• Nem Talált Eredményt

11B52 Keywords: generalized bi-periodic Fibonacci sequence, generalized bi-periodic Lucas sequence, quaternion, Binet’s formula, generating function, Catalan’s identity 1

N/A
N/A
Protected

Academic year: 2022

Ossza meg "11B52 Keywords: generalized bi-periodic Fibonacci sequence, generalized bi-periodic Lucas sequence, quaternion, Binet’s formula, generating function, Catalan’s identity 1"

Copied!
15
0
0

Teljes szövegt

(1)

Vol. 20 (2019), No. 2, pp. 807–821 DOI: 10.18514/MMN.2019.2935

ON THE GENERALIZED BI-PERIODIC FIBONACCI AND LUCAS QUATERNIONS

YOUNSEOK CHOO Received 11 April, 2019

Abstract. In this paper we introduce the generalized bi-periodic Fibonacci and Lucas quaternions which are the further generalizations of the bi-periodic Fibonacci and Lucas quaternions con- sidered in the literature. For those quaternions, we derive the generating functions, Binet’s for- mulas and Catalan’s identities.

2010Mathematics Subject Classification: 11B39; 11B37; 11B52

Keywords: generalized bi-periodic Fibonacci sequence, generalized bi-periodic Lucas sequence, quaternion, Binet’s formula, generating function, Catalan’s identity

1. INTRODUCTION

As is well known, the Fibonacci sequencefFngis generated from the recurrence relationFnDFn 1CFn 2 .n2/withF0D0; F1D1;and the Lucas sequence fLng is generated from the recurrence relation LnDLn 1CLn 2 .n2/ with L0D2; L1D1:The Binet’s formulas forfFngandfLngare respectively given by

Fnn ˇn

˛ ˇ ; Lnnn;

where˛.> 0/andˇ.< 0/are roots of the equationx2 x 1D0.

Many authors generalized the Fibonacci and Lucas sequences by changing initial conditions and/or recurrence relations. In particular, Edson and Yayenie [5] intro- duced the bi-periodic Fibonacci sequencefpngdefined by

p0D0; p1D1; pnD

apn 1Cpn 2; ifnis even

bpn 1Cpn 2; ifnis odd .n2/: (1.1) The Binet’s formula forfpngis given by [5]

pnDa .nC1/

.ab/bn2c

˛n ˇn

˛ ˇ

; (1.2)

c 2019 Miskolc University Press

(2)

where˛.> 0/andˇ.< 0/are roots of the equationx2 abx abD0, and./is the parity function such that.n/D0ifnis even and.n/D1ifnis odd.

The bi-periodic Fibonacci sequencefpnggiven in (1.1) includes many sequences as special cases. ForaDbD1,fpngbecomes the Fibonacci sequence. ForaDbD 2,fpngbecomes the Pell sequence. IfaDbDk, thenfpngdenotes thek-Fibonacci sequence defined in [8], etc.

On the other hand, Bilgici [2] generalized the Lucas sequence by introducing the bi-periodic Lucas sequencefungdefined by

u0D2; u1Da; unD

bun 1Cun 2; ifnis even

aun 1Cun 2; ifnis odd .n2/: (1.3) IfaDb D1, thenfungbecomes the Lucas sequencefLng. IfaDb Dk, then fungbecomes thek-Lucas sequence in [7].

The Binet’s formula forfungis given by [2]

unD a .n/

.ab/bnC21c

nn/; (1.4)

where˛andˇare as defined in (1.2).

A quaternionqis defined by

qDq0e0Cq1e1Cq2e2Cq3e3;

whereq0; q1; q2; q32R,e0D1, ande1; e2ande3are the standard basis inR3such thatei2D 1,iD1; 2; 3;and

e1e2D e2e1De3; e2e3D e3e2De1; e3e1D e1e3De2:

As noted in the literature [1,6,9,20], quaternions are widely used in the fields of engineering and physics as well as mathematics, and attracted sustained attention from many researchers. In particular, a variety of results are available in the literature on the properties of quaternions related to the sequences described earlier. Horadam [13] defined the Fibonacci quaternion sequencefGngand Lucas quaternion sequence fHngas

GnDFne0CFnC1e1CFnC2e2CFnC3e3; HnDLne0CLnC1e1CLnC2e2CLnC3e3; whereFnandLnare respectively thenth Fibonacci and Lucas numbers.

Following the work of Horadam [13], diverse results have appeared in the literat- ure. Halici [10] obtained the generating functions, Binet’s formulas and some com- binatorial properties of the Fibonacci and Lucas quaternions. Halici [11] also intro- duced the complex Fibonacci quaternions. Ramirez [15] studied the properties of the k-Fibonacci andk-Lucas quaternions. C¸ imen and ˙Ipek [4], Szynal-Liana and Włoch [17] investigated the Pell and Pell-Lucas quaternions. Szynal-Liana and Włoch [17]

(3)

introduced the Jacobsthal and Jacobsthal-Lucas quaternions also. Catarino [3] con- sidered the modified Pell and modifiedk-Pell quaternions. Halici and Karatas¸ [12]

defined a general quaternion which includes several quaternions mentioned above as special cases.

Recently Tan et al. [19] introduced the bi-periodic Fibonacci quaternion sequence fPngdefined by

PnDpne0CpnC1e1CpnC2e2CpnC3e3; (1.5) wherepnis thenth bi-periodic Fibonacci number.

The Binet’s formula forfPngis given by [19]

PnD 8

<

:

1 .ab/bn2c

˛˛n ˇˇn

˛ ˇ

; ifnis even

1 .ab/bn2c

˛˛n ˇˇn

˛ ˇ

; ifnis odd (1.6)

where˛andˇare as defined in (1.2), and

˛D

3

X

lD0

a .lC1/

.ab/b2lc

˛lel;

ˇD

3

X

lD0

a .lC1/

.ab/b2lc ˇlel;

˛D

3

X

lD0

a .l/

.ab/blC21c

˛lel;

ˇD

3

X

lD0

a .l/

.ab/blC21c ˇlel:

Tan et al. [18] also introduced the bi-periodic Lucas quaternion sequencefUngas follows:

UnDune0CunC1e1CunC2e2CunC3e3; (1.7) whereunis thenth bi-periodic Lucas number.

The Binet’s formula forfUngis given by [18]

UnD 8

<

:

1 .ab/bnC21c

˛nˇn/; ifnis even

1 .ab/bnC21c

˛nˇn/; ifnis odd (1.8) where˛,ˇare as defined in (1.2), and˛andˇare as defined in (1.6).

If we use the initial conditionP0De1Ce2C2e3andP1De0Ce1C2e2C3e3

in (1.5), thenfPngis the same as the generalized Fibonacci quaternion sequence con- sidered in [14]. Also if we setP0D2e0Ce1C3e2C4e3andP1De0C3e1C4e2C

(4)

7e3in (1.5), thenfPngis the same as the generalized Lucas quaternion sequence con- sidered in [14].

In this paper we introduce the generalized bi-periodic Fibonacci and Lucas qua- ternion sequences which include fPngand fUng as special cases. For those qua- ternions, we derive the generating functions, Binet’s formulas and Catalan’s identit- ies.

2. MAIN RESULTS

2.1. Generalized bi-periodic Fibonacci quaternion

Consider the generalized bi-perioodic Fibonacci sequencefqngdefined by Sahin [16] and Yayenie [21] as

q0D0; q1D1; qnD

aqn 1Ccqn 2; ifnis even

bqn 1Cdqn 2; ifnis odd .n2/: (2.1) The Binet’s formula forfqngis given by [21]

qnDa .nC1/

.ab/bn2c

˛bn2c.˛Cd c/n bn2c ˇbn2c.ˇCd c/n bn2c

˛ ˇ

!

; (2.2)

where˛.> 0/andˇ.< 0/are roots of the equationx2 .abCc d /x abd D0:

Definition 1. We define the generalized bi-periodic Fibonacci quaternion sequence fQngby

QnDqne0CqnC1e1CqnC2e2CqnC3e3; (2.3) whereqnis thenth generalized bi-periodic Fibonacci number.

IfcDd D1, thenfQngbecomes the bi-periodic Fibonacci quaternion sequence given in (1.5).

IfaDbD1 andcDd D2, thenfQngbecomes the Jacobsthal quaternion se- quence defined in [17].

In the rest of the paper, we will use the following identities [21] whenever neces- sary: (i)˛CˇDabCc d;(ii)˛ˇD abd;(iii)˛.˛Cd c/Dab.˛Cd /;(iv) ˇ.ˇCd c/Dab.ˇCd /;(v).˛Cd /.ˇCd /Dcd:

Theorem 1 (Generating function). The generating function for the generalized bi-periodic Fibonacci quaternion sequence is

G.x/D 1 .abCd /x2Cbcx3

Q0Cx.1Cax cx2/Q1

1 .abCcCd /x2Ccdx4 : (2.4) Proof. We can show thatfQngsatisfies the same recurrence relation asfqngwith the initial condition

Q0Dq0e0Cq1e1Cq2e2Cq3e3

De1Cae2C.abCd /e3;

(5)

Q1Dq1e0Cq2e1Cq3e2Cq4e3

De0Cae1C.abCd /e2Ca.abCcCd /e3; and

Q2nD.abCcCd /Q2n 2 cdQ2n 4; Q2nC1D.abCcCd /Q2n 1 cdQ2n 3:

Then, proceeding as in the proof of [21, Theorem 7], we can obtain (2.4).

IfaDbandcDd, then

G.x/D .1 ax/Q0CxQ1

1 ax cx2

D xe0Ce1C.aCx/e2C.a2CcCacx/e3

1 ax cx2 :

Hence, for aDb Dc Dd D1, we get the generating function for the Fibonacci quaternion

G.x/Dxe0Ce1C.1Cx/e2C.2Cx/e3

1 x x2 ;

as in [10], and, foraDbDkandcDd D1, we obtain the generating function for thek-Fibonacci quaternion

G.x/Dxe0Ce1C.kCx/e2C.k2C1Ckx/e3

1 kx x2 ;

which is given in [15].

Theorem 2(Binet’s formula). The Binet’s formula for the generalized bi-periodic Fibonacci quaternion sequence is

QnD 8 ˆ<

ˆ:

1 .ab/bn2c

˛

e˛bn2cCd c/n bn2c ˇeˇbn2cCd c/n bn2c

˛ ˇ

; ifnis even

1 .ab/bn2c

˛o˛bn2cCd c/n bn2c ˇoˇbn2cCd c/n bn2c

˛ ˇ

; ifnis odd (2.5) where

˛eD

3

X

lD0

a .lC1/

.ab/bl2c

˛b2lc.˛Cd c/blC21cel;

ˇeD

3

X

lD0

a .lC1/

.ab/bl2c

ˇbl2c.ˇCd c/blC21cel;

˛oD

3

X

lD0

a .l/

.ab/blC21c

˛blC21c.˛Cd c/b2lcel;

(6)

ˇoD

3

X

lD0

a .l/

.ab/blC12 c

ˇblC21c.ˇCd c/b2lcel:

Proof. Firstly we note thatbn2c Dn .n/2 :

¿From (2.2) and (2.3), we have QnD a .nC1/

.ab/bn2c

˛bn2c.˛Cd c/n bn2c ˇbn2c.ˇCd c/n bn2c

˛ ˇ

! e0

C a .n/

.ab/ .n/.ab/bn2c

˛ .n/.˛Cd c/ .nC1/˛bn2c.˛Cd c/n bn2c

˛ ˇ

ˇ .n/.ˇCd c/ .nC1/ˇbn2c.ˇCd c/n bn2c

˛ ˇ

! e1

C a .nC1/

ab.ab/bn2c

˛.˛Cd c/˛bn2c.˛Cd c/n bn2c

˛ ˇ

ˇ.ˇCd c/ˇbn2c.ˇCd c/n bn2c

˛ ˇ

! e2

C a .n/

.ab/1C .n/.ab/bn2c

˛1C .n/.˛Cd c/1C .nC1/˛bn2c.˛Cd c/n bn2c

˛ ˇ

ˇ1C .n/.ˇCd c/1C .nC1/ˇbn2c.ˇCd c/n bn2c

˛ ˇ

! e3; or

QnD 1 .ab/bn2c

˛n˛bn2c.˛Cd c/n bn2c ˇnˇbn2c.ˇCd c/n bn2c

˛ ˇ

!

;

where

˛nDa .nC1/e0Ca .n/˛ .n/.˛Cd c/ .nC1/

.ab/ .n/ e1

Ca .nC1/˛.˛Cd c/

ab e2Ca .n/˛1C .n/.˛Cd c/1C .nC1/

.ab/1C .n/ e3; ˇnDa .nC1/e0Ca .n/ˇ .n/.ˇCd c/ .nC1/

.ab/ .n/ e1

Ca .nC1/ˇ.ˇCd c/

ab e2Ca .n/ˇ1C .n/.ˇCd c/1C .nC1/

.ab/1C .n/ e3:

(7)

Ifnis even, then

˛nDae0C.˛Cd c/e1Ca˛.˛Cd c/

ab e2C˛.˛Cd c/2 ab e3

D

3

X

lD0

a .lC1/

.ab/b2lc

˛b2lc.˛Cd c/blC21cel;

ˇnDae0C.ˇCd c/e1Caˇ.ˇCd c/

ab e2Cˇ.ˇCd c/2 ab e3

D

3

X

lD0

a .lC1/

.ab/b2lc

ˇb2lc.ˇCd c/blC21cel:

Similarly, ifnis odd, then

˛nD

3

X

lD0

a .l/

.ab/blC21c

˛blC21c.˛Cd c/b2lcel;

ˇnD

3

X

lD0

a .l/

.ab/blC21c

ˇblC21c.ˇCd c/bl2cel;

and the proof is completed.

IfcDd D1, then (2.5) becomes the Binet’s formula for the bi-periodic Fibonacci quaternion given in (1.6).

Theorem 3 (Catalan’s identity). The Catalan’s identity for the generalized bi- periodic Fibonacci quaternion sequence is

Q2n QnC2rQn 2r

D 8 ˆˆ ˆˆ

<

ˆˆ ˆˆ :

.cd /n 2r2 ˛eˇe Cd /

2r .cd /r

Cˇe˛e Cd /2r .cd /r

.˛ ˇ /2

!

; if n i s eve n;

abc.cd /n 2r 12 ˛oˇo .cd /

r Cd /2r

Cˇo˛o .cd /r Cd /2r

.˛ ˇ /2

!

; if n i s od d:

(2.6) Proof. Firstly, assume thatnis even, and let

X1D.˛ ˇ/2.ab/nQ2n;

X2D.˛ ˇ/2.ab/nQnC2rQn 2r: Then

X1D

˛e˛n2.˛Cd c/n2 ˇeˇn2.ˇCd c/n22

2e˛n.˛Cd c/ne2ˇn.ˇCd c/n

(8)

eˇee˛en2.˛Cd c/n2ˇn2.ˇCd c/n2; D˛2e˛n.˛Cd c/ne2ˇn.ˇCd c/n

eˇee˛e/.ab/n.˛Cd /n2.ˇCd /n2; D˛2e˛n.˛Cd c/ne2ˇn.ˇCd c/n

eˇee˛e/.ab/n.cd /n2; and

X2D

˛e˛nC22r.˛Cd c/nC22r ˇeˇnC22r.ˇCd c/nC22r

˛e˛n22r.˛Cd c/n22r ˇeˇn22r.ˇCd c/n22r2e˛n.˛Cd c/ne2ˇn.ˇCd c/n

˛eˇe˛nC22r.˛Cd c/nC22rˇn22r.ˇCd c/n22r ˇe˛e˛n22r.˛Cd c/n22rˇnC22r.ˇCd c/nC22r; D˛2e˛n.˛Cd c/ne2ˇn.ˇCd c/n

˛eˇe.ab/n.˛Cd /nC2r2 .ˇCd /n22r ˇe˛e.ab/n.˛Cd /n22r.ˇCd /nC22r; D˛2e˛n.˛Cd c/ne2ˇn.ˇCd c/n

˛eˇe.ab/n.cd /n22r.˛Cd /2r ˇe˛e.ab/n.cd /n22r.ˇCd /2r: Hence

X1 X2eˇe.ab/n.cd /n22r

.˛Cd /2r .cd /re˛e.ab/n.cd /n22r

.ˇCd /2r .cd /r

; and the proof is completed for the case wherenis even.

Whennis odd, we can proceed similarly, and details are omitted.

IfcDd D1, then˛2Dab.˛C1/and

.˛C1/2r 1D.ab/2r.˛C1/2r .ab/2r .ab/2r

4r .ab/2r .ab/2r :

(9)

Similarly

.ˇC1/2r 1D ˇ4r .ab/2r .ab/2r ; and Theorem3reduces to [19, Theorem 5].

2.2. Generalized bi-periodic Lucas quaternion

Consider the generalized bi-periodic Lucas sequencefvngdefined by Bilgici [2]

as

v0DdC1

d ; v1Da; vnD

bvn 1Cdvn 2; ifnis even

avn 1Ccvn 2; ifnis odd .n2/: (2.7) The Binet’s formula forfvngis given by [2]

vnD a .n/

.ab/bn 12 c

.˛CdC1/˛bn 12 c.˛Cd c/bn2c .ˇCdC1/ˇbn 12 c.ˇCd c/bn2c

˛ ˇ

!

; (2.8) where˛andˇare as defined in (2.2).

Definition 2. The generalized bi-periodic Lucas quaternion sequencefVngis defined by

VnDvne0CvnC1e1CvnC2e2CvnC3e3; (2.9) wherevnis thenth generalized bi-periodic Lucas number.

IfcDd D1, fVngbecomes the bi-periodic Lucas quaternion sequence given in (1.7).

Theorem 4 (Generating function). The generating function for the generalized bi-periodic Lucas quaternion sequence is

H.x/D 1 .abCc/x2Cadx3

V0Cx.1Cbx dx2/V1

1 .abCcCd /x2Ccdx4 : (2.10)

Proof. Replacing Q0, Q1, a, b, c andd by V0, V1, b, a, d andc in (2.4), we

obtain (2.10).

IfaDbandcDd, then

H.x/D .1 ax/V0CxV1

1 ax cx2 D

cC1 ax

c e0C aC.cC1/x

e1C.a2CcC1Cacx/e2

1 ax cx2

C a3C2acCaC.a2Cc2C1/x e3

1 ax cx2 :

(10)

Hence, for aDb Dk and c Dd D1, we obtain the generating function for the k-Lucas quaternion

H.x/D.2 kx/e0C.kC2x/e1C.k2C2Ckx/e2C k3C3kC.k2C2/x e3

1 kx x2 ;

as in [15].

Theorem 5(Binet’s formula). The Binet’s formula for the generalized bi-periodic Lucas quaternion sequence is

VnD 8

<

:

1 .ab/bn21c

Vne; ifnis even

1 .ab/bn21c

Vno; ifnis odd (2.11)

where

Vneo.˛CdC1/˛bn 12 c.˛Cd c/bn2c ˇo.ˇCdC1/ˇbn 12 c.ˇCd c/bn2c

˛ ˇ ;

Vnoe.˛CdC1/˛bn 12 c.˛Cd c/bn2c ˇe.ˇCdC1/ˇbn 12 c.ˇCd c/bn2c

˛ ˇ ;

with˛eeoandˇoas defined in (2.5).

Proof. Using the Binet’s formula forfvngand proceeding as in the proof of The-

orem2, we can easily obtain (2.11).

IfcDd D1, then

.˛C2/˛bn21cCbn2cD.˛C2/˛n 1 D

1C2

˛

˛n

D 1 2ˇ

ab

˛n

D.˛ ˇ/˛n ab ; and

.ˇC2/ˇbn21cCbn2cD.ˇC2/ˇn 1 D

1C2 ˇ

ˇn

D 1 2˛

ab

ˇn

D.ˇ ˛/ˇn ab :

(11)

Hence (2.11) reduces to the Binet’s formula for the bi-periodic Lucas quaternion given in (1.8).

We verify (2.11) fornD1. From (2.7) and the definition offVng, we have V1Dv1e0Cv2e1Cv3e2Cv4e3

Dae0C.abCdC1/e1Ca.abCcCdC1/e2

C.a2b2CabcC2abdCabCd2Cd /e3: On the other hand, ifnD1, then (2.11) becomes

V1e.˛CdC1/ ˇe.ˇCdC1/

˛ ˇ :

In this case,˛e andˇe respectively can be written as

˛eDaeoC.˛Cd c/e1Ca.˛Cd /e2C.˛Cd /.˛Cd c/e3; ˇeDaeoC.ˇCd c/e1Ca.ˇCd /e2C.ˇCd /.ˇCd c/e3: Let

˛e.˛CdC1/ ˇe.ˇCdC1/DE0e0CE1e1CE2e2CE3e3: Then

E0Da.˛ ˇ/;

E1D.˛CdC1/.˛Cd c/ .ˇCdC1/.ˇCd c/

D.˛Cd /2 .ˇCd /2 .c 1/.˛ ˇ/

D.˛CˇC2d /.˛ ˇ/ .c 1/.˛ ˇ/

D.abCdC1/.˛ ˇ/;

E2Da .˛Cd /.˛Cd c/ .ˇCd /.ˇCd c/

Da .˛Cd /2 .ˇCd /2C.˛ ˇ/

Da .˛CˇC2d /.˛ ˇ/C.˛ ˇ/

Da.abCcCdC1/.˛ ˇ/;

E3D.˛Cd /.˛CdC1/.˛Cd c/ .ˇCd /.ˇCdC1/.ˇCd c/

D.˛Cd /3 .ˇCd /3 .c 1/ .˛Cd /2 .ˇCd /2

c.˛ ˇ/

D .˛CˇC2d /2 .˛Cd /.ˇCd / .˛ ˇ/

.c 1/.˛CˇC2d /.˛ ˇ/ c.˛ ˇ/

D .abCcCd /2 cd

.˛ ˇ/ .c 1/.abCcCd /.˛ ˇ/ c.˛ ˇ/

D.a2b2CabcC2abdCabCd2Cd /.˛ ˇ/:

Hence (2.11) is true fornD1.

(12)

Theorem 6 (Catalan’s identity). The Catalan’s identity for the generalized bi- periodic Lucas quaternion sequence is

Vn2 VnC2rVn 2r

D 8 ˆˆ ˆˆ ˆˆ ˆ<

ˆˆ ˆˆ ˆˆ ˆ:

.cd /n22r.d˛ ˇ cdCd2/.dˇ ˛ cdCd2/ d2

˛oˇo Cd /2r .cd /r

Cˇo˛o Cd /2r .cd /r

.˛ ˇ /2

; if n i s eve n;

.cd /n 2r2 1.d˛ ˇ cdCd2/.dˇ ˛ cdCd2/ abd

˛eˇe .cd /r Cd /2r

Cˇe˛e .cd /r Cd /2r

.˛ ˇ /2

; if n i s od d:

(2.12)

Proof. Assume thatnis even, and let

Y1D.˛ ˇ/2.ab/n 2Vn2;

Y2D.˛ ˇ/2.ab/n 2VnC2rVn 2r: Then

Y1D

˛o.˛CdC1/˛n22.˛Cd c/n2 ˇo.ˇCdC1/ˇn22.ˇCd c/n22

2o.˛CdC1/2˛n 2.˛Cd c/n2o.ˇCdC1/2ˇn 2.ˇCd c/noˇoo˛o/.˛CdC1/.ˇCdC1/˛n22.˛Cd c/n2ˇn22.ˇCd c/n2; and

Y2D

˛o.˛CdC1/˛nC2r2 2.˛Cd c/nC22r ˇo.ˇCdC1/ˇnC2r2 2.ˇCd c/nC22r

˛o.˛CdC1/˛n 2r2 2.˛Cd c/n22r ˇo.ˇCdC1/ˇn 2r2 2.ˇCd c/n22r

; D˛o2.˛CdC1/2˛n 2.˛Cdc/no2.ˇCdC1/2ˇn 2.ˇCd c/n

˛oˇo.˛CdC1/.ˇCdC1/˛nC2r2 2.˛Cd c/nC22rˇn 2r2 2.ˇCd c/n22r; ˇo˛o.˛CdC1/.ˇCdC1/˛n 2r2 2.˛Cd c/n22rˇnC2r2 2.ˇCd c/nC22r: Hence

Y1 Y2oˇoA1o˛oA2; where

A1D.˛CdC1/.ˇCdC1/

˛nC2r2 2.˛Cd c/nC22rˇn 2r2 2.ˇCd c/n22r

˛n22.˛Cd c/n2ˇn22.ˇCd c/n2 A2D.˛CdC1/.ˇCdC1/

˛n 2r2 2.˛Cd c/n22rˇnC2r2 2.ˇCd c/nC22r

˛n22.˛Cd c/n2ˇn22.ˇCd c/n2 :

(13)

Since˛ˇD abd and˛CˇDabCc d, we have .˛CdC1/D

1CdC1

˛

˛

D

1 .dC1/ˇ abd

˛

D

.˛Cˇ/d d.c d / .dC1/ˇ abd

˛

D.d˛ ˇ cdCd2

abd :

Similarly

.ˇCdC1/D.dˇ ˛ cdCd2

abd :

Then

A1D.d˛ ˇ cdCd2/.dˇ ˛ cdCd2n2.˛Cd c/n2ˇn2.ˇCd c/n2 .abd /2

˛r.˛Cd c/r ˇr.ˇCd c/r 1

D.ab/n 2.cd /n2.d˛ ˇ cdCd2/.dˇ ˛ cdCd2/ d2

˛2r.˛Cd c/2r ˛r.˛Cd c/rˇr.ˇCd c/r

˛r.˛Cd c/rˇr.ˇCd c/r

D.ab/n 2.cd /n22r.d˛ ˇ cdCd2/.dˇ ˛ cdCd2/ .˛Cd /2r .cd /r

d2 :

Similarly we have

A2D.ab/n 2.cd /n22r.d˛ ˇ cdCd2/.dˇ ˛ cdCd2/ .ˇCd /2r .cd /r

d2 ;

and the proof is completed for the case wherenis even.

Using the same procedure, we can also prove (2.12) for the case wherenis odd.

IfcDd D1, then Theorem6reduces to [18, Theorem 5].

3. CONCLUSIONS

In this paper we introduced the generalized bi-periodic Fibonacci and Lucas qua- ternions which are the further generalizations of the bi-periodic Fibonacci and Lucas quaternions considered in the literature. For those quaternions, we obtained the gen- erating functions, Binet’s formulas and Catalan’s identities.

(14)

ACKNOWLEDGEMENT

The author thanks to the anonymous reviewer for helpful comments which led to improved presentation of the paper.

REFERENCES

[1] S. L. Adler,Quaternionic quantum mechanics and quantum fields. New York: Oxford University Press, 1994.

[2] G. Bilgici, “Two generalizations of Lucas sequence.”Appl. Math. Comp., vol. 245, pp. 526–538, 2014, doi:10.1016/j.amc.2014.07.111.

[3] P. Catarino, “The modified Pell and the modifiedk-Pell quaternions and octonions.”Adv. Appl.

Clifford Algebras, vol. 26, no. 2, pp. 577–590, 2016, doi:10.1007/s00006-015-0611-4.

[4] C. B. C¸ imen and A. ˙Ipek, “On Pell quaternions and Pell-Lucas quaternions.”Adv. Appl. Clifford Algebras, vol. 26, pp. 39–51, 2016, doi:10.1007/s00006-015-0571-8.

[5] E. Edson and O. Yayenie, “A new generalization of Fibonacci sequences and extended Binet’s formula.”Integers, vol. 9, pp. 639–654, 2009, doi:10.1515/INTEG.2009.051.

[6] T. A. Ell, N. L. Bihan, and S. J. Sangwine,Quaternion Fourier transforms for signal processing and image processing. John Wiley & Sons, 2014.

[7] S. Falc´on, “On thek-Lucas numbers.”Int. J. Contempt. Math. Sci., vol. 6, no. 21-24, pp. 1039–

1050, 2011, doi:10.12988//ijcms.

[8] S. Falc´on and A. Plaza, “On the Fibonaccik-numbers.”Chaos, Solitons and Fractals, vol. 32, no. 5, pp. 1615–1624, 2007, doi:10.1016//j.chaos.2006.09.022.

[9] K. G¨urlebeck and W. Spr¨ossig,Quaternionic and Clifford calculus for physicists and engineers.

New York: Wiley, 1997.

[10] S. Halici, “On Fibonacci quaternions.”Adv. Appl. Clifford Algebras, vol. 22, no. 2, pp. 321–327, 2012, doi:10.1007/s00006-011-0317-1.

[11] S. Halici, “On complex Fibonacci quaternions.”Adv. Appl. Clifford Algebras, vol. 23, no. 1, pp.

105–112, 2013, doi:10.1007/s00006-012-0337-5.

[12] S. Halici and A. Karatas¸, “On a generalization for Fibonacci quaternions.”Chaos, Solitons and Fractals, vol. 98, pp. 178–182, 2017, doi:http.//dx.doi.org/10.1016/j.chaos.2017.03.037.

[13] A. F. Horadam, “Complex Fibonacci numbers and Fibonacci quaternions.”Amer. Math. Monthly, vol. 70, no. 3, pp. 289–291, 1963, doi:https://about.jstor.org/terms.

[14] E. Polatli, “A generalization of Fibonacci and Lucas quaternions.”Adv. Appl. Clifford Algebras, vol. 26, no. 2, pp. 719–730, 2016, doi:10.1007/s00006-015-0626-x.

[15] J. L. Ram irez, “Some combinatorial properties of thek-Fibonacci and thek-Lucas quaternions.”

An S¸t. Univ. Ovidius Constanta, vol. 23, no. 2, pp. 201–212, 2015, doi:10.1515/auom-2015-0037.

[16] M. Sahin, “The Gelin-Ces`aro identity in some conditional sequences.”Hacet. J. Math. Stat., vol. 40, no. 6, pp. 855–861, 2011.

[17] A. Szynal-Liana and I. Włoch, “A note on Jacobsthal quaternions.”Adv. Appl. Clifford Algebras, vol. 26, no. 1, pp. 441–447, 2016, doi:10.1007/s00006-015-0622-1.

[18] E. Tan, S. Yilmiz, and M. Sahin, “A note on bi-periodic Fibonacci and Lu- cas quaternions.” Chaos, Solitons and Fractals, vol. 85, pp. 138–142, 2016, doi:

http.//dx.doi.org/10.1016/j.chaos.2016.01.025.

[19] E. Tan, S. Yilmiz, and M. Sahin, “On a new generalization of Fibonacci quaternions.”Chaos, Solitons and Fractals, vol. 82, pp. 1–4, 2016, doi:http.//dx.doi.org/10.1016/j.chaos.2015.10.021.

[20] J. P. Ward,Quaternions and Cayley numbers: algebra and applications. London: Kluwer Aca- demic Publisher, 1997.

(15)

[21] O. Yayenie, “A note on generalized Fibonacci sequences.”Appl. Math. Comp., vol. 217, no. 12, pp. 5603–5611, 2011, doi:10.1016/j.amc.2010.12.038.

Author’s address

Younseok Choo

Hongik University, Department of Electronic and Electrical Engineering, 2639 Sejong-Ro, 30016 Sejong, Republic of Korea

E-mail address:yschoo@hongik.ac.kr

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Ezért vonzó elképzelésnek tűnik, hogy ne két különálló jelentést (’záró eszközök nyitása’ és ’körbehatárolt térség nyitása’) állítsunk fel, hanem csak

In this work, using discontinuous almost periodic type functions, exponential dichotomy and the notion of Bi-almost automorphicity we give sufficient conditions to obtain a

By using the exponential dichotomy theory and fixed point theorem, some sufficient conditions are given to ensure that all solutions of this model converge exponentially to the

Recently Basb¨uk and Yazlik [1] proved identities related to the reciprocal sum of generalized bi-periodic Fibonacci numbers starting from 0 and 1, and raised an open question

In Proofs that Really Count [2], Benjamin and Quinn have used “square and domino tiling” interpretation to provide tiling proofs of many Fibonacci and Lucas formulas.. We explore

In this paper, we define the bi-periodic incomplete Fibonacci sequences, we study some recurrence relations linked to them, some properties of these numbers and their

Keywords: Cold–duplication method, composite system, Fox–Wright generalized hyperge- ometric function, gamma–Weibull distribution, parallel system, reduction method,

Keywords: data structure; balanced binary tree; bipartite graph; fibonacci sequence; state space; combination