α(x2−x3)2+ 2 Pn k=1

√xk≤3n.

Mih´aly Bencze OQ. 3207. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

x2k= 1,then 1≤ P

cyclic x1

1+x2x3...xn ≤ (n)n (n)n−1+1.

Mih´aly Bencze

(10)

OQ. 3208. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

xk= 1,then Qn

k=1

xk+ P α

cyclic

x1x2...xp ≥1 +αn for all α >0 and allp∈ {2,3, ..., n−1}. Mih´aly Bencze OQ. 3209. Ifxk>0 (k= 1,2, ..., n) andS =

Pn k=1

xk, then Pn k=1

xSkxk ≥1.

Mih´aly Bencze OQ. 3210. Ifxk>0 (k= 1,2, ..., n) then

P

cyclic x1

x2n+1n2 3 vu ut

Pn k=1

x3k P

cyclic

x1x2x3 +3n2+3n+1n3 .

Mih´aly Bencze OQ. 3211. Iff :I →R (I ⊆R) is a convex function,xk ∈I (k= 1,2, ..., n) such thatx1≤x2 ≤...≤xn, then determine all yk∈R (k= 1,2, ..., n)

Pn k=1

yk= 1 such thatf n

P

k=1

xkyk

≤ Pn

k=1

ykf(xk).

Mih´aly Bencze OQ. 3212. Ifxk>0 (k= 1,2, ..., n) and

Qn k=1

xk=Pn,then P

cyclic 1+x1x2

1+x1n(PPn+1+1).

Mih´aly Bencze OQ. 3213. LetABC be a triangle. Determine all x, y, z >0 andn∈N such thatQ

(xan+ybn+zcn)≥((yx+zx)sr)n1.

Mih´aly Bencze OQ. 3214. Iff : [0,1]→(0,+∞) is a concave function, then determine all s, r∈R such that

(s+ 1)

R1 0

fs(x)dx r

(r+ 1) R1 0

fr(x)dx s

.

(11)

OQ. 3215. Ifxk>0 (k= 1,2, ..., n) and P

cyclic

x1x2...xn1 =n, then P

cyclic

x1

nxn1+x2x3...xn ≥ Qn

k=1

xk.

Mih´aly Bencze OQ. 3216. Ifxk>0 (k= 1,2, ..., n) then

P

cyclic

x1+x

n−1 2

x3

n1

n(n1)2 Pn

k=1

xnk Pn k=1

xk

.

Mih´aly Bencze and Zhao Changjian OQ. 3217. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

xak= 1,where a∈R, then find the minimum value of

Pn k=1

xbk

1xck,when b, c∈R.

Mih´aly Bencze OQ. 3218. If 0< xk<1 (k= 1,2, ..., n), then determine allf :Rn→R for which Pn

k=1 1

1xk1f(x1,xn2,...,xn)n

1n1 Pn

k=1

xk

.

Mih´aly Bencze OQ. 3219. Ifxk>0 (k= 1,2, ..., n) then

n1

n P

k=1

xk

« P

cyclic

x1x2

!n P1

cyclic

x21x2 + n P1

cyclic

x1x22.

Mih´aly Bencze OQ. 3220. Ify, xk>0 (k= 1,2, ..., n) and Pn

k=1

xαk =yα,whereα≥1, then Pn

k=1

xαk1−yα1 ≥n(α−1) Qn

k=1

(y−xk).

Mih´aly Bencze

(12)

OQ. 3221. Ifxk, yk>0 (k= 1,2, ..., n) andS = Pn

k=1

yk,then Pn

k=1

(S−yk)xk ≥(n−1) vu ut P

cyclic

x1x2

! P

cyclic

y1y2

! .

Mih´aly Bencze OQ. 3222. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

xk= 1 and α≥1, then

n≤ P

cyclic xα1+1

xα2+1 ≤n+n11.

Mih´aly Bencze OQ. 3223. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

xk= 1 then find the minimum and the maximum value of the expression P

cyclic

(x1x2...xn1)α when α≥1 is given.

Mih´aly Bencze OQ. 3224. LetA1A2...An be a convex polygon inscribed in the unit circle.

IfM ∈Int(A1A2...An),then Qn

k=1

M Ak≤1 +n12 + n2n.

Mih´aly Bencze OQ. 3225. IfP0(x) = 0, Pn+1(x) =Pn(x) +xPknk(x) for all n∈N, where k∈N, k≥2 is given. Prove that, for alln∈N holds the inequalities 0≤ √k

x−Pn(x)≤ n+1k ,whenx∈[0,1].

Mih´aly Bencze OQ. 3226. Ifxk>0 (k= 1,2, ..., n) andP = Qn

k=1

xk, Pn

k=1

xk= 1 then Pn

k=1 xk

x2k+P+1nn+nnnn−2+1.

Mih´aly Bencze

(13)

OQ. 3227. Ifxk>0 (k= 1,2, ..., n) and Pn

k=1

xk=nthen determine all p, q∈N such that Pn

k=1 1 xpk ≥ Pn

k=1

xqk.

Mih´aly Bencze OQ. 3228. Ifxk, yk>0 (k= 1,2, ..., n) then Pn1

k=1 1 xk

+ Pn1 k=1 1 yk

Pn 1

k=1 1 xk+

Pn k=1

1 yk

and more general, if xij >0 (i= 1,2, ..., n;j= 1,2, ..., m),then Pm

j=1

n1 P

i=1 1 xij

Pm 1

j=1 n1 P i=1xij

.

Mih´aly Bencze and Zhao Changjian.

OQ. 3229. Let be a1 = 1,16an+1 = 1 + 4an+√

1 + 24an for all n≥1.

Determine all n∈N for which an is prime.

Mih´aly Bencze OQ. 3230. The equationx2+ 4xy+y2= 1 have infinitely many solution in Z, because the sequencesxn+1 =x2n−yn2, yn+1 = 2xnyn+ 4y2n,

x1 = 1, y1=−4 offer infinitely many solution in Z.

1). Determine all solution in Z 2). Determine all solutution inQ Mih´aly Bencze OQ. 3231. Let be f(x) = Qn

k=1

ln(akx+bk)

ln(ckx+dk),wherex >0

1). Determine all ak, bk, ck, dk>0 (k= 1,2, ..., n) for which f is increasing (decreasing)

2). Determine all ak, bk, ck, dk>0 (k= 1,2, ..., n) for which f is convex (concav)

Mih´aly Bencze

(14)

OQ. 3232. Let be f(x) = Qn

k=1

sin (akx+bk)

1). Determine all ak, bk∈R (k= 1,2, ..., n) and x∈R for which f is increasing (decreasing)

2). Determine all ak, bk∈R (k= 1,2, ..., n) and x∈R for which f is convex (concav)

Mih´aly Bencze OQ. 3233. 1). If Hn= 1 + 12+...+n1,then 1Hn+ 2Hn+...+kHnn+kn+1 for all k∈N

2). Determine the best constants 0< a < b≤1 such that a n+kn+1

≤1Hn+ 2Hn+...+kHn ≤b n+kn+1

3). Determine the assymptotical expansion of the sum 1Hn+ 2Hn+...+kHn Mih´aly Bencze OQ. 3234. LetABC be a triangle. Determine all x, y, z >0 such that sinAx sinBy sinCz

3 x+y+z

x+y+z2 .

Mih´aly Bencze OQ. 3235. LetABC be a triangle. Determine all xk, yk, zk>0 (k= 1,2,3) such thatx1sinyA

1 +x2sinyB

2 +x3sinyC

33(x1y21+x2y22+x3y23)

4(y1+y2+y3) .

Mih´aly Bencze OQ. 3236. 1). Prove that

1

2ln 3 (n+ 2) lnn+23 <n+1P

k=3 lnk

k < 12ln 3 (n+ 1) lnn+13 +13ln 3 2). Determine the best constants a, b, c, d >0 such that

Pn k=1

lnx

k =alnbnlncn+d+O(n).

Mih´aly Bencze OQ. 3237. 1). If x≥y >0 then (x+ 1)xx1 yy ≥(y+ 1)y1yxx

2). Determine all ak, bk, ck>0 and dk∈R (k= 1,2) for which (a1x+b1)c1x+dx1 yy ≥(a2y+b2)c2y+dy2 xx for all x≥y >0.

(15)

OQ. 3238. 1). Ifx≥y >0, then 1 +x1x

+ (1 +y)1y

1 +1yy

+ (1 +x)1x 2). Determine all ak, bk, ck, dk>0 (k= 1,2) such that

a1+bx1x

+ (c1+d1y)y1

a2+by2y

+ (c2+d2x)x1 for allx≥y >0.

Mih´aly Bencze OQ. 3239. Suppose that A1, A2, ..., An are the vertices of a simplex S. On the faces opposite to A1, A2, ..., An1,construct simplex outsideS with apexes B1, B2, ..., Bn1 and volumesV1, V2, ..., Vn1,respectively.

LetBn be the point such thatA1Bn=BAn, where B is the point of intersection of the planes through Bi parallel to the respective bases (i= 1,2, ..., n−1).LetVn be the volume of the simplexA1A2...An1Bn. Prove that Vn=V1+V2+...+Vn1.

Mih´aly Bencze OQ. 3240. IfM, N, K are the mid-points of sides BC, CA, ABin triangle ABC, then 1≥Q

cosA2B ≥sin (AM B) sin (BN C) sin (CKA)≥ 2rR3

,a refinement of Euler’s inequality.

Determine all M ∈BC, N ∈CA, K ∈AB such that 1≥Q

cosA2B ≥sin (AM B) sin (BN C) sin (CKA)≥ 2rR3

.

Mih´aly Bencze OQ. 3241. LetABC be a triangle,A1∈(BC), B1 ∈(CA), C1∈(AB) such thatAA1∩BB1∩CC1={M}

1). Determine all pointsM for which P 1

M A+ M B

M C3PPM AM A. I have obtainedM ≡G.

2). Determine all pointsM for which P 1

M Aλ+M BλM Cλaλ+b9λ+cλ,where λ∈[0,1].

Mih´aly Bencze OQ. 3242. LetABC be a triangle and M ∈Int(ABC),such that

M AB∡+M BC∡+M CA∡= 90.Determine allM for which the triangle is isoscele.

Mih´aly Bencze

(16)

OQ. 3243. Determine all a, b, c, d, e∈Z such that Pn

j=0

Pn k=1

(−1)j+k anbj cn

dk+e

= 0

Mih´aly Bencze OQ. 3244. LetABC be a triangle. Determine all xk, yk, zk>0 (k= 1,2,3) such thatx1cosyA

1 +x2cosyA

2 +x3cosyA

312+ x x1+x2+x3

1y1+x2y2+x3y3.

Mih´aly Bencze OQ. 3245. LetABC be a triangle. Determine all xk, yk, zk>0 (k= 1,2,3) such thatx1cosyA

1 +x2cosyA

2 +x3cosyA

3y1+y32+y3 x1y1+x22y2+x3y332 . Mih´aly Bencze OQ. 3246. Solve in Z the following equation

x1+x22+x33+...+xnn

x2+x23+x34+...+xn1

... xn+x21+x32+...+xnn1

= (x1+x2+...+xn)n(n+1)2 .

Mih´aly Bencze OQ. 3247. LetABC be a triangle, and denoteA the areea of the triangle.

Determine the best constants 1≤x < y≤3, such that xP

(a−b)2 ≤P

a2−4A√

3≤yP

(a−b)2.

Mih´aly Bencze OQ. 3248. Determine all n∈N for which Φ (n) divides σ(n) + Ψ (n).

Mih´aly Bencze

OQ. 3249. Solve in Z the equation Pn k=1

ak bk ck dk

−bk ak −dk ck

−ck dk ak −bk

−dk −ck bk ak

=xn, wheren∈N, n≥2.

Mih´aly Bencze

(17)

OQ. 3250. LetA1A2...An+1 be a concyclic (n+ 1)−gon, denote Ωk the anticentres of A1A2...Ak1Ak+1...An+1(k= 1,2, ..., n+ 1).Prove that Ω12...Ωn+1 is concyclic.

Mih´aly Bencze OQ. 3251. Determine all functionsf :R →R for which from

Pn k=1

f(αkx)≥ Pn

k=1

f(βkx) when αk, βk∈R (k= 1,2, ..., n) for x∈(−ε, ε), ε >0,implies Pn

k=1

αk≥ Pn

k=1

βk.

Mih´aly Bencze OQ. 3252. DenoteQ3 the set of important points of a triangle

(H, G, O, I etc)

1). Let ABCD be a concyclic quadrilateral and denote MA, MB, MC, MD ∈Q3 the important points of triangles

BCD, CDA, DAB, ABC.Determine all MA, MB, MC, MD ∈Q3 for which the quadrilaterals MAMBMCMD are concyclic

2). Prove thatcardQ3 ≥2.We can show thatH, G∈Q3 satisfys the point 1). From Sylvester’s theorem we have OHA=OB+OC+OD and his permutations. From others we have OA+OB+OC+OD=OHA+OA=

=OHB+OB+OHC +OC=OHD+OD=QT .FromOHA+OA=OT we have T HA=AO,O is the circumcenter ofABCD, etc.

We have T HA=OA=T HB=OB=T HC =OC=T HD =OD,which means that HAHBHCHD is concyclic. FromHAGA= 2GAO holds that GAGBGCGD is concyclic. FinallycardQ3 ≥2.

3). DenoteQn the set of important points of the convex n-gon.

LetA1A2...An+1 be a concyclic convex (n+ 1)−gon. Denote Mk∈Qn (k= 1,2, ..., n+ 1) the important points of A1A2...Ak1Ak+1...An+1 (k= 1,2, ..., n+ 1).Determine all Mk∈Qn (k= 1,2, ..., n) for which A1A2...Ak1Ak+1...An+1 (k= 1,2, ..., n) are concyclic.

Mih´aly Bencze OQ. 3253. DenoteA2k the denominator of Bernoullli’s numberB2k.

1). Compute P

k=1 1 A2k

2). Compute P 1

A2

(18)

3). More general determine P

k=1 1 Aα2k

4). How many prime exist betweenA2k and A2k+2? 5). Determine all k∈N for which A2k is prime 6). Determine all n∈N for which Pn

k=1

A2k is prime

Mih´aly Bencze OQ. 3254. Let be A1A2...An a convex polygon with sides ak

(k= 1,2, ..., n).Prov that 1). min(a a1

2,a3,...,an)+min(a a2

1,a3,...,an)+...+min(a an

1,a2,...,an−1) ≥n 2). max(aa1

2,a3,...,an) +max(a a2

1,a3,...,an)+...+max(a an

1,a2,...,an−1) ≥n

Mih´aly Bencze OQ. 3255. DenoteBnthe n−th Bernoulli’s number. Determine alln for which k+Pk

i=1

niBni1≡0 (modn) if and only ifnis prime, when n= Pk

i=1

ni. Mih´aly Bencze OQ. 3256. Determine allnfor which n!B1B2...Bn1+ (−1)n≡0 (modn) if and only if nis prime.

Mih´aly Bencze OQ. 3257. Ifx, y, z >0 andλ∈[1,2],then P

cyclic (y+z)2

x2+λyzλ+112 .

Mih´aly Bencze OQ. 3258. Solve in Z the following equation

x1a3+x2b3+x3c3− xa2+yb2+zc2

(xa+yb+zc) =

=y1(a+b) (a−b)2+y2(b+c) (b−c)2+y3(c+a) (c−a)2.

Mih´aly Bencze OQ. 3259. Compute the following sums:

1). F = F1

1 + F1

1F2 +...+F 1

1F2...Fn +..., whenFk denote the k-th Fibonacci number

2). P = p1

1 +p1

1p2 +...+p 1

1p2...pn +..., when pk denote thek-th prime number 3). If e = 1 + 1n

, then computeE = 1 + 1 +...+ 1 +...

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

fásban és Példában az adattatik elő, és az iránt vigafctaltatik ’s bátorittatik; a’ fogságból haza botsáctatot ’Sidóság , és a’nak Elöljárói, Josua Zorobábel ’s

Colour is both a technical and an artistic tool for designers of coloured environment. Unambiguous distinction by codes is required in the first case~ to assign

A central result of this paper is that, if competition among adults is important and modelled through an appropriate (non-linear and non-monotone) b( · ), then the model may

A 2012 óta eltelt időszakban csak két olyan határozatot találtunk, amelyben az Alkotmánybíróság kifejezetten az indokolási kötelezettség megsértésére

The following theorem claims this bound for every finite simple group of Lie type..

Example 1.23. The problem is the following: If we compute the numerator and the denominator separately first, then we run into the problem of overflowing the calculation if we

2. Az is azonnal l´ atszik, hogy minden egyes k-adoszt´ aly´ u kombin´ aci´ o annyi k- adoszt´ aly´ u vari´ aci´ ob´ ol sz´ armaztathat´ o, ah´ anyf´ elek´ eppen a

Investigating this question we have same result by using the method of [1].. Our main result is to prove