• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
13
0
0

Teljes szövegt

(1)

volume 4, issue 2, article 39, 2003.

Received 21 October, 2002;

accepted 28 March, 2003.

Communicated by:F. Qi

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

THE INEQUALITIES G≤L≤I ≤A INn VARIABLES

ZHEN-GANG XIAO AND ZHI-HUA ZHANG

Department of Mathematics,

Hunan Institute of Science and Technology, Yueyang City, Hunan 414006,

CHINA.

E-Mail:xzgzzh@163.com

Zixing Educational Research Section, Chenzhou City,

Hunan 423400, CHINA.

EMail:zxzh1234@163.com

c

2000Victoria University ISSN (electronic): 1443-5756 110-02

(2)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of13

Abstract

In the short note, the inequalitiesG≤L≤I≤Afor the geometric, logarithmic, identric, and arithmetic means innvariables are proved.

2000 Mathematics Subject Classification:26D15.

Key words: Inequality, Arithmetic mean, Geometric mean, Logarithmic mean, Iden- tric mean,nvariables, Van der Monde determinant.

The authors would like to thank Professor Feng Qi and the anonymous referee for some valuable suggestions which have improved the final version of this paper.

Contents

1 Introduction. . . 3 2 Definitions and the Main Result . . . 4 3 Proof of Theorem 2.1 . . . 6

(3)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of13

J. Ineq. Pure and Appl. Math. 4(2) Art. 39, 2003

http://jipam.vu.edu.au

1. Introduction

For positive numbersai,1≤i≤2, let A=A(a1, a2) = a1+a2

2 ; (1.1)

G=G(a1, a2) =√ a1a2; (1.2)

I =I(a1, a2) =

 exp

a2lna2 −a1lna1

a2 −a1 −1

, a1 < a2,

a1, a1 =a2;

(1.3)

L=L(a1, a2) =

a2−a1

lna2−lna1, a1 < a2, a1, a1 =a2. (1.4)

These are respectively called the arithmetic, geometric, identric, and logarith- mic means.

The logarithmic mean [1,3], somewhat supprisingly, has applications to the economical index analysis. K.B. Stolarsky first introduced the identric meanI and provedG≤L≤I ≤Ain two variables in [4]. See [2] also.

The purpose of this short note is to prove the inequalitiesG ≤ L ≤ I ≤ A of the geometric, logarithmic, identric, and arithmetic means innvariables.

(4)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of13

2. Definitions and the Main Result

Let a = (a1, a2, . . . , an)and ai > 0for1 ≤ i ≤ n, then the arithmetic, geo- metric, identric, and logarithmic means in nvariables are defined respectively as follows

A=A(a) =A(a1, . . . , an) = a1+a2+· · ·+an

n ,

(2.1)

G=G(a) =G(a1, . . . , an) = √n

a1a2· · ·an, (2.2)

I =I(a) =I(a1, . . . , an) (2.3)

= exp

"

1 V(a)

n

X

i=1

(−1)n+ian−1i Vi(a) lnai−m

# ,

L=L(a) =L(a1, . . . , an) = (n−1)!

V(lna)

n

X

i=1

(−1)n+iaiVi(lna), (2.4)

wherelna = (lna1, . . . ,lnan),ai 6=aj fori6=j,

(2.5) V(a) =

1 1 . . . 1

a1 a2 . . . an a21 a22 . . . a2n . . . . an−11 an−12 . . . an−1n

= Y

1≤j<i≤n

(ai−aj)

(5)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of13

J. Ineq. Pure and Appl. Math. 4(2) Art. 39, 2003

http://jipam.vu.edu.au

is the determinant of Van der Monde’s matrix of then-th order,

(2.6) Vi(a) =

1 1 . . . 1 1 . . . 1

a1 a2 . . . ai−1 ai+1 . . . an a21 a22 . . . a2i−1 a2i+1 . . . a2n . . . . an−21 an−22 . . . an−2i−1 an−2i+1 . . . an−2n

,

m =Pn−1 k=1 1

k, and1≤i≤n.

The main result of this short note can be stated as

Theorem 2.1. Let a = (a1, a2, . . . , an)and ai > 0 for 1 ≤ i ≤ n, then the inequalities

(2.7) G(a)≤L(a)≤I(a)≤A(a)

of the geometric, logarithmic, identric, and arithmetic means in n variables hold. The equalities in (2.7) are valid if and only ifa1 =a2 =· · ·=an.

(6)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of13

3. Proof of Theorem 2.1

To prove inequalities in (2.7), we introduce the following means

Ir(a) = Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

" n X

k=1

ik n+r−1ak

# 1 (n+r−2r−1 )

, (3.1)

Ir0(a) = Y

i1+i2+···+in=r i1,i2,...,in≥0

" n X

k=1

ik rak

# 1 (n+r−1r )

, (3.2)

Lr(a) = 1

n+r−1 r

X

i1+i2+···+in=r i1,i2,...,in≥0

n

Y

k=1

aikk/r, (3.3)

L0r(a) = 1

n+r−2 r−1

X

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

n

Y

k=1

aikk/(n+r−1), (3.4)

wherea= (a1, a2, . . . , an)andai >0for1≤i≤n.

Lemma 3.1. Leta = (a1, a2, . . . , an)andai >0for1≤i≤n, then we have 1. I1(a) =L1(a) = A(a);

2. I10(a) =L01(a) = G(a);

(7)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of13

J. Ineq. Pure and Appl. Math. 4(2) Art. 39, 2003

http://jipam.vu.edu.au

3. For1≤j ≤n−1and

(3.5) πj = Y

i1+i2+···+in=n+r−1 ik1=ik2=···=ikj=0,for the restik≥1

n

X

k=1

ik

n+r−1ak,

we have

(3.6) In+r−10 (a) =

n−1

Y

j=1

π1

(2n+r−2n+r−1)

j

Ir(a)(n+r−2r−1 )

(2n+r−2n+r−1)

;

4. For1≤j ≤n−1and

(3.7) δj = X

i1+i2+···+in=n+r−1 ik1=ik2=···=ikj=0,for the restik≥1

n

Y

k=1

aikk/(n+r−1),

we have

(3.8) Ln+r−1(a) = 1

2n+r−2 n+r−1

"n−1 X

j=1

δj+

n+r−2 r−1

L0r(a)

#

;

5. Ifr ∈N, then

(a) Ir(a)≥Ir+1(a), (b) Ir0(a)≤Ir+10 (a),

(8)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of13

(c) Lr(a)≥Lr+1(a), (d) L0r(a)≤L0r+1(a), (e) Ir(a)≥Lr(a),

(f) Ir0(a)≥L0r(a),

where equalities above hold if and only ifa1 =a2· · ·=an.

Proof. The formula (3.6) follows from standard arguments and formulas (3.1) and (3.2).

Ifr ∈Nandi1+i2+· · ·+in =n+r−1, then

n

X

k=1

ik

n+r−1ak =

n

X

k=1

ik

n+r · n+r n+r−1ak

= n+r n+r−1

n

X

k=1

ik

n+rak

= 1

n+r−1

" n X

j=1

ij+ 1

# n X

k=1

ik n+rak

= 1

n+r−1

" n X

j=1

ij

n

X

k=1

ik n+rak+

n

X

k=1

ik n+rak

#

= 1

n+r−1

" n X

j=1

ij

n

X

k=1

ik n+rak+

n

X

j=1

ij n+raj

#

(9)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of13

J. Ineq. Pure and Appl. Math. 4(2) Art. 39, 2003

http://jipam.vu.edu.au

=

n

X

j=1

ij n+r−1

" n X

k=1

ikak

n+r + aj n+r

# .

By using the weighted arithmetic-geometric mean inequality, we have

n

X

k=1

ik

n+r−1ak

n

Y

j=1

" n X

k=1

ikak

n+r + aj n+r

#ij/(n+r−1)

,

and then

Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

n

X

k=1

ik n+r−1ak (3.9)

≥ Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

n

Y

j=1

" n X

k=1

ikak

n+r + aj n+r

#ij/(n+r−1)

=

n

Y

j=1

Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

" n X

k=1

ikak

n+r + aj n+r

#ij/(n+r−1)

=

n

Y

j=1

Y

ν12+···+νn=n+r ν12,...,νj−1j+1,...,νn≥1;νj≥2

" n X

k=1

νk n+rak

#j−1)/(n+r−1)

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk n+rak

#Pnj=1j−1)/(n+r−1)

(10)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of13

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk n+rak

#(Pnj=1νj−n)/(n+r−1)

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk n+rak

#r/(n+r−1)

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk

n+rak

#(n+r−2r−1 )/(n+r−1r ) ,

notice that the result from line 4 to line 5 in (3.9) follows from a simple fact that

" n X

k=1

νk n+rak

#j−1)/(n+r−1)

= 1 for νj = 1.

The equalities above are valid if and only if

n

X

k=1

ikak

n+r + a1 n+r =

n

X

k=1

ikak

n+r + a2

n+r =· · ·=

n

X

k=1

ikak

n+r + an n+r, which is equivalent toa1 =a2 =· · ·=an. This implies thatIr(a)≥Ir+1(a).

The inequality Ir(a) ≥ Lr(a) follows easily from the generalized Hölder inequality

(3.10) Y

i +i +···+i =r+1

" n X

j=1

ijaj

#1r

≥ X

i +i +···+i =r

" n Y

j=1

aijj

#1r .

(11)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of13

J. Ineq. Pure and Appl. Math. 4(2) Art. 39, 2003

http://jipam.vu.edu.au

The proofs of other formulas and inequalities will be left to the readers.

Lemma 3.2. Leta = (a1, a2, . . . , an)andai >0for1≤i≤n, then we have 1. limr→∞Ir(a) = limr→∞Ir0(a) =I(a),

2. limr→∞Lr(a) = limr→∞L0r(a) = L(a).

Proof. It is easy to see thatlimr→∞Ir(a) = limr→∞Ir0(a)andlimr→∞Lr(a) = limr→∞L0r(a), since

r→∞lim π1/(2n+r−2n+r−1)

j = 1, lim

r→∞

1

2n+r−2 n+r−1

n−1

X

j=1

δj = 0, lim

r→∞

n+r−2 r−1

2n+r−2 n+r−1

= 1.

Straightforward computation yields ln lim

r→∞Ir0(a)

= lim

r→∞lnIr0(a)

= lim

r→∞

1

n+r−1 r

X

i1+i2+···+in=r i1,i2,...,in≥0

ln

n

X

k=1

ik

rak

= (n−1)!

Z

· · · Z

x1+x2+···+xn−1≤1 x`≥0,1≤`≤n−1

ln

"

1−

n−1

X

i=1

xi

! a1+

n

X

j=2

xj−1aj

#

dx1dx2. . . dxn−1

= (n−1)!

V(a)

n

X

i=1

(−1)n+ian−1i Vi(a)(lnai−m) = lnI(a)

(12)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of13

and

r→∞lim Lr(a) (3.11)

= lim

r→∞

1

n+r−1 r

X

i1+i2+···+in=r i1,i2,...,in≥0

n

Y

k=1

aikk/r

= (n−1)!

Z

· · · Z

x1+x2+···+xn−1≤1 x`≥0,1≤`≤n−1

a1−

Pn−1 i=1 xi

1 ax21· · ·axnn−1dx1dx2· · ·dxn−1

= (n−1)!

V(lna)

n

X

i=1

(−1)n+iaiVi(lna) =L(a).

The proof is complete.

Proof of Theorem2.1. This follows from combination of Lemma3.1and Lemma3.2.

(13)

The InequalitiesGLIA innVariables

Zhen-Gang Xiao and Zhi-Hua Zhang

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of13

J. Ineq. Pure and Appl. Math. 4(2) Art. 39, 2003

http://jipam.vu.edu.au

References

[1] E. LEACH AND M. SHOLANDER, Extended mean values, Amer. Math.

Monthly, 85 (1978), 84–90.

[2] A.O. PITTENGER, Two logarithmic mean in n variables, Amer. Math.

Monthly, 92 (1985), 99–104.

[3] G. PÓLYA AND G. SZEGÖ, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951.

[4] K.B. STOLARSKY, Generalizations of the logarithmic mean, Mag. Math., 48 (1975), 87–92.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Property 1.4.. Let f be symmetrically convex w.r.t. The main result consists of the following theorem:.. Theorem 2.1. log-convex) with respect to the

Key words and phrases: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality.. 2000 Mathematics

Key words and phrases: Integral inequality, Cauchy mean value theorem, Mathematical induction.. 2000 Mathematics

In this note we focus on certain inequalities involving the arithmetic mean, the geometric mean, and the identric mean of two positive real numbers x and y.. On the other

In this note we focus on certain inequalities involving the arithmetic mean, the geometric mean, and the identric mean of two positive real numbers x and y.. On the other

An inequality providing some bounds for the integral mean via Pompeiu’s mean value theorem and applications for quadrature rules and special means are given.. Key words and

Let L, H r , and A s stand for the logarithmic mean, the Heronian mean of order r, and the power mean of order s, of two positive variables.. Cao ([3]),

Yang [4] considered an analogous form of inequality (1.1) and posed an inter- esting open problem as follows..