• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
11
0
0

Teljes szövegt

(1)

volume 5, issue 3, article 72, 2004.

Received 08 March, 2004;

accepted 11 April, 2004.

Communicated by:N. Elezovi´c

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

ON LANDAU TYPE INEQUALITIES FOR FUNCTIONS WITH HÖLDER CONTINUOUS DERIVATIVES

LJ. MARANGUNI ´C AND J. PE ˇCARI ´C

Department of Applied Mathematics

Faculty of Electrical Engineering and Computing University of Zagreb

Unska 3, Zagreb, Croatia.

EMail:ljubo.marangunic@fer.hr Faculty of Textile Technology University of Zagreb Pierottijeva 6, Zagreb Croatia.

EMail:pecaric@element.hr

2000c Victoria University ISSN (electronic): 1443-5756 079-04

(2)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

Abstract

An inequality of Landau type for functions whose derivatives satisfy Hölder’s condition is studied.

2000 Mathematics Subject Classification:26D15 Key words: Landau inequality, Hölder continuity

Contents

1 Introduction. . . 3 2 Main Results . . . 4

References

(3)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

1. Introduction

S.S. Dragomir and C.I. Preda have proved the following theorem (see [1]):

Theorem A. Let I be an interval in R and f : I → R locally absolutely continuous function onI. Iff ∈L(I)and the derivativef0 :I →Rsatisfies Hölder’s condition

(1.1) |f0(t)−f0(s)| ≤H· |t−s|α for any t, s∈I,

where H > 0 and α ∈ (0,1] are given, then f0 ∈ L(I) and one has the inequalities:

(1.2) ||f0|| ≤













2 1 + α1α+1α

· ||f||α+1α ·Hα+11 if m(I)≥2α+2α+1||f||

H

α+11

1 + α1α+11

;

4·||f||

m(I) + 2α(α+1)H [m(I)]α

if 0< m(I)≤2α+2α+1 ||f||

H

α+11

(1 + α1)α+11 , where|| · ||is the∞-norm on the intervalI, andm(I)is the length ofI.

In our paper we shall give an improvement of this theorem.

(4)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

2. Main Results

Theorem 2.1. Let I be an interval and f : I → R function on I satisfying conditions of TheoremA. Thenf0 ∈L(I)and the following inequlities hold:

(2.1) ||f0|| ≤

















2 1 + α1α+1α

· ||f||α+1α ·Hα+11 if m(I)≥2α+11 ||f||

H

α+11

1 + α1α+11

;

2||f||

m(I) +α+1H [m(I)]α

if 0< m(I)≤2α+11 ||f||

H

α+11

1 + α1α+11 ,

where|| · ||is the∞-norm on the intervalI, andm(I)is the length ofI.

In our proof and in the subsequent discussion we use three lemmas.

Lemma 2.2. Let a, b ∈ R, a < b, α ∈ (0,1]. Then the following inequality holds:

(2.2) (b−x)α+1+ (x−a)α+1 ≤(b−a)α+1, ∀x∈[a, b].

Proof. Consider the functiony: [a, b]→Rgiven by:

y(x) = (b−x)α+1+ (x−a)α+1. We observe that the unique solution of the equation

y0(x) = (α+ 1) [(x−a)α−(b−x)α] = 0

(5)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

isx0 = a+b2 ∈ [a, b]. The functiony0(x)is decreasing on(a, x0)and increasing on (x0, b). Thus, the maximal values fory(x)are attained on the boundary of [a, b] :y(a) =y(b) = (b−a)α+1, which proves the lemma.

A generalization of the following lemma is proved in [1]:

Lemma 2.3. LetA, B >0andα∈(0,1]. Consider the functiongα: (0,∞)→ Rgiven by:

(2.3) gα(λ) = A

λ +B·λα. Defineλ0 := αBA α+11

∈(0,∞). Then forλ1 ∈(0,∞)we have the bound

(2.4) inf

λ∈(0,λ1]gα(λ) =

A

λ1 +B·λα1 if 0< λ1 < λ0 (α+ 1)αα+1α ·Aα+1α ·Bα+11 if λ1 ≥λ0.

Proof. We have:

g0α(λ) =−A

λ2 +α·B·λα−1.

The unique solution of the equationg0α(λ) = 0,λ∈(0,∞), isλ0 = αBA α+11

∈ (0,∞). The functiongα(λ)is decreasing on(0, λ0)and increasing on(λ0,∞).

The global minimum forgα(λ)on(0,∞)is:

(2.5) gα0) = A αB

A α+11

+B A

αB α+1α

= (α+ 1)αα+1α ·Aα+1α ·Bα+11 , which proves (2.4).

(6)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

Lemma 2.4. Let A, B > 0 and α ∈ (0,1]. Consider the functions gα : (0,∞)→Randhα : (0,∞)→Rdefined by:

(2.6)

gα(λ) = Aλ +B·λα hα(λ) = 2Aλ + 2Bαλα. Defineλ0 := αBA α+11

∈(0,∞). Then forλ1 ∈(0,∞)we have:

(2.7)

λ∈(0,λinf1]gα(λ)< inf

λ∈(0,λ1]hα(λ) if 0< λ1 <2λ0

inf

λ∈(0,λ1]gα(λ) = inf

λ∈(0,λ1]hα(λ) if λ1 ≥2λ0.

Proof. In Lemma2.3, we found that the global minimum forgα(λ)is obtained forλ=λ0. Similarly we find that the global minimum forhα(λ)is obtained for λ = 2λ0, and its value is equal to the minimal value ofgα(λ), i.e. hα(2λ0) = gα0).

The only solution of equationgα(λ) =hα(λ),λ∈(0,∞), is:

λS =

A B(1−2−α)

α+11 ,

and we can easily check that λ0 < λS < 2λ0. Thus, for λ1 < λ0 we have gα1)< hα1)and inf

λ∈(0,λ1]gα(λ)< inf

λ∈(0,λ1]hα(λ), and the rest of the proof is obvious.

(7)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

Proof of Theorem2.1. Now we start proving our theorem using the identity:

(2.8) f(x) = f(a) + (x−a)f0(a) + Z x

a

[f0(s)−f0(a)]ds; a, x∈I

or, by changingxwithaandawithx:

(2.9) f(a) =f(x) + (a−x)f0(x) + Z a

x

[f0(s)−f0(x)]ds; a, x∈I.

Analogously, we have forb ∈I:

(2.10) f(b) =f(x) + (b−x)f0(x) + Z b

x

[f0(s)−f0(x)]ds; b, x∈I.

From (2.9) and (2.10) we obtain:

(2.11) f(b)−f(a) = (b−a)f0(x) + Z b

x

[f0(s)−f0(x)]ds +

Z x a

[f0(s)−f0(x)]ds; a, b, x∈I

and

(2.12) f0(x) = f(b)−f(a)

b−a − 1

b−a Z b

x

[f0(s)−f0(x)]ds

− 1 b−a

Z x a

[f0(s)−f0(x)]ds.

(8)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

Assuming thatb > awe have the inequality:

(2.13) |f0(x)| ≤ |f(b)−f(a)|

b−a + 1

b−a

Z b x

|f0(s)−f0(x)|ds

+ 1

b−a

Z x a

|f0(s)−f0(x)|ds . Sincef0 is ofα−HHölder type, then:

Z b x

|f0(s)−f0(x)|ds

≤H·

Z b x

|s−x|αds (2.14)

=H Z b

x

(s−x)αds

= H

α+ 1(b−x)α+1; b, x∈I, b > x

Z x a

|f0(s)−f0(x)|ds

≤H·

Z x a

|s−x|αds (2.15)

=H Z x

a

(x−s)αds

= H

α+ 1(x−a)α+1; a, x∈I, a < x.

From (2.13), (2.14) and (2.15) we deduce:

(2.16) |f0(x)| ≤ |f(b)−f(a)|

b−a

(9)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

+ H

(b−a)(α+ 1)[(b−x)α+1+ (x−a)α+1];

a, b, x∈I, a < x < b.

Sincef ∈L(I)then|f(b)−f(a)| ≤2· ||f||. Using Lemma2.2we obviously get that:

(2.17) |f0(x)| ≤ 2||f||

b−a + H

α+ 1(b−a)α; a, b, x∈I, a < x < b.

Denoteb−a =λ. Sincea, b ∈ I, b > a, we haveλ ∈ (0, m(I)), and we can analyze the right-hand side of the inequality (2.17) as a function of variableλ.

Thus we obtain:

(2.18) |f0(x)| ≤ 2||f||

λ + H

α+ 1λα =gα(λ) forx∈Iand for everyλ∈(0, m(I)).

Taking the infimum overλ∈(0, m(I))in (2.18), we get:

(2.19) |f0(x)| ≤ inf

λ∈(0,m(I))gα(λ).

If we take the supremum overx∈Iin (2.19) we conclude that

(2.20) sup

x∈I

|f0(x)|=||f0|| ≤ inf

λ∈(0,m(I))gα(λ).

Making use of Lemma2.3we obtain the desired result (2.1).

(10)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

Remark 2.1. Denoteλ0 = h

2 1 + α1||f||

H

iα+11

. Comparing the results of Theo- remAand Theorem2.1we can see that in the case ofm(I)≥2λ0the estimated values for ||f0|| in both theorems coincide. If0 < m(I) < 2λ0 the estimated value for||f0||given by (2.1) is better than the one given by (1.2). Namely, using Lemma2.4we have:

(2.21) 2||f||

m(I)+ H

α+ 1[m(I)]α < 4||f||

m(I)+ H

2α(α+ 1)[m(I)]α; m(I)∈(0, λ0] and

(2.22)

2

1 + 1 α

α+1α

· ||f||α+1α ·Hα+11

< 4||f||

m(I) + H

2α(α+ 1)[m(I)]α; m(I)∈[λ0,2λ0).

Remark 2.2. Let the conditions of Theorem 2.1 be fulfilled. Then a simple consequence of (2.11) is the following inequality:

|(b−a)f0(x)−f(b) +f(a)| ≤ H α+ 1

(b−x)α+1+ (x−a)α+1

;

a, b, x∈I, a < x < b.

This result is an extension of the result obtained by V.G. Avakumovi´c and S.

Aljanˇci´c in [2] (see also [3]).

(11)

On Landau Type Inequalities for Functions with HÖlder Continuous Derivatives Lj. Maranguni´c and J. Peˇcari´c

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of11

J. Ineq. Pure and Appl. Math. 5(3) Art. 72, 2004

http://jipam.vu.edu.au

References

[1] S.S. DRAGOMIR AND C.J. PREDA, Some Landau type inequalities for functions whose derivatives are Hölder continuous, RGMIA Res. Rep. Coll., 6(2) (2003), Article 3. ONLINE [http://rgmia.vu.edu.au/v6n2.

html].

[2] V.G. AVAKUMOVI ´C AND S. ALJAN ˇCI ´C, Sur la meilleure limite de la dérivée d’une function assujetie à des conditions supplementaires, Acad.

Serbe Sci. Publ. Inst. Math., 3 (1950), 235–242.

[3] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´CANDA.M. FINK, Inequalities Involv- ing Functions and Their Integrals and Derivatives, Kluwer Academic Pub- lishers, Dordrecht, Boston, London, 1991.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Palais Corner della C i grande. nies du soir. Avec la dogana, due à Benoni, et dont la sobriété sied si bien au voisinage écrasant de la Sainte, Venise possède une entrée sur

The following result is useful in providing the best quadrature rule in the class for approxi- mating the integral of a function f : [a, b] → R whose first derivative is

SHAH, Some inequalities for the polar derivative of a polynomial, Indian Acad. BERNSTEIN, Sur la limitation des derivees des

The aim of the present paper is to establish Grüss type inequalities for some perturbed ˇ Cebyšev functionals... Perturbed ˇ Cebyšev

Key words: Ostrowski inequality, Integral inequalities, Absolutely continuous functions.. Abstract: On utilising an identity from [5], some weighted Ostrowski type inequalities

Key words: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian func- tions, Integral inequalities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s type inequali-

Key words and phrases: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian functions, Integral inequal- ities, ˇ Cebyšev, Grüss, Ostrowski and Lupa¸s

En guise de conclusion, nous considérons que Jules Verne réussit grâce â son livre Le château des Carpathes à présenter la Transylvanie d’une manière captivante car il analyse