• Nem Talált Eredményt

In [4], Fejér established the following weighted generalization of the inequality(1.1): Theorem A

N/A
N/A
Protected

Academic year: 2022

Ossza meg "In [4], Fejér established the following weighted generalization of the inequality(1.1): Theorem A"

Copied!
9
0
0

Teljes szövegt

(1)

FEJÉR INEQUALITIES FOR WRIGHT-CONVEX FUNCTIONS

MING-IN HO

CHINAINSTITUTE OFTECHNOLOGY

NANKANG, TAIPEI

TAIWAN11522 mingin@cc.chit.edu.tw

Received 07 September, 2006; accepted 18 November, 2006 Communicated by P.S. Bullen

ABSTRACT. In this paper, we establish several inequalities of Fejér type for Wright-convex functions.

Key words and phrases: Hermite-Hadamard inequality, Fejér inequality, Wright-convex functions.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

Iff : [a, b]→Ris a convex function, then

(1.1) f

a+b 2

≤ 1 b−a

Z b

a

f(x)dx≤ f(a) +f(b) 2 is known as the Hermite-Hadamard inequality ([5]).

In [4], Fejér established the following weighted generalization of the inequality(1.1):

Theorem A. Iff : [a, b]→Ris a convex function, then the inequality

(1.2) f

a+b 2

Z b

a

p(x)dx≤ Z b

a

f(x)p(x)dx≤ f(a) +f(b) 2

Z b

a

p(x)dx

holds, wherep: [a, b]→Ris nonnegative, integrable, and symmetric aboutx= a+b2 .

In recent years there have been many extensions, generalizations, applications and similar results of the inequalities(1.1)and(1.2)see [1] – [8], [10] – [16].

In [2], Dragomir established the following theorem which is a refinement of the first inequal- ity of(1.1).

Theorem B. Iff : [a, b]→Ris a convex function, andH is defined on[0,1]by H(t) = 1

b−a Z b

a

f

tx+ (1−t)a+b 2

dx,

233-06

(2)

thenH is convex, increasing on[0,1],and for allt∈[0,1], we have

(1.3) f

a+b 2

=H(0)≤H(t)≤H(1) = 1 b−a

Z b

a

f(x)dx.

In [11], Yang and Hong established the following theorem which is a refinement of the second inequality of(1.1):

Theorem C. Iff : [a, b]→Ris a convex function, andF is defined on[0,1]by F (t) = 1

2 (b−a) Z b

a

f

1 +t 2

a+

1−t 2

x

+f

1 +t 2

b+

1−t 2

x

dx,

thenF is convex, increasing on[0,1],and for allt ∈[0,1], we have

(1.4) 1

b−a Z b

a

f(x)dx=F (0)≤F (t)≤F(1) = f(a) +f(b)

2 .

We recall the definition of a Wright-convex function:

Definition 1.1 ([9, p. 223]). We say thatf : [a, b]→ Ris a Wright-convex function, if, for all x,y+δ∈[a, b]withx < y andδ≥0, we have

(1.5) f(x+δ) +f(y)≤f(y+δ) +f(x).

LetC([a, b])be the set of all convex functions on[a, b]andW([a, b])be the set of all Wright- convex functions on[a, b]. ThenC([a, b]) $ W([a, b]). That is, a convex function must be a Wright-convex function but the converse is not true. (see [9, p. 224]).

In [10], Tseng, Yang and Dragomir established the following theorems for Wright-convex functions related to the inequality(1.1), Theorem A and Theorem B:

Theorem D. Letf ∈W([a, b])∩L1[a, b].Then the inequality(1.1)holds.

Theorem E. Letf ∈ W([a, b])∩L1[a, b]and letH be defined as in Theorem B. ThenH ∈ W([0,1])is increasing on[0,1], and the inequality(1.3)holds for allt∈[0,1].

Theorem F. Let f ∈ W([a, b])∩L1[a, b] and letF be defined as in Theorem C. Then F ∈ W([0,1])is increasing on[0,1], and the inequality(1.4)holds for allt∈[0,1].

In [12], Yang and Tseng established the following theorem which refines the inequality(1.2):

Theorem G ([12, Remark 6]). Letf andpbe defined as in Theorem A. IfP,Qare defined on [0,1]by

(1.6) P (t) =

Z b

a

f

tx+ (1−t)a+b 2

p(x)dx (t∈(0,1))

and

(1.7) Q(t) = Z b

a

1 2

f

1 +t

2 a+1−t 2 x

p

x+a 2

+ f

1 +t

2 b+ 1−t 2 x

p

x+b 2

dx (t ∈(0,1)),

(3)

thenP,Qare convex and increasing on[0,1]and, for allt∈[0,1],

(1.8) f

a+b 2

Z b

a

p(x)dx=P (0)≤P (t)≤P (1) = Z b

a

f(x)p(x)dx

and (1.9)

Z b

a

f(x)p(x)dx=Q(0) ≤Q(t)≤Q(1) = f(a) +f(b) 2

Z b

a

p(x)dx.

In this paper, we establish some results about Theorem A and Theorem G for Wright-convex functions which are weighted generalizations of Theorem D, E and F.

2. MAINRESULTS

In order to prove our main theorems, we need the following lemma [10]:

Lemma 2.1. Iff : [a, b]→R, then the following statements are equivalent:

(1) f ∈W([a, b]) ;

(2) for alls, t, u, v∈[a, b]withs≤t≤u≤vandt+u=s+v, we have

(2.1) f(t) +f(u)≤f(s) +f(v).

Theorem 2.2. Letf ∈ W([a, b])∩L1[a, b]and letp: [a, b]→ Rbe nonnegative, integrable, and symmetric aboutx= a+b2 .Then the inequality(1.2)holds.

Proof. For the inequality (2.1) and the assumptions thatpis nonnegative, integrable, and sym- metric aboutx= a+b2 , we have

f

a+b 2

Z b

a

p(x)dx

= Z a+b2

a

f

a+b 2

p(x)dx+ Z a+b2

a

f

a+b 2

p(a+b−x)dx

= Z a+b2

a

f

a+b 2

+f

a+b 2

p(x)dx

≤ Z a+b2

a

[f(x) +f(a+b−x)]p(x)dx

x≤ a+b

2 ≤ a+b

2 ≤a+b−x

= Z a+b2

a

f(x)p(x)dx+ Z b

a+b 2

f(x)p(x)dx

= Z b

a

f(x)p(x)dx,

and

f(a) +f(b) 2

Z b

a

p(x)dx

= Z a+b2

a

f(a) +f(b) 2

p(x)dx+ Z a+b2

a

f(a) +f(b) 2

p(a+b−x)dx

(4)

= Z a+b2

a

[f(a) +f(b)]p(x)dx

≥ Z a+b2

a

[f(x) +f(a+b−x)]p(x)dx (a≤x≤a+b−x≤b)

= Z a+b2

a

f(x)p(x)dx+ Z b

a+b 2

f(x)p(x)dx= Z b

a

f(x)p(x)dx.

This completes the proof.

Remark 2.3. If we set p(x) ≡ 1 (x∈[a, b]) in Theorem 2.2, then Theorem 2.2 generalizes Theorem D.

Remark 2.4. FromC([a, b])$W([a, b]), Theorem 2.2 generalizes Theorem A.

Theorem 2.5. Letf andpbe defined as in Theorem 2.2 and letP be defined as in(1.6). Then P ∈W([0,1])is increasing on[0,1], and the inequality(1.8)holds for allt ∈[0,1].

Proof. Ifs, t, u, v∈[0,1]ands ≤t≤u≤v,t+u=s+v, then forx∈ a,a+b2

we have b≥sx+ (1−s)a+b

2 ≥tx+ (1−t)a+b 2

≥ux+ (1−u)a+b

2 ≥vx+ (1−v)a+b 2 ≥a and ifx∈a+b

2 , b , then

a≤sx+ (1−s)a+b

2 ≤tx+ (1−t)a+b 2

≤ux+ (1−u)a+b

2 ≤vx+ (1−v)a+b 2 ≤b, where

tx+ (1−t)a+b 2

+

ux+ (1−u)a+b 2

=

sx+ (1−s)a+b 2

+

vx+ (1−v)a+b 2

.

By the inequality(2.1), we have

(2.2) f

tx+ (1−t)a+b 2

+f

ux+ (1−u)a+b 2

≤f

sx+ (1−s)a+b 2

+f

vx+ (1−v)a+b 2

for allx∈[a, b]. Now, using the inequality(2.2)andpis nonnegative on[a, b], we have (2.3)

f

tx+ (1−t)a+b 2

+f

ux+ (1−u)a+b 2

p(x)

f

sx+ (1−s)a+b 2

+f

vx+ (1−v)a+b 2

p(x) for allx∈[a, b]. Integrating the inequality(2.3)overxon[a, b], we have

P (t) +P(u)≤P (s) +P (v).

(5)

HenceP ∈W([0,1]).

Next, if0≤s≤t≤1andx∈ a,a+b2

, then tx+ (1−t)a+b

2 ≤sx+ (1−s)a+b 2

≤s(a+b−x) + (1−s)a+b 2

≤t(a+b−x) + (1−t)a+b 2 , where

sx+ (1−s)a+b 2

+

s(a+b−x) + (1−s)a+b 2

=

tx+ (1−t)a+b 2

+

t(a+b−x) + (1−t)a+b 2

. By the inequality (2.1)and the assumptions that p is nonnegative, integrable, and symmetric aboutx= a+b2 , we have

P (s) = Z b

a

f

sx+ (1−s)a+b 2

p(x)dx

= Z a+b2

a

f

sx+ (1−s)a+b 2

p(x)dx

+ Z a+b2

a

f

s(a+b−x) + (1−s)a+b 2

p(a+b−x)dx

= Z a+b2

a

f

sx+ (1−s)a+b 2

+f

s(a+b−x) + (1−s)a+b 2

p(x)dx

≤ Z a+b2

a

f

tx+ (1−t)a+b 2

+f

t(a+b−x) + (1−t)a+b 2

p(x)dx

= Z a+b2

a

f

tx+ (1−t)a+b 2

p(x)dx

+ Z a+b2

a

f

t(a+b−x) + (1−t)a+b 2

p(a+b−x)dx

= Z b

a

f

tx+ (1−t)a+b 2

p(x)dx=P (t).

Thus,P is increasing on[0,1], and the inequality(1.8)holds for allt∈[0,1].

This completes the proof.

Remark 2.6. If we set p(x) ≡ 1 (x∈[a, b]) in Theorem 2.5, then Theorem 2.2 generalizes Theorem E.

Theorem 2.7. Letf andpbe defined as in Theorem 2.2 and letQbe defined as in(1.7). Then Q∈W([0,1])is increasing on[0,1], and the inequality(1.9)holds for allt ∈[0,1].

(6)

Proof. Ifs, t, u, v∈[0,1]ands ≤t≤u≤v,t+u=s+v, then for allx∈[a, b]we have a ≤

1 +v 2

a+

1−v 2

x≤

1 +u 2

a+

1−u 2

x

1 +t 2

a+

1−t 2

x≤

1 +s 2

a+

1−s 2

x≤b

and

a ≤

1 +s 2

b+

1−s 2

x≤

1 +t 2

b+

1−t 2

x

1 +u 2

b+

1−u 2

x≤

1 +v 2

b+

1−v 2

x≤b, where

1 +u 2

a+

1−u 2

x

+

1 +t 2

a+

1−t 2

x

=

1 +v 2

a+

1−v 2

x

+

1 +s 2

a+

1−s 2

x

and

1 +t 2

b+

1−t 2

x

+

1 +u 2

b+

1−u 2

x

=

1 +s 2

b+

1−s 2

x

+

1 +v 2

b+

1−v 2

x

. By the inequality(2.1), we have

(2.4) f

1 +u 2

a+

1−u 2

x

+f

1 +t 2

a+

1−t 2

x

≤f

1 +v 2

a+

1−v 2

x

+f

1 +s 2

a+

1−s 2

x

and (2.5) f

1 +t 2

b+

1−t 2

x

+f

1 +u 2

b+

1−u 2

x

≤f

1 +s 2

b+

1−s 2

x

+f

1 +v 2

b+

1−v 2

x

for allx ∈[a, b]. Now, using the inequality(2.4), (2.5)and the assumptions thatpis nonnega- tive on[a, b], we have

1 2f

1 +u 2

a+

1−u 2

x

p

x+a 2

(2.6)

+ 1 2f

1 +t 2

a+

1−t 2

x

p

x+a 2

+ 1 2f

1 +t 2

b+

1−t 2

x

p

x+b 2

+ 1 2f

1 +u 2

b+

1−u 2

x

p

x+b 2

(7)

≤ 1 2f

1 +v 2

a+

1−v 2

x

p

x+a 2

+1 2f

1 +s 2

a+

1−s 2

x

p

x+a 2

+1 2f

1 +s 2

b+

1−s 2

x

p

x+b 2

+1 2f

1 +v 2

b+

1−v 2

x

p

x+b 2

Integrating the inequality(2.6)overxon[a, b], we have

Q(t) +Q(u)≤Q(s) +Q(v). HenceQ∈W([0,1]).

Next, if0≤s≤t≤1andx∈[a, b], then 1 +t

2

a+

1−t 2

x≤

1 +s 2

a+

1−s 2

x

1 +s 2

b+

1−s 2

(a+b−x)

1 +t 2

b+

1−t 2

(a+b−x)

and

1 +t 2

a+

1−t 2

(a+b−x)≤

1 +s 2

a+

1−s 2

(a+b−x)

1 +s 2

b+

1−s 2

x

1 +t 2

b+

1−t 2

x,

where 1 +s

2 a

+

1−s 2

x

+

1 +s 2

b+

1−s 2

(a+b−x)

=

1 +t 2

a+

1−t 2

x

+

1 +t 2

b+

1−t 2

(a+b−x)

,

and

1 +s 2

a+

1−s 2

(a+b−x)

+

1 +s 2

b+

1−s 2

x

=

1 +t 2

a+

1−t 2

(a+b−x)

+

1 +t 2

b+

1−t 2

x

.

(8)

By the inequality(2.1)and the assumptions thatpis nonnegative and symmetric aboutx= a+b2 , we have

f

1 +s 2

a+

1−s 2

x

p

x+a 2

(2.7)

+f

1 +s 2

b+

1−s 2

(a+b−x)

p

2a+b−x 2

+f

1 +s 2

a+

1−s 2

(a+b−x)

p

a+ 2b−x 2

+f

1 +s 2

b+

1−s 2

x

p

x+b 2

=

f

1 +s 2

a+

1−s 2

x

+ f

1 +s 2

a+

1−s 2

(a+b−x)

p

x+a 2

+

f

1 +s 2

b+

1−s 2

(a+b−x)

+ f

1 +s 2

b+

1−s 2

x

p

x+b 2

f

1 +t 2

a+

1−t 2

x

+ f

1 +t 2

a+

1−t 2

(a+b−x)

p

x+a 2

+

f

1 +t 2

b+

1−t 2

(a+b−x)

+ f

1 +t 2

b+

1−t 2

x

p

x+b 2

=f

1 +t 2

a+

1−t 2

x

p

x+a 2

+f

1 +t 2

b+

1−t 2

(a+b−x)

p

2a+b−x 2

+f

1 +t 2

a+

1−t 2

(a+b−x)

p

a+ 2b−x 2

+f

1 +t 2

b+

1−t 2

x

p

x+b 2

. Integrating the inequality(2.7)overxon[a, b], we have

4Q(s)≤4Q(t)

HenceQis increasing on[0,1], and the inequality(1.9)holds for allt∈[0,1].

This completes the proof.

Remark 2.8. If we set p(x) ≡ 1 (x∈[a, b]) in Theorem 2.7, then Theorem 2.2 generalizes Theorem F.

(9)

Remark 2.9. FromC([a, b])$ W([a, b]), Theorem 2.5 and Theorem 2.7 generalize Theorem C.

REFERENCES

[1] J.L. BRENNERAND H. ALZER, Integral inequalities for concave functions with applications to special functions, Proc. Roy. Soc. Edinburgh A, 118 (1991), 173–192.

[2] S.S. DRAGOMIR, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl., 167 (1992), 49–56.

[3] S.S. DRAGOMIR, Y.J. CHO AND S.S. KIM, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489–501.

[4] L. FEJÉR, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369–

390. (Hungarian).

[5] J. HADAMARD, Étude sur les propriétés des fonctions entières en particulier d’une fonction con- sidérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.

[6] K.C. LEEANDK.L. TSENG, On a weighted generalization of Hadamard’s inequality for G-convex functions, Tamsui-Oxford J. Math. Sci., 16(1) (2000), 91–104.

[7] M. MATI ´C AND J. PE ˇCARI ´C, On inequalities of Hadamard’s type for Lipschitzian mappings, Tamkang J. Math., 32(2) (2001), 127–130.

[8] C.E.M. PEARCEANDJ. PE ˇCARI ´C, On some inequalities of Brenner and Alzer for concave Func- tions, J. Math. Anal. Appl., 198 (1996), 282–288.

[9] A.W. ROBERTSANDD.E. VARBERG, Convex Functions, Academic Press, New York, 1973.

[10] K.L. TSENG, G.S. YANGANDS.S. DRAGOMIR, Hadamard inequalities for Wright-convex func- tions, Demonstratio Math., 37(3) (2004), 525–532.

[11] G.S. YANGANDM.C. HONG, A note on Hadamard’s inequality, Tamkang. J. Math., 28(1) (1997), 33–37.

[12] G.S. YANGANDK.L. TSENG, On certain integral inequalities related to Hermite-Hadamard in- equalities, J. Math. Anal. Appl., 239 (1999), 180–187.

[13] G.S. YANG AND K.L. TSENG, Inequalities of Hadamard’s Type for Lipschitzian mappings, J.

Math. Anal. Appl., 260 (2001), 230–238.

[14] G.S. YANG AND K.L. TSENG, On certain multiple integral inequalities related to Hermite- Hadamard inequality, Utilitas Mathematica, 62 (2002), 131–142.

[15] G.S. YANGANDK.L. TSENG, Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitizian functions, Taiwanese J. Math., 7(3) (2003), 433–440.

[16] G.S. YANG ANDC.S. WANG, Some refinements of Hadamard’s inequalities, Tamkang J. Math., 28(2) (1997), 87–92.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The following theorem is the indefinite version of the Chaotic Furuta inequality, a result previously stated in the context of Hilbert spaces by Fujii, Furuta and Kamei [5]..

As direct consequences of Theorem 1, several sharp inequalities related to the identric mean and the ratio of gamma functions are established as follows.

As direct consequences of Theorem 2, several sharp inequalities related to the identric mean and the ratio of gamma functions are established as follows..

In [10], Tseng, Yang and Dragomir established the following theorems for Wright- convex functions related to the inequality (1.1), Theorem A and Theorem B:..

In order to state and prove the Equal Variable Theorem (EV-Theorem) we require the following lemma and proposition..

In the case of means, the method of search of G-compound functions is based generally on the following invariance principle, proved in [1]..

Móri showed the following theorem as an extension of Diaz- Metcalf’s inequality [2]..

In [5], Qi studied a very interesting integral inequality and proved the following result..