• Nem Talált Eredményt

1^Hungarian Academy of Sciences 1 KFKI-1981-59

N/A
N/A
Protected

Academic year: 2022

Ossza meg "1^Hungarian Academy of Sciences 1 KFKI-1981-59"

Copied!
16
0
0

Teljes szövegt

(1)

l i e 3>o j?

KFKI-1981-59

PHAN TRAN HUNG M, ERŐ-GÉCS J , SZÁNTÓ

ELECTRIC AND MAGNETIC PROPERTIES OF N-ALKYL- 1 SOQUINOLINIUM-TCNQ COMPLEX SALTS

1 ^Hungarian Academy of Sciences

C E N T R A L R E S E A R C H

IN S T IT U T E F O R P H Y S IC S

B U D A P E S T

(2)
(3)

ELECTRIC AND MAGNETIC PROPERTIES OF N-ALKYL- 1 S O Q U I N O L I N IUM-TCNQ COMPLEX SALTS

Phan tran Hung, M. Егб-Gécs and J. Szántó Central Research Institute for Physics H-1525 Budapest 114, P.O.B. 49, Hungary

HU ISSN 0368 5330 ISBN 963 371 841 4

KFKI-1981-59

(4)

ABSTRACT

Conductivity and paramagnetic susceptibility of N-alkyl-isoquinolinium- -TCNQ complexes were measured. In the case of isopropyl derivative the simul­

taneous appearance of two compounds was found: one of metallic (1:2 composi­

tion) character, the other of semiconducting (2:3) thermally activated char-

АННОТАЦИЯ

Мы измеряли электропроводность и парамагнитную восприимчивость N -алкил- -изоквинолиниум-ТЦНХ комплексов. В случае изопропиловых производных мы наблю­

дали одновременное образование металлического (1:2)состава и термически ак­

тивируемого полупроводникового (2:3) комрлексов.

KIVONAT

N-alkyl-isoquinolinium-TCNQ complexek vezetőképességét és paramágneses szuszceptibilitását vizsgáltuk. Az isopropyl lánccal szubsztituált donor mole kula esetén egyedidejüleg egy fémes viselkedésű (1:2 összetételt!) és egy ter­

mikusán aktiválható félvezető (2:3) komplex jött létre.

(5)

In recent years a large number of highly conducting CT com­

plexes have been found. Because their physical and chemical pro­

perties leading to high conductivity are not fully understood, in a previous paper we investigated the effect of donor on a se­

ries of N-alkyl-quinolinium (TCNQ)2 complex salts [1]. In this series the methyl and ethyl derivatives show a distinct solvent effect [2,3] if the chain length is increased an alternating structure is built up [ 4] and as a consequence the paramagnetic susceptibility and conductivity show an activated character [ 5] . The activation energy of ESR intensity progressively grows with the chain length in the N-propyl-isopropyl-N-butyl Q-series.

Here the ESR susceptibility and d.c. conductivity of TCNQ complexes with the N-alkyl derivatives of the isoquinolinium (IQ) donor are discussed.

The alkyl derivatives were prepared by the well-known method, quaternizing the IQ donor with the appropriate alkyl-J. The com­

plexes were obtained by the diffusion method.

The IQ-series shows different features from the complexes of N-alkyl-Q donors: the composition of the complexes are not always

1:2, the propyl complex has a stoichiometry of 2:3, whereas the isopropyl one crystallizes in two distinct forms with different composition (see Table I ) . The crystal structure has not been determined for these complexes.

The temperature dependence of the paramagnetic susceptibi­

lity was measured by integrating the area under the ESR spectra taken at X-band by a JEOL spectrometer. The ESR intensities are normalized to the static room temperature susceptibility (cor­

rected for diamagnetic contribution) of the Q(TCNQ)2 reference powder sample. The d.c. conductivity was measured by the four probe method.

(6)

2

Only the methyl-IQ product is analogous with the me-Q com­

plex: the susceptibility does not change with temperature

(Fig. 1a), the ESR linewidth has a relatively low and constant value (Fig. 2a). The d.c. conductivity at room temperature has a slightly higher value than Q(TCNQ)2 and shows metallic behaviour

(Fig. 3a) .

The n-propyl-IQ 2:3 complex has a reduced susceptibility slowly decreasing with temperature (Fig. 1b), the narrow line- width changes in the same manner (Fig. 2b). Its conductivity is

- 1 -1

relatively high (50-100 Я cm at room temperature), showing a definitely activated character (Fig. 3b).

In the case of the N-butyl IQ complex the composition is not well defined, the susceptibility is nearly constant till 200 K, below this temperature a small activation can be detected and the

linewidth is slightly increasing (Figs 1,2c). This is in accor­

dance with conductivity measurements where the slope changes at this temperature giving a relatively large gap (0.25 eV) at lower temperatures (Fig. 3c) .

Characteristic polymorphism was found by the isopropyl-IQ complex: the needle-like crystal form A, v/ith stoichiometry 1:2,

-1 - 1

shows high conductivity (10 ft cm ) and metallic behaviour

(Fig. 3d), in accordance with the temperature independent suscep­

tibility (Figs 1,2d).

Whereas the small platelets of form B, with a stoichiometry 2:3, are semiconducting: oRT = 5 * 1 0 ft cm , with a gap oi

= 0.27 eV (Fig. 4). ESR intensity shows an activation energy E = 0.1 eV above room temperature, with a linewidth change cha­

racteristic of the fast exchange region (Fig. 2e) . Fine structure was not detectable at lower temperatures because of the samll size of the single crystal samples.

Summarizing the experimental results (Table I) the most striking feature is the high room temperature conductivity -10

- 1 - 1

to 1O0 ft cm (except e) - of the complexes with these sizable asymmetrical donors.

(7)

3

The metallic behaviour in the case of the methyl and the isopropyl A-complex can be ascribed to a disorder, which is be- lived to play a role in preventing the development of a semi­

conducting structure.

Table I . Electric and magnetic properties of N-alkyl-IQ-TCNQ complexes

Composition XT' Ea

eV °T , E eV

a . methyl 1 : 2 const. metallic

b. propyl 2:3 const. 0.08

c . butyl 1:1.8 0.05 0.25 -200 К

d . isopropyl A 1 : 2 const. metallic

e . isopropyl В 2 : 3 O. 1 0.27

Samplex of n-propyl and n-butyi complexes showing activated cha­

racter need further investigation for solvent effect and suscep­

tibility measurements at lower temperatures.

The simultaneous appearance of metallic and semiconducting species - from isopropyl A and В complexes - has also been evi­

denced by aminopyridine complexes [6]. Radical salts with me­

tallic behaviour were synthesized in a number of cases by a rapid cooling of the reaction mixture after mixing together the rea­

gents. If heating was continued only nonconducting materials were produced. The authors suggested that complexes with metallic be­

haviour tend to be kinetic products and can be transformed into semiconducting thermodynamic compounds by heating in a solvent.

This supposition may hold also for our isopropyl complex, prepa­

red by a slow diffusion method.

FIGURE CAPTIONS

Fig. 1. Relative susceptibility as a function of temperature, normalized to the static susceptibility of Q(TCNQ) 2

complex salts

Fig. 2. ESR linewidth as a function of temperature

(8)

4

Fig. 3. log of normalized d.c. conductivity as a function of 103/кТ

Fig. 4. Activation energy of susceptibility and conductivity of (N-isopropyl-isoquinolinium)2 (TCNQ) 2 complex salt

REFERENCES

1. M-Ero-Gécs, Phan tran Hung, J.Kürti: KFKI report, KFKI-1981-45

2. G.Mihály, K.Holczer, G.Grüner, D .L .Kunstelj: Solid State Commun. J_9, 1091 (1976)

3. S.Flandrois, P.Dupuis, P.Delhaes, J.Amiell, J.Néel: J.Chim.

Phys. 64, 1305 (1972)

4. T .Sundaresan, S . C .Walkwork: Acta Cryst. 28B, 491 (1972) 5. M.Ero-Gécs, L.Forró, G.Vancsó, K.Holczer, G.Mihály,

A.Jánossy: Solid State Commun. 32^, 845 (1979)

6. H .Strzelecka, W.Schoenfelder, J.Rivory: Lecture Notes in Phys.

96, 340 (1978)

(9)

5

ф 8 о

|7э jb 6£

о

Í *

А А £ А А А А А А

о о о А А А

О *° -

О о о о

* А е

V ' •

° ° о о у V Х° X

X х х х х - X X X х X X х х X X

А А а

« X* х

д л

100 fig. 1.

200 300 Т ° К АОО

0.15

0.10

0.05

о о

о о о о

Q • NMeIG Ь х NPIQ

с о NBIQ d a NIPIQ

е л NIPI0

д о

л л д

а а а а а а а д а а а а а а а а

о » 9 о о 0 е • 0 о в о а • в в

X X х X X X X X. *. * X X

X X х X X X 100

fig. 2.

200 300 Т ° К А00

(10)

- 6

4 A 4 4

• • •

X О

X о о X о

- 0 . 5 -

X 0 X о

X о X

а • NMelQ b х NPIQ с о NBIQ d a NIPIQ

4 *4

4

Г

- 1.0 -

хо X о X

X

9 10

X

fig. 3.

(11)

log

G / s

7

4 4

о

* к о

X о

X

о

Еа= 0.1 eV —

з

0.5-

О

о

о

d NIPIQ S' = 5 -1 ő k ’ cm1

П I Н 2

О

logIT

(12)
(13)
(14)
(15)

»

*

(16)

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Kroó Norbert

Szakmai lektor: Jánossy András Nyelvi lektor: Harvey Shenker

Példányszám: 470 Törzsszám: 81-458 Készült a KFKI sokszorosító üzemében Felelős vezető: Nagy Károly

Budapest, 1981. augusztus hó

t

«

Ábra

Table  I . Electric  and magnetic  properties  of N-alkyl-IQ-TCNQ  complexes
Fig.  4.  Activation  energy  of  susceptibility and  conductivity  of  (N-isopropyl-isoquinolinium) 2 (TCNQ ) 2   complex  salt

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

 1 length of epidermis in stem  2 length of collenchyma in stem  3 length of parenchyma in stem  4 length of sclerenchyma in stem  5 length of upper phloem in stem  6 length

Therefore the Food Chain Safety Strategy programs are in line with the goals determined in the following strategic documents: program of the Hungarian Academy of Sciences for

Methyl mercuric fluoride, CH3HgF, may be prepared by the reaction of methyl mercuric hydroxide with hydrofluoric acid in an ethyl alcohol-water solution (34).. The product is a

1 Élettani Intézet, Szegedi Tudományegyetem, Általános OrvosTudományi Kar, Szeged, Hungary; 2 Department of Biophysics, KFKI RIPNP of the Hungarian Academy

1 Computer and Automation Research Institute, Hungarian Academy of Sciences, gyarfas@sztaki.hu 2 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, simonyi@renyi.hu

The 1-styryl-3-methyl-6,7-dimethoxy-2-benzopyrylium perchlorate (4) fluoresces very weakly. The position of the substituent on the benzene ring and the quality of the

Rheological measurements were performed by shearing the suspension at constant shear stress (5 Pa) both in lack of electric field and under the influence of field. Low oscillating

In this work, we determined the in vitro inhibitory potencies on human placental 17b-HSD1 of the 3-hydroxy and the 3-ether derivatives of 13a- and 13b-estrones (1, 2) and