• Nem Talált Eredményt

A weighted version of Ostrowski type integral inequalities is established

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A weighted version of Ostrowski type integral inequalities is established "

Copied!
18
0
0

Teljes szövegt

(1)

Vol. 20 (2019), No. 2, pp. 1101–1118 DOI: 10.18514/MMN.2019.2785

A WEIGHTED COMPANION OF OSTROWSKI’S INEQUALITY USING THREE STEP WEIGHTED KERNEL

S. OBEIDAT, M. A. LATIF, AND A. QAYYUM Received 10 December, 2018

Abstract. A weighted version of Ostrowski type integral inequalities is established . We use a newly developed special type of three steps kernel. Our findings give some new error bounds for various quadrature rules. We apply our results to cumulative distributive functions.

2010Mathematics Subject Classification: 26D15; 26D20; 26D99

Keywords: Ostrowski inequality, weight function, composite quadrature rule, cumulative dis- tributive function

1. INTRODUCTION

The importance of mathematical inequalities is due to its applications in several branches of Mathematics such as numerical integration, optimization theory, and in- tegral operator theory. During the past few decades, many researchers worked on inequalities and their applications (see for instance [4]-[5], [7]-[8]).

In 1938, Ostrowski [6] introduced an interesting integral inequality which meas- ures the deviation between a function and its integral mean. It is stated as follows:

Theorem 1. Let fWŒc; d !R be continuous on Œc; d  and differentiable on .c; d / ;whose derivativef0W.c; d /!Ris bounded on .c; d / ;i.e.

f0

1D sup

t2Œc;d 

ˇˇf0.t /ˇ ˇ<1 then for allx2Œc; d 

ˇ ˇ ˇ ˇ ˇ ˇ

f .x/ 1

d c

d

Z

c

f .t /dt ˇ ˇ ˇ ˇ ˇ ˇ

2 4 1

4C x cC2d

d c

!23

5.d c/

f0

1: (1.1) Another important inequality is so-called Gr¨uss inequality [5] which links the in- tegral mean of a product of two functions with the product of their integral means. It

c 2019 Miskolc University Press

(2)

is stated as follows:

ˇ ˇ ˇ ˇ ˇ ˇ

1

d c

d

Z

c

f .x/g.x/dx 1

d c

d

Z

c

f .x/dx: 1

d c

d

Z

c

g.x/dx ˇ ˇ ˇ ˇ ˇ ˇ

(1.2) 1

4.˛2 ˛1/.2 1/;

where

˛1f .x/˛2 and1g .x/2, for allx2Œc; d  :The constant 14 is sharp in (1.2) .

In [3], Dragomir and Wang combined Ostrowski and Gr¨uss inequality and ob- tained a new inequality known in the literature as Ostrowski-Gr¨uss type inequalities.

Dragomir [2] established some companions of Ostrowski type integral inequalities.

In [1], Alomari proved the following companion inequality of Ostrowski’s type using Gr¨uss inequality.

Theorem 2. LetfWŒc; d !R be a differentiable function on.c; d / ; 1< c <

d <1:Iff 02L1Œc; d andB1f 0.t /B2for allt 2Œc; d , whereB1; B2 are constants, then the inequality

ˇ ˇ ˇ ˇ ˇ ˇ

f .x/Cf .cCd x/

2

1

d c

d

Z

c

f .t /dt ˇ ˇ ˇ ˇ ˇ ˇ

1

8.d c/ .B2 B1/ (1.3) holds for allx2h

c;cC2di :

In the proof of Theorem2, Alomari defined the following mapping p .x; t /D

8

<

:

t c t2Œc; x

t aC2b t2.x; cCd x

t b t2.cCd x; d  for allx2h

c;cC2di

:The upper bound of Inequality (1.3) is obtained using the fact that

x cCd

2 p .x; t /x c (1.4)

for each t 2Œc; d and each x2h c;cC2d

i

:However, this fact is not correct. For example, ifxDcC2d d c100 andtD cC2dCd c50 , then

p .x; t /Dt d D 12 .d c/

25 ;

and

x cCd

2 D .d c/

100 > p .x; t / ;

(3)

which contradics Inequality (1.4). The correct property ofp .x; t /is that min

x cCd 2 ; c x

p .x; t /max cCd

2 x; x c

: (1.5)

for eacht2Œc; d and eachx2h

c;cC2di

:Using this property ofp .x; t /, the correc- tion of Inequality (1.3) becomes

ˇ ˇ ˇ ˇ ˇ ˇ

f .x/Cf .cCd x/

2

1

d c

d

Z

c

f .t /dt ˇ ˇ ˇ ˇ ˇ ˇ

1

4.d c/ .B2 B1/ : (1.6) In this paper, we will present a weighted version of Inequality (1.6) using a new three step kernel, and discuss some applications of our results. Throughout the present paper, a weight function (or density function) over some intervalŒc; d  ;where

1< c < d <1;is a functionwWŒc; d  !Œ0;1/with0 <

d

R

c

w.t /dt <1. 2. MAIN RESULTS

Definition 1. Let 1< c < d <1:Letwbe a weight function overŒc; d  :The 3-step linear kernel with respect towis denoted byGw, and is defined as follows:

Gw.x; t /D 8 ˆˆ ˆˆ ˆˆ ˆ<

ˆˆ ˆˆ ˆˆ ˆ:

t

R

c

w .u/ du; t2Œc; x

t

R

c

w .u/ du 12

d

R

c

w .u/ du; t2.x; cCd x

t

R

d

w .u/ du; t2.cCd x; d 

; (2.1)

forx2h

c;cC2di

andt 2Œ0; 1 :

The following lemma will be used repeatedly throughout the present paper.

Lemma 1. Let 1< c < d <1:For a weight functionwoverŒc; d  ;the identity

d

Z

c

Gw.x; t /f 0.t /dt (2.2)

D1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

w .t / f .t / dt;

(4)

holds for allx2h c;cC2d

i

andt2Œ0; 1 : Proof. Using Definition1, we have

d

Z

c

Gw.x; t /f 0.t /dtD

x

Z

c

2 4

t

Z

c

w .u/ du 3

5f 0.t /dt

C

cCd x

Z

x

2 4

t

Z

c

w .u/ du 1 2

d

Z

c

w .u/ du 3

5f 0.t /dt

C

d

Z

cCd x

2 4

t

Z

b

w .u/ du 3

5f 0.t /dt:

Applying integration by parts on each integral, we get

x

Z

c

2 4

t

Z

c

w .u/ du 3

5f 0.t /dtD 2 4

x

Z

c

w .u/ du 3 5f .x/

x

Z

c

w .t / f .t / dt;

cCd x

Z

x

2 4

t

Z

c

w .u/ du 1 2

d

Z

c

w .u/ du 3

5f 0.t /dt

D 0

@

cCd x

Z

c

w .u/ du 1 2

d

Z

c

w .u/ du 1

Af .cCd x/

0

@

x

Z

c

w .u/ du 1 2

d

Z

c

w .u/ du 1 Af .x/

cCd x

Z

x

w .t / f .t / dt;

and

d

Z

cCd x

2 4

t

Z

d

w .u/ du 3

5f 0.t /dtD 2 6 4

d

Z

cCd x

w .u/ du 3 7

5f .cCd x/

d

Z

cCd x

w .t / f .t / dt:

(5)

Thus,

d

Z

c

Gw.x; t /f 0.t /dt

D1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

w .t / f .t / dt:

Remark1. If we setf .t /Dtin Identity (2.2), we have

d

Z

c

Gw.x; t /dtDcCd 2

2 4

d

Z

c

w .t / dt 3 5

d

Z

c

w .t / dt; (2.3)

forx2h

c;cC2di :

Lemma 2. Let 1< c < d <1:Ifw is a weight function overŒc; d , andwis symmetric about cC2d, then

d

Z

c

w .t / dtDcCd 2

2 4

d

Z

c

w .t / dt 3 5;

and hence

d

Z

c

Gw.x; t /dtD0;

forx2h

c;cC2di :

Proof. Sincewis symmetric about cC2d;

d

Z

c

t w .t / dt D

d

Z

c

.cCd t / w .t / dt;

which implies that

d

Z

c

t w .t / dtD cCd 2

d

Z

c

w .t / dt:

(6)

Using Identity (2.3), we get that

d

Z

c

Gw.x; t /dtD0:

Theorem 3. Let 1< c < d <1andfWŒc; d !R be a differentiable function on .c; d /. Suppose that w is a weight function over Œc; d . If f 02L1Œc; d  and B1f 0.t /B2, for allt2Œc; d  ;whereB1; B2are constants, then the inequality

ˇ ˇ ˇ ˇ ˇ ˇ

2 4 1 2

0

@

d

Z

c

w .t / dt 1

A.f .x/Cf .cCd x// I .c; d; x/H .c; d / 3 5

d

Z

c

w .t / f .t / dt ˇ ˇ ˇ ˇ ˇ ˇ 1

4V .c; d; x/ .B2 B1/ .d c/ (2.4)

holds for allx2h

c;cC2di , where

I .c; d; x/D

d

Z

c

Gw.x; t /dt; H .c; d /Df .d / f .c/

d c ;

and

V .c; d; x/Dmax 8

<

:

cCd x

Z

x

w .t / dt;

d

Z

c

w .t / dt

cCd x

Z

x

w .t / dt 9

=

; Proof. Note that fort2Œ0; 1andx2h

c;cC2di

, we have

L .c; d; x/Gw.x; t /U .c; d; x/ ; (2.5) where

U .c; d; x/Dmax 8

<

:

x

Z

c

w .t / dt;

cCd x

Z

c

w .t / dt 1 2

d

Z

c

w .t / dt 9

=

;

; and

L .c; d; x/Dmin 8

<

:

x

Z

c

w .t / dt 1 2

d

Z

c

w .t / dt;

cCd x

Z

d

w .t / dt 9

=

; :

(7)

By Lemma1, we have 1

d c

d

Z

c

Gw.x; t /f 0.t /dt 1 .d c/2

d

Z

c

Gw.x; t /dt

d

Z

c

f 0.t /dt

D 1 2 .d c/

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

f .d / f .c/

.d c/2

d

Z

c

Gw.x; t /dt 1

d c

d

Z

c

w .t / f .t / dt:

Applying Gr¨uss Inequality and using Identity (2.5), we get that ˇ

ˇ ˇ ˇ ˇ ˇ

1

d c

d

Z

c

Gw.x; t /f 0.t /dt 1 .d c/2

d

Z

c

Gw.x; t /dt

d

Z

c

f 0.t /dt ˇ ˇ ˇ ˇ ˇ ˇ 1

4.U .c; d; x/ L .c; d; x// .B2 B1/ : But

U .c; d; x/ L .c; d; x/DV .c; d; x/ ; which implies that

ˇ ˇ ˇ ˇ ˇ ˇ 2 4 1 2

0

@

d

Z

c

w .t / dt 1

A.f .x/Cf .aCb x// I .c; d; x/H .c; d / 3 5

b

Z

a

w .t / f .t / dt ˇ ˇ ˇ ˇ ˇ ˇ 1

4V .c; d; x/ .B2 B1/ .d c/ :

Corollary 1. Let 1< c < d <1andfWŒc; d !R be a differentiable function on.c; d /. Suppose thatwis a weight function overŒc; d andwis symmetric about

cCd

2 : Iff 02L1Œc; d andB1f 0.t /B2, for allt 2Œc; d  ;where B1; B2 are constants, then the inequality

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

0

@

d

Z

c

w .t / dt 1

A.f .x/Cf .cCd x//

(8)

d

Z

c

w .t / f .t / dt ˇ ˇ ˇ ˇ ˇ ˇ

1 2max

8 ˆˆ

<

ˆˆ :

x

Z

c

w .t / dt;

cCd 2

Z

x

w .t / dt 9

>>

=

>>

;

.B2 B1/ .d c/

1 2

0 B B

@

cCd

Z2

c

w .t / dt 1 C C A

.B2 B1/ .d c/ : (2.6)

holds for allx2h

c;cC2di :

Proof. Note that fort2Œ0; 1andx2h

c;cC2di

, we have

min 8 ˆˆ

<

ˆˆ :

c

Z

x

w .t / dt;

x

Z

cCd 2

w .t / dt 9

>>

=

>>

;

Gw.x; t /max 8 ˆˆ

<

ˆˆ :

x

Z

c

w .t / dt;

cCd 2

Z

x

w .t / dt 9

>>

=

>>

; :

(2.7) Applying Lemma2, and following same argument used in the proof of Theorem

3, the result follows.

Remark2. If we setw .t /D1;Inequality2.6becomes same as Inequality1.6. Theorem 4. LetfWIR!R be a differentiable mapping onI0;the interior of the intervalI;and letc; d2I withc < d:Letwbe a weight function overŒc; d  :If f 02L1Œc; d withB1f 0.t /B2for allt2Œc; d , whereB1; B2are constants, then for eachx2h

c;cC2di

, we have

ˇ ˇ ˇ ˇ ˇ ˇ 2 4 1 2

0

@

d

Z

c

w .t / dt 1

A.f .x/Cf .aCb x//

.B1CB2/

2 I .c; d; x/

Zd

c

w .t / f .t / dt ˇ ˇ ˇ ˇ ˇ ˇ

B2 B1

2

d

Z

c

jGw.x; t /jdt: (2.8)

(9)

whereI .c; d; x/D

d

R

c

Gw.x; t /dt:

Proof. Using Lemma1, we have

d

Z

c

Gw.x; t /

f 0.t / B1CB2

2

dt

D1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

.B1CB2/ 2

d

Z

c

Gw.x; t /dt

d

Z

c

f .t / w .t / dt:

Note that, for eacht2Œc; d  ; B1 B2

2 f 0.t / B1CB2

2 B2 B1

2 which implies that

max

t2Œc;d 

ˇ ˇ ˇ ˇ

f 0.t / B1CB2

2 ˇ ˇ ˇ

ˇB2 B1

2 :

Thus,

ˇ ˇ ˇ ˇ ˇ ˇ

d

Z

c

Gw.x; t /

f 0.t / B1CB2

2

dt ˇ ˇ ˇ ˇ ˇ ˇ

max

t2Œc;d 

ˇ ˇ ˇ ˇ

f 0.t / .B1CB2/ 2

ˇ ˇ ˇ ˇ

d

Z

c

jGw.x; t /jdt

.B2 B1/ 2

d

Z

c

jGw.x; t /jdt;

which implies that ˇ

ˇ ˇ ˇ ˇ ˇ 2 4 1 2

0

@

d

Z

c

w .t / dt 1

A.f .x/Cf .cCd x// .B1CB2/

2 I .c; d; x/

3 5

d

Z

c

w .t / f .t / dt ˇ ˇ ˇ ˇ ˇ ˇ

.B2 B1/ 2

d

Z

c

jGw.x; t /jdt:

(10)

Corollary 2. LetfWI R!R be a differentiable mapping onI0;the interior of the intervalI;and letc; d2I withc < d:Suppose thatwis a weight function over Œc; d andwis symmetric about cC2d:Iff 02L1Œc; d withB1f 0.t /B2for all t2Œc; d , whereB1; B2are constants, then for eachx2Œc; d , we have

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

f .t / w .t / dt ˇ ˇ ˇ ˇ ˇ ˇ

B2 B1

2

d

Z

c

jGw.x; t /jdt: (2.9)

Proof. Using Lemma2and applying Theorem4, the result follows.

Theorem 5. LetfWIR!R be a differentiable mapping on.c; d /I:Suppose that w is a weight function over Œc; d  and w is symmetric about cC2d. If f 0 2 L1Œc; d withB1f 0.t /B2for allt2Œc; d , whereB1; B2are constants, then for eachx2h

c;cC2di

, we have

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

f .t / w .t / dt ˇ ˇ ˇ ˇ ˇ ˇ .d c/

f .d / f .c/

d c B1

sup

t2Œc;d jGw.x; t /j; (2.10) and

ˇ ˇ ˇ ˇ ˇ ˇ 2 4 1 2

d

Z

c

w .t / dt 3

5Œf .x/Cf .aCb x/

d

Z

c

f .t / w .t / dt ˇ ˇ ˇ ˇ ˇ ˇ .d c/

B2

f .c/ f .d /

d c

sup

t2Œc;d jGw.x; t /j: (2.11) Proof. Using Lemma2

b

Z

a

Gw.x; t /dtD0;

which implies that

d

Z

c

Gw.x; t /f 0.t / dtD

d

Z

c

Gw.x; t /dt f 0.t / B1 dt;

(11)

and

d

Z

c

Gw.x; t /f 0.t / dtD

d

Z

c

Gw.x; t /dt f 0.t / B2 dt:

Using Lemma1and the triangle inequality we get ˇ

ˇ ˇ ˇ ˇ ˇ 1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

f .t / w .t / dt ˇ ˇ ˇ ˇ ˇ ˇ

d

Z

c

ˇˇGw.x; t / f 0.t / B1ˇ ˇdt;

and

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

f .t / w .t / dt ˇ ˇ ˇ ˇ ˇ ˇ

d

Z

c

ˇˇGw.x; t / f 0.t / B2ˇ ˇdt:

Note that

d

Z

c

ˇˇGw.x; t /dt f 0.t / B1ˇ ˇdt

sup

t2Œc;d 

jGw.x; t /j

d

Z

c

ˇ

ˇf 0.t / B1

ˇ ˇdt and

d

Z

c

ˇ

ˇf 0.t / B1

ˇ ˇdtD

d

Z

c

f 0.t / B1

dt Df .d / f .c/ B1.d c/

D.d c/

f .d / f .c/

d c B1

: Similarly,

d

Z

c

ˇˇGw.x; t / f 0.t / B2ˇ ˇdt

(12)

sup

t2Œc;d 

jGw.x; t /j

d

Z

c

ˇˇf 0.t / B2ˇ ˇdt:

and

d

Z

c

ˇˇf 0.t / D2

ˇ ˇdtD

d

Z

c

B2 f 0.t / dt

DB2.d c/ .f .d / f .c//

D.d c/

B2

f .d / f .c/

d c

: Therefore,

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

f .t / w .t / dt ˇ ˇ ˇ ˇ ˇ ˇ .d c/

f .d / f .c/

d c B1

sup

t2Œc;d jGw.x; t /j; and

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

2 4

d

Z

c

w .t / dt 3

5Œf .x/Cf .cCd x/

d

Z

c

f .t / w .t / dt ˇ ˇ ˇ ˇ ˇ ˇ .d c/

B2

f .d / f .c/

d c

sup

t2Œc;d 

jGw.x; t /j:

3. SOME APPLICATIONS

Before introducing the first two applications, recall that a tagged partitionP of a finite intervalŒc; d is a finite sequence of numberscDx0< x1< < xnDd, with corresponding tagsti 2Œxi 1; xi, foriD1; : : : ; n.

Theorem 6. Let 1< c < d <1andfWŒc; d !Rbe a differentiable function on.c; d / ;andPWcDx0< x1< < xnDdbe a tagged partition with correspond- ing valuesti 2Œxi 1;xi 12Cxi, foriD1; : : : ; n. Suppose thatwis a weight function overŒc; d . Iff 02L1Œc; d andB1f 0.t /B2, for allt 2Œc; d  ;whereB1; B2

are constants, then we have the quadrature formula

d

Z

c

w .t / f .t / dtDA .f; P /CR .f; P / ;

(13)

where

A .f; P /D

n 1

X

iD0

1

2W .xi; xiC1/ .f .tiC1/Cf .xiCxiC1 tiC1//

I .xi; xiC1; tiC1/H .xi; xiC1/ ;

W .xi; xiC1/D

xiC1

Z

xi

w.t /dt; 0in 1;

I .xi; xiC1; tiC1/D

xiC1

Z

xi

Gw.tiC1; t /dt; 0i n 1;

H .xi; xiC1/Df .xiC1/ f .xi/ xiC1 xi

; 0in 1;

and the remainder satisfies the inequality

jR .f; P /j .B2 B1/ 4

n 1

X

iD0

V .xi; xiC1; tiC1/ .xiC1 xi/ ; where

V .xi; xiC1; tiC1/Dmax 8 ˆ<

ˆ:

xiCxiC1 tiC1

Z

tiC1

w .t / dt; W .xi; xiC1/

xiCxiC1 tiC1

Z

tiC1

w .t / dt 9

>=

>; Proof. For each0i n 1;applying Theorem3onŒxi; xiC1withxDtiC1; we get that

ˇ ˇ ˇ ˇ ˇ ˇ

xiC1

Z

xi

w .t / f .t / dt 1

2W .xi; xiC1/ .f .tiC1/Cf .xiCxiC1 tiC1//

I .xi; xiC1; tiC1/H .xi; xiC1/

ˇ ˇ ˇ ˇ ˇ ˇ .B2 B1/

4 V .xi; xiC1; tiC1/ .xiC1 xi/ : Using the triangle inequality, we find that

ˇ ˇ ˇ ˇ ˇ ˇ

n 1

X

iD0

0

@

xiC1

Z

xi

w .t / f .t / dt 1

2W .xi; xiC1/ .f .tiC1/Cf .xiCxiC1 tiC1//

I .xi; xiC1; tiC1/H .xi; xiC1/

1 A ˇ ˇ ˇ ˇ ˇ ˇ

.B2 B1/ 4

n 1

X

iD0

V .xi; xiC1; tiC1/ .xiC1 xi/ :

(14)

But

n 1

X

iD0 xiC1

Z

xi

w .t / f .t / dt D

d

Z

c

w .t / f .t / dt;

which implies that

d

Z

c

w .t / f .t / dt DA .f; P /CR .f; P / and

jR .f; P /j .B2 B1/ 4

n 1

X

iD0

V .xi; xiC1; tiC1/ .xiC1 xi/ :

Theorem 7. LetfWIR!R be a differentiable mapping onI0;the interior of the intervalI; c; d 2I withc < d, andP WcDx0< x1< < xnDd be a tagged partition with corresponding valuesti 2Œxi 1;xi 12Cxi, fori D1; : : : ; n. Suppose thatw is a weight function overŒc; d  :Iff 02L1Œc; d withB1f 0.t /B2 for allt2Œc; d , whereB1; B2are constants, then we have the quadrature formula

d

Z

c

w .t / f .t / dtDA .f; P /CR .f; P / ; where

A .f; P /D

n 1

X

iD0

1

2W .xi; xiC1/ .f .tiC1/Cf .xiCxiC1 tiC1// BI .xi; xiC1; tiC1/

;

W .xi; xiC1/D

xiC1

Z

xi

w.t /dt; ; 0in 1;

i .xi; xiC1; tiC1/D

xiC1

Z

xi

Gw.tiC1; t /dt; ; 0in 1;

BDB1CB2

2 ;

and the remainder satisfies the inequality

jR .f; P /j .B2 B1/ 2

n 1

X

iD0

Z .xi; xiC1; tiC1/ ;

(15)

where

Z .xi; xiC1; tiC1/D

xiC1

Z

xi

jGw.tiC1; t /jdt:

Proof. For each0in 1;applying Theorem4onŒxi 1; xiwithxDtiC1; we get that

ˇ ˇ ˇ ˇ ˇ ˇ

xiC1

Z

xi

w .t / f .t / dt 1

2W .xi; xiC1/ .f .tiC1/Cf .xiCxiC1 tiC1//

BI .xi; xiC1; tiC1/

ˇ ˇ ˇ ˇ ˇ ˇ

.B2 B1/ 2

xiC1

Z

xi

jGw.tiC1; t /jdt

D.B2 B1/

2 Z .xi; xiC1; tiC1/ : Using the triangle inequality, we find that

ˇ ˇ ˇ ˇ ˇ ˇ

n 1

X

iD0 xiC1

Z

xi

w .t / f .t / dt 1

2W .xi; xiC1/ .f .tiC1/Cf .xiCxiC1 tiC1//

BI .xi; xiC1; tiC1/

ˇ ˇ ˇ ˇ ˇ ˇ

.B2 B1/ 2

n 1

X

iD0

Z .xi; xiC1; tiC1/ : But

n 1

X

iD0 xiC1

Z

xi

w .t / f .t / dt D

d

Z

c

w .t / f .t / dt and

n 1

X

iD0 xiC1

Z

xi

jGw.x; t /jdt D

d

Z

c

jGw.x; t /jdt;

which implies that

d

Z

c

w .t / f .t / dt DA .f; P /CR .f; P / and

jR .f; P /j .B2 B1/ 2

n 1

X

iD0

Z .xi; xiC1; tiC1/ :

(16)

Before we introduce the next application, recall that ifX is a random variable with values in a finite intervalŒc; d ,c < d;andf WŒc; d !Œ0; 1is a probability density function, then the cumulative distribution function with respect tof is denoted byF and is defined as:

F .x/D Z x

c

f .t / dt for eachx2Œc; d  : Sincef satisfies the conditionRd

c f .x/ dxD1; F .c/D1:

Theorem 8. LetXbe a random variable with values in a finite intervalŒc; d ,c <

d;andf WŒc; d !Œ0; 1be a probability density function. Letwbe a differentiable weight function overŒc; d such thatw .d /D1andwbe symmetric about cC2d:Let F be the cumulative distribution function with respect tof . Iff 2L1Œc; d and B1f .t /B2, for allt2Œc; d  ;whereB1; B2are constants, then the inequality

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

0

@

d

Z

c

w .t / dt 1

A.F .x/CF .cCd x// .d EG/ ˇ ˇ ˇ ˇ ˇ ˇ

1 4

2 6 6 4

cCd 2

Z

c

w .t / dt 3 7 7 5

.B2 B1/ .d c/ : (3.1)

holds for allx2h

c;cC2di

;where EGDd

Z d c

w .t / F .t / dt:

Proof. Define the functionG overŒc; d as follows:

G .x/D Z x

c

d

dt.wF / dt; x2Œc; d  : Note that

G .c/D0 and

G .d /D Z d

c

d

dt .wF / dt

Dw .d / F .d / w .c/ F .c/

D1:

Let

EGD Z d

c

t d

dt.wF / dt:

(17)

Using integration by parts, we get that

EGDdw .d / F .d / cw .c/ F .c/

Z d c

w .t / F .t / dt Dd

Z d c

w .t / F .t / dt;

which implies that

Z d c

w .t / F .t / dtDd EG: Applying Corollary1onF, we get that

ˇ ˇ ˇ ˇ ˇ ˇ 1 2

0

@

b

Z

a

w .t / dt 1

A.F .x/CF .cCd x//

d

Z

c

w .t / F .t / dt ˇ ˇ ˇ ˇ ˇ ˇ

1 4

2 6 6 4

cCd 2

Z

c

w .t / dt 3 7 7 5

.B2 B1/ .d c/ ;

which implies that ˇ ˇ ˇ ˇ ˇ ˇ 1 2

0

@

d

Z

c

w .t / dt 1

A.F .x/CF .cCd x// .d EG/ ˇ ˇ ˇ ˇ ˇ ˇ

1 4

2 6 6 4

cCd 2

Z

c

w .t / dt 3 7 7 5

.B2 B1/ .d c/ : (3.2)

REFERENCES

[1] M. Alomari, “A companion of ostrowski’s inequality for mappings whose first derivatives are bounded and applications numerical integration.”Kragujevac Journal of Mathematics, vol. 36, pp.

77–82, 2012.

[2] S. Dragomir, “Some companions of Ostrowski’s inequality for absolutely continuous functions and applications.”Bulletin of the Korean Mathematical Society, vol. 40, no. 2, pp. 213–230, 2005.

[3] S. Dragomir and S. Wang, “An inequality of Ostrowski-Gr¨uss type and its applications to the estim- ation of error bounds for some special means and for some numerical quadrature rules,”Computers and Mathematics with Applications, vol. 33, no. 11, pp. 15–20, 1997.

[4] W. Liu, “New Bounds for the Companion of Ostrowski’s Inequality and Applications,”Filomat, vol. 28, no. 1, pp. 167–178, 2014.

[5] D. Mitrinvi´c, J. Pecari´c, and A. Fink,Classical and New Inequalities in Analysis. Dordrecht:

Kluwer Academic Publishers, 2013.

(18)

[6] A. Ostrowski, “ ¨Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integ- ralimittelwert,”omment. Math. Hel., vol. 10, pp. 226–227, 1938.

[7] A. Rafiq and N. Mir, “An Ostrowski Type Inequality For p-norms,”Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 3, 2006.

[8] F. Zafar and N. Mir, “A Generalization of Ostrowski-gruss Type Inequality for First Differentiable Mappings,”Tamsui Oxford Journal of Mathematical Sciences, vol. 26, no. 1, pp. 61–76, 2010.

Authors’ addresses

S. Obeidat

Department of Basic Sciences, University of Hai’l, Saudi Arabia E-mail address:obeidatsofian@gmail.com

M. A. Latif

Department of Basic Sciences, University of Hai’l, Saudi Arabia E-mail address:muhammad.mlatif@gmail.com

A. Qayyum

Department of Mathematics, Institute of Southern Punjab, Pakistan E-mail address:atherqayyum@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

WANG, A new inequality of Ostrowski’s type in L 1 −norm and applications to some special means and to some numerical quadrature rules, Tamkang J.. The Discrete Version of

WANG, A new inequality of Ostrowski’s type in L 1 −norm and appli- cations to some special means and to some numerical quadrature rules, Tamkang J. WANG, Applications of

WANG, A weighted version of Os- trowski inequality for mappings of Hölder type and applications in numerical analysis, Bull.. FINK, Bounds on the derivation of a function from

ROUMELIOTIS, A new general- ization of Ostrowski integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means,

WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and some numerical quadrature rules, Comput..

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

WANG, A new inequality of Ostrowski’s type in L 1 −norm and applications to some special means and to some numerical quadrature rules, Tamkang J. WANG, Applications of