• Nem Talált Eredményt

RHÖNITE IN ALKALI BASALTS: STUDIES OF SILICATE MELT INCLUSIONS IN OLIVINE PHENOCRYSTS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "RHÖNITE IN ALKALI BASALTS: STUDIES OF SILICATE MELT INCLUSIONS IN OLIVINE PHENOCRYSTS"

Copied!
2
0
0

Teljes szövegt

(1)

Acta Mineralogica-Petrographica, Abstract Series 2, Szeged, 2003

RHÖNITE IN A L K A L I BASALTS: STUDIES OF SILICATE M E L T INCLUSIONS IN O L I V I N E PHENOCRYSTS

S H A R Y G I N . V.V.'. K Ó T H A Y , K.2, P E T Ő , M.2, T Ö R Ö K , K.2, T I M I N A, T.Ju.3, V A P N I K , Y.4, K U Z M I N , D . V . ' , S Z A B Ó , C.2

' Institute of Mineralogy and Petrography, Koptyuga pr. 3, 630090 Novosibirsk, Russia.

2Lithosphere Fluid Research Lab, Department of Petrology and Geochemistry, Eötvös University, P á z m á n y Péter sétány 1/C, H - l 117 Budapest, Hungary.

3 Department of Geology and Geophysics, Novosibirsk State University, Pirogova st. 2, 6 3 0 0 9 0 Novosibirsk, Russia.

4D e p a r t m e n t of Geological and Environmental Sciences, Ben-Gurion University of the Negev, P.O. B o x 653, 84105 Beer- Sheva, Israel.

E-mail: sharygin@uiggm.nsc.ru Introduction

Rhönite, Ca2(Mg,Fe2 +)4Fe", +Ti[Al3SÍ302o], is an u n c o m m o n phase in alkali basalts. It scarcely occurs as phenocrystal or groundmass mineral in silica-undersaturated basalts (Cameron et al., 1970; Magonthier, Velde, 1976; Olsson, 1983; K u n z m a n n , 1999; Seghedi et al., 1995; Prestvik et al., 1999). In some basalts and their deep-seated xenoliths rhönite is observed in reactionary rims around amphibole (Kyle and Price, 1975; Gushchin et al., 1991). However, recent studies of silicate melt inclusions showed that rhönite is a c o m m o n daughter phase of silicate melt inclusions in olivine phenocrysts of most alkali and subalkali basalts (Ananiev, Okrugin, 1991; Kuz'min et al., 1999; Golovin et al., 2000; Kóthay et al., 2001), whereas it may be absent as phenocrystal or groundmass mineral in these rocks. This work is a present-day compilation of all data we collected concerning to rhönite f r o m silicate melt inclusions.

Rhönite from inclusions

T o study crystallization conditions of rhönite in alkali basalts, we used silicate melt inclusions hosted by olivine phenocrysts from different localities (Table 1). It should be noted that rhönite-bearing inclusions occur relatively rarely and are mainly confined to the central zones of host olivine, whereas silicate melt inclusions from the outer zones are generally free in rhönite.

Besides rhönite, silicate melt inclusions usually contain Ti-rich augite, apatite, Al-spinel, sulfide blebs, amphibole, Ti- magnetite, ilmenite as daughter phases, and Cr-spinel and sometimes Cr-diopside as trapped crystals. A halo of small inclusions around large silicate melt inclusions with rhönite is typical of some olivines (Fig. 1) that might indicate high pressure for trapping of inclusions and their subsequent leakage. According to petrography of inclusions, rhönite is o n e of the earliest daughter phases. It crystallized after trapped Cr-spinel and daughter Al-spinel and before Ti-Al-rich clinopyroxenes, apatite and ilmenite. Thermometric data for rhönite-bearing inclusions are available only for s o m e occurrences. According to these data, during heating apatite disappeared at 1060-1100°C, ilmenite - at 1030-1130°C, Ti-rich augite - in the range of 1130-1210°C, rhönite - at 1180-1245°C, and Al-spinel - at 1270°C (the Pécskő basalts). Homogenization temperatures of inclusions are in the range of 1250-1355°C, and possible pressure of their trapping estimated on coexisting C 02 inclusions is higher than 2 kb.

Oxygen fugacity estimated on the olivine-Cr-spinel pair (the Hegyestű basalts) is higher in 1-2 order than the Q F M buffer.

Table 1. Rhônite occurrences in olivine-hosted silicate melt inclusions from some alkali basalts of the world.

Locality Rock Phase composition

of inclusions

Tmelting

for Cpx

Tmelting

for Rhö

T1 honn °c P, kb

estim. Reference Kamchatka, Russia high-Al basalt Gl+Opx+Cpx+

Al-sp±Rhö±Amph+g

1250-1350 2-3 Ananiev, Okrugin, 1991 Tsagan-Khurtei ridge, Transbaikalia,

Russia

trachybasalt Gl+Cpx+Rhö±Mgnt

±Al-sp+Ap+Sulf+g

1280-1320 0.8-1 Kuz'min et al., 1999

Lurbun volcano, Udokan Volcanic Field, Transbaikalia, Russia

olivine nephelinite

Gl+Cpx+Rhö+

Ap+Sulf+g

>1250 >3

Tergesh and Bele pipes, Khakasia, Russia

basanite Gl+Cpx+Rhö±Ilm

±Mgnt+Sulf+g

1130-1190 >1200 1280-1310 >3 Golovin et al.. 2000

Makhtesh Ramon, Southern Israel basanite Gl+Cpx+Rhö+Sulf+g 1140-1180 1180-1230 1310-1355 >3 Hegyestű, Kabhegy, Badascsony,

Haláp volcanoes, Bakony-Balaton Highland Volcanic Field, Hungary

basanite Gl+Cpx+Rhö+

Al-sp+Ilm+Sulf+g

1190-1210 1220-1245 1270-1310 >3 Kóthay etal., 2001

Pécskő, Eresztvény, Magyarbánya, Terbelény, Nógrád-Gömör Volcanic Field, Hungary-Slovakia

hawaiite basanite

Gl+Cpx+Al-sp±

Rhö±Amph+Sulf+g

1165-1235 1300-1350 2-3

182

(2)

Acta Mineralogica-Petrographica, Abstract Series 2, Szeged, 2003

Figure 1. Rhonite as daughter phase of silicate melt inclusions in olivine phenocrysts from alkali basalts around the world.

D i s c u s s i o n

T h e d a t a o b t a i n e d s h o w that r h o n i t e in o l i v i n e - h o s t e d silicate melt i n c l u s i o n s c ry s ta ll iz e d in a n a r r o w t e m p e r a t u r e r a n g e ( 1 1 8 0 - 1 2 4 5 ° C ) and at p r e s s u r e less than 3 - 5 k b b a s e d on C 02 m i c r o t h e r m o m e t r y . T h e p e t r o g r a p h y of s t u d i e d i n c l u s i o n s indicates the f o l l o w i n g s e q u e n c e to c r y s t a l l i z e minerals: ( C r - s p i n e l , s o m e t i m e s C r - d i o p s i d e ) - > Al-spinel - > r h o n i t e - > T i - A l - c l i n o p y r o x e n e - T i - m a g n e t i t e (ilmenite). A c c o r d i n g to B o n a c c o r s i et al. ( 1 9 9 0 ) , the r h o n i t e structure r e p r e s e n t s an alternation of " p y r o x e n e " and " s p i n e l " slabs. In this s e n s e , r h o n i t e is n o t o n l y a transitional m e m b e r b e t w e e n Al-spinel a n d T i - A l - a u g i t e in a crystallization s e q u e n c e but also an i n t e r m e d i a t e m e m b e r of a p o l y s o m a t i c series h a v i n g spinel and p y r o x e n e as the e n d - m e m b e r s . O u r d a t a s o m e w h a t c o n t r a d i c t with c o n c l u s i o n s of K u n z m a n n ( 1 9 9 9 ) w h o s u g g e s t s that stability of r h o n i t e in alkali s i l i c a - u n d e r s a t u r a t e d b a s a l t s is restricted to p r e s s u r e s less than 0 . 6 k b , and t e m p e r a t u r e s f r o m 8 4 0 to 1200°C w i t h o u t a n y limitations o n o x y g e n f u g a c i t y . A p p a r e n t l y , s o m e c o n t r a d i c t i o n s m a y b e related to the c h e m i s t r y of rhonite b e c a u s e this m i n e r a l is h i g h l y variable in the c o n t e n t s of F e2 +, Fe3 +, and other c o m p o n e n t s d u e to i s o m o r p h i c substitutions. In a d d i t i o n , the c h e m i c a l a n d p h y s i c a l c o n d i t i o n s of solidification in oli vine-hosted melt i n c l u s i o n s and in the r o c k g r o u n d m a s s m i g h t b e d i f f e r e n t .

T h i s w o r k is s u p p o r t e d b y the R u s s i a n F o u n d a t i o n for B a s i c R e s e a r c h (grant no. 0 2 - 0 5 - 6 4 6 2 0 ) and the H u n g a r i a n N a t i o n a l S c i e n t i f i c F o u n d a t i o n ( O T K A ) : grants T 0 3 4 9 2 2 to T o r o k , K. and T 0 3 0 8 4 6 to S z a b o , C s .

R e f e r e n c e s

ANANIEV, V . V., OKRUGIN, V. M . ( 1 9 9 1 ) : M i n e r a l o g y of m o l t e n i n c l u s i o n s in o l i v i n e s f r o m h i g h - a l u m i n a basalt m e l t s in K a m c h a t k a . Plinius, no. 5, 2 6 4 .

BONACCORSI, E „ MERLINO, S., PASERO, M . ( 1 9 9 0 ) : R h o n i t e : s t r u c t u r e and m i c r o s t r u c t u r a l features, crystal c h e m i s t r y a n d p o l y s o m a t i c r e l a t i o n s h i p s . E u r o p e a n J o u r n a l of M i n e r a l o g y , 2, 2 0 3 - 2 1 8 .

CAMERON, K. L., CARMAN, M . F., BUTLER, J. C. ( 1 9 7 0 ) : R h o n i t e f r o m B i g B e n d N a t i o n a l P a r k , T e x a s . A m e r i c a n M i n e r a l o g i s t , 55, 8 6 4 - 8 7 4 .

GOLOVIN, A. V., SHARYGIN, V. V., MAL'KOVETS, V. G. ( 2 0 0 0 ) : M e l t e v o l u t i o n d u r i n g crystallization of b a s a n i t e s of the B e l e p i p e , M u n u s a d e p r e s s i o n . R u s s i a n G e o l o g y and G e o p h y s i c s , 4 1 (12), 1 7 6 0 - 1 7 8 2 .

GUSHCHIN, A. V., IVANOVA, T . A., GANZEEV, A. A. ( 1 9 9 1 ) : T e p h r i t e - s h o s h o n i t e series of S o u t h - E a s t A r m e n i a . G e o l o g i a y i R a z v e d k a , no. 11, 3 - 1 4 (in R u s s i a n ) .

KÓTHAY,

K.,

SZABÓ, CS., SHARYGIN,

V. v.,

TÖRÖK,

K. (2001):

Silicate melt i n c l u s i o n study on o l i v i n e p h e n o c r y s t s and c l i n o p y r o x e n e m i c r o p h e n o c r y s t s in the H e g y e s t ű basalt, B a k o n y - B a l a t o n H i g h l a n d , H u n g a r y . M e m ó r i á s , no. 7, 2 3 7 - 2 4 0 . KUNZMANN, T. ( 1 9 9 9 ) : T h e a e n i g m a t i t e - r h ö n i t e m i n e r a l group. E u r o p e a n J o u r n a l of M i n e r a l o g y , 11, 7 4 3 - 7 5 6 .

Kuz'MLN, D . V., CHUPIN, V. P., LITVINOVSKY, B. A. ( 1 9 9 9 ) : T h e t e m p e r a t u r e s and c o m p o s i t i o n s of m a g m a s of t r a c h y b a s a l t - c o m e n d i t e a s s o c i a t i o n in the T s a g a n - K h u r t e i ridge, W e s t T r a n s b a i k a l i a ( b y i n c l u s i o n s in minerals). R u s s i a n G e o l o g y and G e o p h y s i c s , 4 0 (1), 6 0 - 7 1 .

KYLE, P . R., PRICE, R. C. ( 1 9 7 5 ) : O c c u r r e n c e s of rhönite in alkalic lavas of t h e M c M u r d o V o l c a n i c G r o u p , A n t a r c t i c a , and D u n e d i n V o l c a n o , N e w Z e a l a n d . A m e r i c a n M i n e r a l o g i s t , 6 0 , 7 2 2 - 7 2 5 .

MAGONTHIER, M . C . , VELDE, D . ( 1 9 7 6 ) : M i n e r a l o g y and p e t r o l o g y of s o m e T e r t i a r y l e uc i te -rh öni te b a s a n i t e s f r o m central F r a n c e . M i n e r a l o g i c a l M a g a z i n e , 4 0 , 8 1 7 - 8 2 6 .

OLSSON, H. B. ( 1 9 8 3 ) : R h ö n i t e f r o m S k á n e ( S k a n i a ) , s o u t h e r n S w e d e n . G e o l o g i s k a F ö r e n i n g e n s i S t o c k h o l m F ö r h a n d l i n g a r , 1 0 5 ,2 8 1 - 2 8 6 .

PRESTVIK, T . , TORSKE, T . , SUNDVOLL, B., KARLSSON, H . ( 1 9 9 9 ) : P e t r o l o g y of e a r l y T e r t i a r y n e ph e li nit e s o f f m i d - N o r w a y . A d d i t i o n a l e v i d e n c e f o r an e n r i c h e d e n d m e m b e r of the ancestral I c e l a n d p l u m e . L i t h o s , 46, 3 1 7 - 3 3 0 .

SEGHEDI, I., VASSELLI, O . , DOWNES, H . ( 1 9 9 5 ) : O c c u r r e n c e of r h ö n i t e in b a s a n i t e s f r o m P o i a n a R u s c á M o u n t a i n s . R o m a n i a n J o u r n a l of M i n e r a l o g y , 7 7 , 4 1 .

183

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

A COMPREHENSIVE SILICATE MELT INCLUSION STUDY OF OLIVINE PHENOCRYSTS FROM HEGYESTŰ (BAKONY-BALATON HIGHLAND) AND PÉCSKŐ (NÓGRÁD-GÖMÖR) ALKALI BASALTS, PANNONIAN BASIN,

The studied quartz contains primary melt (MI) and associated fluid inclusions (FI). 1A) consist of silicate daughter minerals and fluid isolations (gas+liquid+sassolite

Olivine phenocrysts contain numerous primary and late melt and fluid inclusions.. They are composed of daughter crystals (clinopyroxene, nepheline and magnetite were identified) and

Melt and fluid inclusions in pegmatite quartz f r o m the Pechtelsgriin/Vogtland tungsten deposit, Germany contain three different inclusion types within single growth zones:

Glasses of heated and unheated of olivine- and clinopyroxene-hosted inclusions as well as daughter phases of unheated inclusions in olivine were analyzed by microprobe at U I G G M

Thermometric investigations have been conducted on the quartz crystals, in which three types of inclusions have been distinguished: (1) primary silicate glassy inclusions,

In general, lamproites are mantle-derived rocks, whereas calc-alkaline and shoshonitic rocks have a m o r e complicated origin involving both mantle and crust components

The pre-eruptive behaviour of sulphur in a potassic magma chamber has been investigated using clinopyroxene and feldspar melt and fluid inclusions from syenitic xenoliths of the