• Nem Talált Eredményt

We estimate the maximum row and column sum norm of then×nmatrix, whose ij entry is(i, j)s/[i, j]r, wherer, s ∈ R,(i, j)is the greatest common divisor ofiandj and [i, j]is the least common multiple ofiandj

N/A
N/A
Protected

Academic year: 2022

Ossza meg "We estimate the maximum row and column sum norm of then×nmatrix, whose ij entry is(i, j)s/[i, j]r, wherer, s ∈ R,(i, j)is the greatest common divisor ofiandj and [i, j]is the least common multiple ofiandj"

Copied!
7
0
0

Teljes szövegt

(1)

ON THE MAXIMUM ROW AND COLUMN SUM NORM OF GCD AND RELATED MATRICES

PENTTI HAUKKANEN

DEPARTMENT OFMATHEMATICS, STATISTICS ANDPHILOSOPHY, FIN-33014 UNIVERSITY OFTAMPERE, FINLAND

mapehau@uta.fi

Received 11 July, 2007; accepted 27 October, 2007 Communicated by L. Tóth

ABSTRACT. We estimate the maximum row and column sum norm of then×nmatrix, whose ij entry is(i, j)s/[i, j]r, wherer, s R,(i, j)is the greatest common divisor ofiandj and [i, j]is the least common multiple ofiandj.

Key words and phrases: GCD matrix, LCM matrix, Smith’s determinant, Maximum row sum norm, Maximum column sum norm,O-estimate.

2000 Mathematics Subject Classification. 11C20; 15A36; 11A25.

1. INTRODUCTION

LetS = {x1, x2, . . . , xn}be a set of distinct positive integers, and let f be an arithmetical function. Let(S)f denote then×nmatrix havingf evaluated at the greatest common divisor (xi, xj)ofxi andxj as itsij entry, that is,(S)f = (f((xi, xj))). Analogously, let [S]f denote the n×n matrix havingf evaluated at the least common multiple [xi, xj] ofxi and xj as its ij entry, that is, [S]f = (f([xi, xj])). The matrices (S)f and [S]f are referred to as the GCD and LCM matrices onS associated with f. H. J. S. Smith [15] calculateddet(S)f whenS is a factor-closed set anddet[S]f in a more special case. Since Smith, a large number of results on GCD and LCM matrices have been presented in the literature. For general accounts see e.g.

[8, 9, 12, 14].

Norms of GCD matrices have not been discussed much in the literature. Some results for the`p norm are reported in [1, 6, 7], see also the references in [6]. In this paper we consider the maximum row sum norm in a similar way as we considered the`p norm in [6]. Since the matrices in this paper are symmetric, all the results also hold for the maximum column sum norm.

The maximum row sum norm of ann×nmatrixM is defined as

|||M||| = max

1≤i≤n n

X

j=1

|mij|.

The author wishes to thank Pauliina Ilmonen for calculations which led to Remarks 3.3 – 3.8.

231-07

(2)

Letr, s∈R. LetAdenote then×nmatrix, whosei, j entry is given as

(1.1) aij = (i, j)s

[i, j]r,

where (i, j) is the greatest common divisor of i andj and [i, j]is the least common multiple of iand j. For s = 1, r = 0 ands = 0, r = −1, respectively, the matrixA is the GCD and the LCM matrix on {1,2, . . . , n}. Fors = 1, r = 1the matrixA is the Hadamard product of the GCD matrix and the reciprocal LCM matrix on{1,2, . . . , n}. In this paper we estimate the maximum row sum norm of the matrixAgiven in(1.1)for allr, s∈R.

2. PRELIMINARIES

In this section we review the basic results on arithmetical functions needed in this paper. For more comprehensive treatments of arithmetical functions we refer to [2, 13, 14].

The Dirichlet convolutionf∗g of two arithmetical functionsf andg is defined as (f∗g)(n) =X

d|n

f(d)g(n/d).

LetNu,u∈R, denote the arithmetical function defined asNu(n) =nufor alln∈Z+, and let E denote the arithmetical function defined as E(n) = 1 for alln ∈ Z+. The divisor function σu,u∈R, is defined as

(2.1) σu(n) =X

d|n

du = (Nu∗E)(n).

It is known that if0≤u <1, then

(2.2) σu(n) =O(nu+)

for all >0(see [5]),

(2.3) σ1(n) =O(nlog logn)

(see [4, 11, 13]), and ifu >1, then

(2.4) σu(n) =O(nu)

(see [3, 4, 13]).

The Jordan totient functionJk(n),k ∈Z+, is defined as the number ofk-tuplesa1, a2, . . . , ak (mod n) such that the greatest common divisor of a1, a2, . . . , ak and n is 1. By convention, Jk(1) = 1. The Möbius functionµis the inverse ofEunder the Dirichlet convolution. It is well known that Jk = Nk∗µ. This suggests we defineJu = Nu∗µfor allu ∈ R. Sinceµis the inverse ofEunder the Dirichlet convolution, we have

(2.5) nu =X

d|n

Ju(d).

It is easy to see that

Ju(n) = nuY

p|n

(1−p−u).

We thus have

(2.6) 0≤Ju(n)≤nu foru≥0.

(3)

The following estimates for the summatory function ofNu are well known (see [2]):

X

k≤n

k−u =O(1) ifu >1, (2.7)

X

k≤n

k−1 =O(logn), (2.8)

X

k≤n

k−u =O(n1−u) ifu <1.

(2.9)

3. RESULTS

In Theorems 3.1 – 3.7 we estimate the maximum row sum norm of the matrix A given in (1.1). Their proofs are based on the formulas in Section 2 and the following observations.

Since(i, j)[i, j] =ij, we have for allr, s

(3.1) |||A|||= max

1≤i≤n n

X

j=1

(i, j)s

[i, j]r = max

1≤i≤n n

X

j=1

(i, j)r+s irjr .

From(2.5)we obtain

|||A|||= max

1≤i≤n

1 ir

n

X

j=1

1 jr

X

d|(i,j)

Jr+s(d)

= max

1≤i≤n

1 ir

X

d|i

Jr+s(d)

n

X

j=1 d|j

1 jr

= max

1≤i≤n

1 ir

X

d|i

Jr+s(d) dr

[n/d]

X

j=1

1 jr. (3.2)

Theorem 3.1. Suppose thatr >1.

(1) Ifs≥r, then|||A|||=O(ns−r).

(2) Ifs < r, then|||A||| =O(1).

Proof. Letr >1ands≥0. Then, by (3.2) and(2.7),

|||A|||=O(1) max

1≤i≤n

1 ir

X

d|i

Jr+s(d) dr . Sincer+s ≥0, according to(2.6)and(2.1),

|||A|||=O(1) max

1≤i≤n

σs(i) ir . Now, ifs≥r >1, then on the basis of(2.4),

|||A||| =O(1) max

1≤i≤nis−r =O(ns−r).

If0≤s < r, then

|||A|||=O(1) max

1≤i≤nis−r+ =O(1).

Letr >1ands <0. Then

|||A||| ≤ max

1≤i≤n n

X

j=1

1

jr =O(1).

(4)

Theorem 3.2. Suppose thatr= 1.

(1) Ifs >1, then|||A|||=O(ns−1logn).

(2) Ifs= 1, then|||A|||=O(logn log logn).

(3) Ifs <1, then|||A|||=O(logn).

Proof. From (3.2) withr = 1we obtain

|||A|||= max

1≤i≤n

1 i

X

d|i

Js+1(d) d

[n/d]

X

j=1

1 j. By(2.8),

|||A||| =O(logn) max

1≤i≤n

1 i

X

d|i

Js+1(d)

d .

Sinces ≥0, on the basis of(2.6)and(2.1),

|||A|||=O(logn) max

1≤i≤n

σs(i) i . Ifs >1, then according to(2.4),

|||A|||=O(logn) max

1≤i≤nis−1 =O(ns−1logn).

Ifs = 1, then according to(2.3),

|||A|||=O(logn)O(log logn) = O(logn log logn).

If0≤s <1, then according to(2.2),

|||A||| =O(logn) max

1≤i≤nis−1+ =O(logn).

Ifs <0, then according to(3.1),

|||A|||≤ max

1≤i≤n n

X

j=1

1

j =O(logn).

Remark 3.3. LetkMk1denote the sum norm (or`1norm) of ann×nmatrixM, that is

kMk1 =

n

X

i=1 n

X

j=1

|mij|.

It is known [6, Theorem 3.2(1)] that (3.3)

(i, j)s/[i, j]

1

=O(nslog2n), s≥1.

SincekMk1 ≤n|||M|||for alln×nmatricesM (see [10]), we obtain from Theorem 3.2(1,2) an improvement on(3.3)as

(i, j)s/[i, j]

1

=O(nslogn), s >1, (3.4)

(i, j)/[i, j]

1

=O(nlogn log logn).

(3.5)

Theorem 3.4. Suppose thatr <1.

(1) Ifs >2−r, then|||A||| =O(ns−r).

(5)

(2) Ifs= 2−r, then|||A||| =O(n2−2rlog logn).

(3) Ifmax{1−r,1} ≤s <2−r, then|||A||| =O(ns−r+)for all >0.

(4) If1−r ≤s <1, then|||A|||=O(n1−r).

Proof. Letr <1. By (3.2) and(2.9),

|||A|||=O(n1−r) max

1≤i≤n

1 ir

X

d|i

Jr+s(d)

d .

Sincer+s ≥0, by(2.6)and(2.1),

|||A||| =O(n1−r) max

1≤i≤n

σr+s−1(i) ir . Ifs >2−rorr+s−1>1, then according to(2.4),

|||A|||=O(n1−r) max

1≤i≤nis−1. Sinces−1≥0, we have

|||A||| =O(ns−r).

Ifs = 2−rorr+s−1 = 1, then according to(2.3),

|||A||| =O(n1−r) max

1≤i≤ni1−rlog logi.

Since1−r >0, we have

|||A|||=O(n2−2rlog logn).

If1−r ≤s <2−ror0≤r+s−1<1, then according to(2.2),

(3.6) |||A||| =O(n1−r) max

1≤i≤nis−1+.

If s ≥ 1 in (3.6), we obtain |||A||| = O(ns−r+). If s < 1 in (3.6), we obtain |||A||| =

O(n1−r).

Corollary 3.5. Suppose thatr= 0.

(1) Ifs >2, then|||A|||=O(ns).

(2) Ifs= 2, then|||A|||=O(n2log logn).

(3) If1≤s <2, then|||A||| =O(ns+)for all >0. In particular, fors= 1, (3.7)

(i, j)

=O(n1+)f or all >0.

Remark 3.6. LetkMk2denote the`2 norm of ann×nmatrixM, that is kMk2 =

n

X

i=1 n

X

j=1

m2ij.

It is known [6, Theorem 3.2(1)] that (3.8)

(i, j)3/2/[i, j]1/2

2 =O(n3/2logn).

SincekMk2 ≤√

n|||M|||for alln×nmatricesM (see [10]), we obtain from Theorem 3.4(2) an improvement on(3.8)as

(3.9)

(i, j)3/2/[i, j]1/2 2

=O(n3/2log logn).

In Theorem 3.7 we treat the remaining cases ofrandsin the most elementary way.

(6)

Theorem 3.7.

(1) If0≤r <1ands≤0, then|||A||| =O(n1−r).

(2) Ifr <0ands ≤0, then|||A|||=O(n1−2r).

(3) If0≤r <1,s >0andr+s <1, then|||A|||=O(n1+s−r).

(4) Ifr <0,s >0andr+s <1, then|||A||| =O(n1+s−2r).

Proof. Let0≤r <1ands ≤0. Then, according to (3.1) and(2.9)

|||A|||≤ max

1≤i≤n n

X

j=1

1

jr =O(n1−r).

Letr <0ands≤0. Then, according to (3.1) and the inequality[i, j]< n2

|||A|||≤ max

1≤i≤n n

X

j=1

[i, j]−r < max

1≤i≤n n

X

j=1

n−2r =O(n1−2r).

Let0≤r <1,s >0andr+s <1. Then, according to (3.1) and(2.9)

|||A|||≤ns max

1≤i≤n n

X

j=1

1

jr =O(n1+s−r).

Letr <0,s >0andr+s <1. Then, according to (3.1) and the inequality[i, j]< n2

|||A|||≤ max

1≤i≤n n

X

j=1

ns

n2r =O(n1+s−2r).

Remark 3.8. Applying [6, Theorem 3.3] and the inequality|||M||| ≤ √

nkMk2 for alln×n matricesM (see [10]) a partial improvement on Theorem 3.7(4) of the present paper as

(a) ifr <0,s >0and1/2< r+s <1, then|||A||| =O(n1+s−r), (b) ifr <0,s >0andr+s= 1/2, then|||A|||=O(n−2r+3/2log1/2n), (c) ifr <0,s >1/2andr+s <1/2, then|||A||| =O(n−2r+3/2).

REFERENCES

[1] E. ALTINISIK, N. TUGLUANDP. HAUKKANEN, A note on bounds for norms of the reciprocal LCM matrix, Math. Inequal. Appl., 7(4) (2004), 491–496.

[2] T.M. APOSTOL, Introduction to Analytic Number Theory, UTM, Springer–Verlag, New York, 1976.

[3] E. COHEN, A theorem in elementary number theory, Amer. Math. Monthly, 71(7) (1964), 782–783.

[4] T.H. GRONWALL, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math.

Soc., 14(1) (1913), 113–122.

[5] G.H. HARDYANDE.M. WRIGHT, An Introduction to the Theory of Numbers, Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.

[6] P. HAUKKANEN, On the`pnorm of GCD and related matrices, J. Inequal. Pure Appl. Math., 5(3) (2004), Art. 61. [ONLINE:http://jipam.vu.edu.au/article.php?sid=421].

[7] P. HAUKKANEN, An upper bound for the `p norm of a GCD related matrix, J. Inequal. Appl.

(2006), Article ID 25020, 6 p.

[8] P. HAUKKANENANDJ. SILLANPÄÄ, Some analogues of Smith’s determinant, Linear and Mul- tilinear Algebra, 41 (1996), 233–244.

(7)

[9] P. HAUKKANEN, J. WANGANDJ. SILLANPÄÄ, On Smith’s determinant, Linear Algebra Appl., 258 (1997), 251–269.

[10] R. HORNANDC. JOHNSON, Matrix Analysis, Cambridge University Press, Cambridge, 1990 [11] A. IVI ´C, Two inequalities for the sum of divisors functions. Univ. u Novom Sadu Zb. Rad. Prirod.-

Mat. Fak., 7 (1977), 17–22.

[12] I. KORKEE ANDP. HAUKKANEN, On meet and join matrices associated with incidence func- tions, Linear Algebra Appl., 372 (2003), 127–153.

[13] D.S. MITRINOVI ´C, J. SÁNDORANDB. CRSTICI, Handbook of Number Theory, Kluwer Aca- demic Publishers, MIA Vol. 351, 1996.

[14] J. SÁNDOR AND B. CRSTICI, Handbook of Number Theory II, Kluwer Academic Publishers, 2004.

[15] H.J.S. SMITH, On the value of a certain arithmetical determinant, Proc. London Math. Soc., 7 (1875/76), 208–212.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Bacsa I., Szabó J., Wölfling J., Schneider G., Zupkó I., Mernyák E., Synthesis and in vitro pharmacological evaluation of novel steroidal alkynes and their derivatives, 1

jelölje C ij azon i-edik ágazatban jelen lévő cégeket, amelyek megfontolják a termék- diverzifikációt a j-edik ágazatba, valamint L ij az i-edikből a j-edikbe mutató

Ha ugyanis éllel lennének összekötve az A -beli i és j pontok, akkor az i0 -ból i -be vezet˝o páros hosszúságú út, az i0-ból j-be vezet˝o páros hosszúságú út, és az (i,

Ezek felfoghatók úgy is, hogy az egyik játékos az adott A mátrix egy sorát, a másik pedig egy oszlopát választhatja, és ha ez az i-edik illetve j-edik, akkor az els˝o a i, j

Réthy B, Zupkó I, Minorics R, Hohmann J, Ocsovszki I, Falkay G: Investigation of cytotoxic activity on human cancer cell lines of arborinine and furanoacridones isolated from

Ahol d i,j i és j objektum eredeti távolsága, d’ i,j leképzés utáni távolság és n az adatbázisbeli objektumok száma. Algoritmus: stressz értékét csökkenti, a

Whenever two nodes v i and v j of the communication graph are unified, the software cost of the resulting new node will be s i +s j , and its hardware cost will be h i +h j. If

Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden „cellában” azonos számú ismétlés (kiegyensúlyozott