• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
37
0
0

Teljes szövegt

(1)

volume 3, issue 4, article 51, 2002.

Received 5 April, 2002;

accepted 20 May, 2002.

Communicated by:B. Mond

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

APPROXIMATING THE FINITE HILBERT TRANSFORM VIA AN OSTROWSKI TYPE INEQUALITY FOR FUNCTIONS OF

BOUNDED VARIATION

S.S. DRAGOMIR

School of Communications and Informatics Victoria University of Technology

PO Box 14428 Melbourne City MC 8001 Victoria, Australia

EMail:sever@matilda.vu.edu.au

URL:http://rgmia.vu.edu.au/SSDragomirWeb.html

c

2000Victoria University ISSN (electronic): 1443-5756 032-01

(2)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Abstract

Using the Ostrowski type inequality for functions of bounded variation, an ap- proximation of the finite Hilbert Transform is given. Some numerical experi- ments are also provided.

2000 Mathematics Subject Classification: Primary 26D10, 26D15; Secondary 41A55, 47A99.

Key words: Finite Hilbert Transform, Ostrowski’s Inequality.

Contents

1 Introduction. . . 3

2 Some Inequalities on the Interval[a, b]. . . 4

3 A Quadrature Formula for Equidistant Divisions . . . 15

4 A More General Quadrature Formula. . . 21

5 Numerical Experiments . . . 28 References

(3)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

1. Introduction

Cauchy principal value integrals of the form (T f) (a, b;t) =P V

Z b a

f(τ) τ−tdτ (1.1)

:= lim

ε→0+

Z t−ε a

f(τ) τ −tdτ+

Z b t+ε

f(τ) τ−tdτ

play an important role in fields like aerodynamics, the theory of elasticity and other areas of the engineering sciences. They are also helpful tools in some methods for the solution of differential equations (cf., e.g. [23]).

For different approaches in approximating the finite Hilbert transform (1.1) including: interpolatory, noninterpolatory, Gaussian, Chebychevian and spline methods, see for example the papers [1] – [12], [14] – [22], [24] – [33] and the references therein.

In contrast with all these methods, we point out here a new method in ap- proximating the finite Hilbert transform by the use of the Ostrowski inequality for functions of bounded variation established in [13].

For a comprehensive list of papers on Ostrowski’s inequality, visit the site http://rgmia.vu.edu.au.

Estimates for the error bounds and some numerical examples for the obtained approximation are also presented.

(4)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

2. Some Inequalities on the Interval [a, b]

We start with the following lemma proved in [13] dealing with an Ostrowski type inequality for functions of bounded variation.

Lemma 2.1. Let u : [a, b] → R be a function of bounded variation on [a, b].

Then, for allx∈[a, b], we have the inequality:

(2.1)

u(x) (b−a)− Z b

a

u(t)dt

≤ 1

2(b−a) +

x− a+b 2

b _

a

(u),

whereWb

a(u)denotes the total variation ofuon[a, b].

The constant 12 is the best possible one.

Proof. For the sake of completeness and since this result will be essentially used in what follows, we give here a short proof.

Using the integration by parts formula for the Riemann-Stieltjes integral we

have Z x

a

(t−a)du(t) =u(x) (x−a)− Z x

a

u(t)dt and

Z b x

(t−b)du(t) = u(x) (b−x)− Z b

x

u(t)dt.

If we add the above two equalities, we get (2.2) u(x) (b−a)−

Z b a

u(t)dt= Z x

a

(t−a)du(t) + Z b

x

(t−b)du(t)

(5)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

for anyx∈[a, b].

If p : [c, d] → R is continuous on [c, d] and v : [c, d] → R is of bounded variation on[c, d], then:

(2.3)

Z d c

p(x)dv(x)

≤ sup

x∈[c,d]

|p(x)|

d

_

c

(u). Using (2.2) and (2.3), we deduce

u(x) (b−a)− Z b

a

u(t)dt

Z x a

(t−a)du(t)

+

Z b x

(t−b)du(t)

≤(x−a)

x

_

a

(u) + (b−x)

b

_

x

(u)

≤max{x−a, b−x}

" x _

a

(u) +

b

_

x

(u)

#

= 1

2(b−a) +

x− a+b 2

b

_

a

(u) and the inequality (2.1) is proved.

Now, assume that the inequality (2.2) holds with a constantc >0, i.e., (2.4)

u(x) (b−a)− Z b

a

u(t)dt

c(b−a) +

x−a+b 2

b _

a

(u) for allx∈[a, b].

(6)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Consider the functionu0 : [a, b]→Rgiven by

u0(x) =

0 if x∈[a, b]a+b

2

1 if x= a+b2 . Thenu0is of bounded variation on[a, b]and

b

_

a

(u0) = 2, Z b

a

u0(t)dt= 0.

If we apply (2.4) foru0and choosex= a+b2 , then we get2c≥1which implies thatc≥ 12 showing that 12 is the best possible constant in (2.1).

The best inequality we can get from (2.1) is the following midpoint inequal- ity.

Corollary 2.2. With the assumptions in Lemma2.1, we have

(2.5)

u

a+b 2

(b−a)− Z b

a

u(t)dt

≤ 1

2(b−a)

b

_

a

(u).

The constant 12 is best possible.

Using the above Ostrowski type inequality we may point out the following result in estimating the finite Hilbert transform.

(7)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Theorem 2.3. Let f : [a, b] → R be a function such that its derivative f0 : [a, b]→Ris of bounded variation on[a, b]. Then we have the inequality:

(2.6)

(T f) (a, b;t)− f(t) π ln

b−t t−a

−b−a

π [f;λt+ (1−λ)b, λt+ (1−λ)a]

≤ 1 π

1 2+

λ− 1 2

1

2(b−a) +

t− a+b 2

b _

a

(f0),

for anyt ∈(a, b)andλ∈[0,1), where[f;α, β]is the divided difference, i.e., [f;α, β] := f(α)−f(β)

α−β .

Proof. Since f0 is bounded on [a, b], it follows that f is Lipschitzian on [a, b]

and thus the finite Hilbert transform exists everywhere in(a, b).

As for the functionf0 : (a, b)→R,f0(t) = 1,t∈(a, b), we have (T f0) (a, b;t) = 1

πln

b−t t−a

, t∈(a, b), then obviously

(2.7) (T f) (a, b;t)−f(t) π ln

b−t t−a

= 1 πP V

Z b a

f(τ)−f(t) τ −t dτ.

(8)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Now, if we choose in (2.1),u=f0, x=λc+ (1−λ)d,λ∈[0,1], then we get

|f(d)−f(c)−(d−c)f0(λc+ (1−λ)d)|

≤ 1

2|d−c|+

λc+ (1−λ)d− c+d 2

d

_

c

(f0) wherec, d∈(a, b), which is equivalent to

(2.8)

f(d)−f(c)

d−c −f0(λc+ (1−λ)d)

≤ 1

2 +

λ− 1 2

d

_

c

(f0) for anyc, d∈(a, b),c6=d.

Using (2.8), we may write

1 πP V

Z b a

f(τ)−f(t)

τ−t dτ − 1 πP V

Z b a

f0(λt+ (1−λ)τ)dτ (2.9)

≤ 1 π

1 2+

λ− 1 2

P V Z b

a

t

_

τ

(f0)

dt

= 1 π

1 2 +

λ−1 2

"

Z t a

t

_

τ

(f0)

! dt+

Z b t

τ

_

t

(f0)

! dt

#

≤ 1 π

1 2+

λ− 1 2

"

(t−a)

t

_

a

(f0) + (b−t)

b

_

t

(f0)

#

≤ 1 π

1 2+

λ− 1 2

1

2(b−a) +

t−a+b 2

b _

a

(f0).

(9)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Since (forλ6= 1) 1

πP V Z b

a

f0(λt+ (1−λ)τ)dτ

= 1 π lim

ε→0+

Z t−ε a

+ Z b

t+ε

(f0(λt+ (1−λ)τ)dτ)

= 1 π lim

ε→0+

"

1

1−λf(λt+ (1−λ)τ)

t−ε

a

+ 1

1−λf(λt+ (1−λ)τ)

b

t+ε

#

= 1

π · f(t)−f(λt+ (1−λ)a) +f(λt+ (1−λ)b)−f(t) 1−λ

= b−a

π [f;λt+ (1−λ)b, λt+ (1−λ)a]. Using (2.9) and (2.7), we deduce the desired result (2.6).

It is obvious that the best inequality we can get from (2.6) is the one for λ = 12. Thus, we may state the following corollary.

Corollary 2.4. With the assumptions of Theorem2.3, we have

(2.10)

(T f) (a, b;t)− f(t) π ln

b−t t−a

− b−a π

f;t+b 2 ,a+t

2

≤ 1 2π

1

2(b−a) +

t− a+b 2

b _

a

(f0).

(10)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

The above Theorem2.3may be used to point out some interesting inequal- ities for the functions for which the finite Hilbert transforms (T f) (a, b;t) can be expressed in terms of special functions.

For instance, we have:

1) Assume thatf : [a, b]⊂(0,∞)→R,f(x) = 1x. Then (T f) (a, b;t) = 1

πtln

(b−t)a (t−a)b

, t ∈(a, b),

b−a

π ·[f;λt+ (1−λ)b, λt+ (1−λ)a]

=−1

π · b−a

[λt+ (1−λ)b] [λt+ (1−λ)a],

b

_

a

(f0) = Z b

a

|f00(t)|dt= b2−a2 a2b2 . Using the inequality (2.6) we may write that

1 πtln

(b−t)a (t−a)b

− 1 πtln

b−t t−a

+ b−a

π[λt+ (1−λ)b] [λt+ (1−λ)a]

≤ 1 π

1 2+

λ− 1 2

1

2(b−a) +

t− a+b 2

· b2−a2 a2b2

(11)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

which is equivalent to:

(2.11)

b−a

[λt+ (1−λ)b] [λt+ (1−λ)a]− 1 t ln

b a

≤ 1

2+

λ− 1 2

1

2(b−a) +

t− a+b 2

· b2 −a2 a2b2 . If we use the notations

L(a, b) := b−a

lnb−lna (the logarithmic mean)

Aλ(x, y) :=λx+ (1−λ)y (the weighted arithmetic mean) G(a, b) :=√

ab (the geometric mean)

A(a, b) := a+b

2 (the arithmetic mean)

then by (2.11) we deduce

1

Aλ(t, b)Aλ(t, a)− 1 tL(a, b)

≤ 1

2 +

λ− 1 2

1

2(b−a) +|t−A(a, b)|

2A(a, b) G4(a, b), giving the following proposition:

(12)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Proposition 2.5. With the above assumption, we have (2.12) |tL(a, b)−Aλ(t, b)Aλ(t, a)|

≤ 2A(a, b) G4(a, b)

1 2 +

λ−1 2

1

2(b−a) +

t− a+b 2

×tAλ(t, b)Aλ(t, a)L(a, b) for anyt∈(a, b),λ∈[0,1).

In particular, fort=A(a, b)andλ= 12,we get (2.13)

A(a, b)L(a, b)− (A(a, b) +a) (A(a, b) +b) 4

≤ 1

2· A2(a, b)

G4(a, b) · (A(a, b) +a) (A(a, b) +b)

4 L(a, b).

2) Assume thatf : [a, b]⊂R→R,f(x) = exp (x). Then (T f) (a, b;t) = exp (t)

π [Ei(b−t)−Ei(a−t)], where

Ei(z) := P V Z z

−∞

exp (t)

t dt, z ∈R. Also, we have:

b−a

π [exp;λt+ (1−λ)b, λt+ (1−λ)a]

= 1

π · exp (λt+ (1−λ)b)−exp (λt+ (1−λ)a)

1−λ ,

(13)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

b

_

a

(f0) = Z b

a

|f00(t)|dt = exp (b)−exp (a). Using the inequality (2.6) we may write:

(2.14)

exp (t)

Ei(b−t)−Ei(a−t)−ln

b−t t−a

− exp (λt+ (1−λ)b)−exp (λt+ (1−λ)a) 1−λ

≤ 1

2+

λ− 1 2

1

2(b−a) +

t− a+b 2

[exp (b)−exp (a)]

for anyt ∈(a, b).

If in (2.14) we makeλ= 12 andt= a+b2 , we get

exp

a+b 2

Ei

b−a 2

−2

exp

a+ 3b 4

−exp

3a+b 4

≤ 1

4(b−a) [exp (b)−exp (a)], which is equivalent to:

Ei

b−a 2

−2

exp

b−a 4

−exp

−b−a 4

≤ 1

4(b−a)

exp

b−a 2

−exp

−b−a 2

.

(14)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

If in this inequality we make b−a2 =z >0, then we get (2.15)

Ei(z)−2h

expz 2

−exp

−z 2

i

≤ 1

2z[exp (z)−exp (−z)]

for anyz >0.

Consequently, we may state the following proposition.

Proposition 2.6. With the above assumptions, we have (2.16)

Ei(z)−4 sinh 1

2z

≤zsinh (z) for anyz >0.

The reader may get other similar inequalities for special functions if appro- priate examples of functionsf are chosen.

(15)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

3. A Quadrature Formula for Equidistant Divisions

The following lemma is of interest in itself.

Lemma 3.1. Let u : [a, b] → R be a function of bounded variation on [a, b].

Then for all n ≥ 1, λi ∈ [0,1) (i= 0, . . . , n−1)andt, τ ∈ [a, b]witht 6=τ, we have the inequality:

(3.1)

1 τ −t

Z τ t

u(s)ds− 1 n

n−1

X

i=0

u

t+ (i+ 1−λi)τ −t n

≤ 1 n

1

2+ max

i=0,n−1

λi− 1 2

τ

_

t

(u) .

Proof. Consider the equidistant division of [t, τ] (ift < τ) or[τ, t] (ifτ < t) given by

(3.2) En:xi =t+i· τ −t

n , i= 0, n.

Then the pointsξii

t+i·τ−tn

+ (1−λi)

t+ (i+ 1)· τ−tn λi ∈[0,1], i= 0, n−1

are between xi and xi+1. We observe that we may write for simplicityξi =t+ (i+ 1−λi)τ−tn i= 0, n−1

. We also have ξi− xi+xi+1

2 = τ −t

2n (1−2λi), ξi−xi = (1−λi)τ−t

n

(16)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

and

xi+1−ξii· τ−t n for anyi= 0, n−1.

If we apply the inequality (2.1) on the interval[xi, xi+1]and the intermediate pointξi i= 0, n−1

,then we may write that (3.3)

τ −t n u

t+ (i+ 1−λi)τ −t n

− Z xi+1

xi

u(s)ds

≤ 1

2 · |τ−t|

n +

τ−t

2n (1−2λi)

xi+1

_

xi

(u) . Summing, we get

Z τ t

u(s)ds−τ −t n

n−1

X

i=0

u

t+ (i+ 1−λi)τ −t n

≤ |τ −t|

2n

n−1

X

i=0

[1 +|1−2λi|]

xi+1

_

xi

(u)

= |τ−t|

n 1

2+ max

i=0,n−1

λi− 1 2

τ

_

t

(u) , which is equivalent to (3.1).

We may now state the following theorem in approximating the finite Hilbert transform of a differentiable function with the derivative of bounded variation on[a, b].

(17)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Theorem 3.2. Let f : [a, b] → R be a differentiable function such that its derivative f0 is of bounded variation on [a, b]. Ifλ = (λi)i=0,n−1, λi ∈ [0,1)

i= 0, n−1 and

(3.4) Sn(f;λ, t) := b−a

πn

n−1

X

i=0

f; (i+ 1−λi)b−t

n +t,(i+ 1−λi)a−t n +t

,

then we have the estimate:

(T f) (a, b;t)− f(t) π ln

b−t t−a

−Sn(f;λ, t) (3.5)

≤ b−a nπ

1

2 + max

i=0,n−1

λi− 1 2

1

2(b−a) +

t−a+b 2

b

_

a

(f0)

≤ b−a nπ

b

_

a

(f0).

Proof. Applying Lemma3.1for the functionf0, we may write that (3.6)

f(τ)−f(t) τ−t − 1

n

n−1

X

i=0

f0

t+ (i+ 1−λi)τ−t n

≤ 1 n

1

2 + max

i=0,n−1

λi− 1 2

τ

_

t

(f0)

(18)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

for anyt, τ ∈[a, b],t6=τ. Consequently, we have

1 πP V

Z b a

f(τ)−f(t) τ −t dτ (3.7)

− 1 πn

n−1

X

i=0

P V Z b

a

f0

t+ (i+ 1−λi)τ −t n

≤ 1 nπ

1

2+ max

i=0,n−1

λi− 1 2

P V Z b

a

τ

_

t

(f0)

≤ 1 nπ

1

2+ max

i=0,n−1

λi− 1 2

1

2(b−a) +

t− a+b 2

b _

a

(f0).

On the other hand P V

Z b a

f0

t+ (i+ 1−λi)τ −t n

dτ (3.8)

= lim

ε→0+

Z t−ε a

+ Z b

t+ε

f0

t+ (i+ 1−λi)τ −t n

= lim

ε→0+

"

n i+ 1−λif

t+ (i+ 1−λi)τ −t n

t−ε

a

+ n

i+ 1−λif

t+ (i+ 1−λi)τ−t n

b

t+ε

#

(19)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page19of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

= n

i+ 1−λi

f

t+ (i+ 1−λi)b−t n

−f

t+ (i+ 1−λi)a−t n

= (b−a)

f;t+ (i+ 1−λi)b−t

n ,(i+ 1−λi)a−t n +t

.

Since (see for example (2.7)), (T f) (a, b;t) = 1

πP V Z b

a

f(τ)−f(t)

τ −t dτ +f(t) π ln

b−t t−a

fort∈(a, b),then by (3.7) and (3.8) we deduce the desired estimate (3.5).

Remark 3.1. Forn= 1, we recapture the inequality (2.6).

Corollary 3.3. With the assumptions of Theorem3.2, we have (3.9) (T f) (a, b;t) = f(t)

π ln

b−t t−a

+ lim

n→∞Sn(f;λ, t) uniformly by rapport oft ∈(a, b)andλwithλi ∈[0,1) (i∈N).

Remark 3.2. If one needs to approximate the finite Hilbert Transform(T f) (a, b;t) in terms of

f(t) π ln

b−t t−a

+Sn(f;λ, t)

(20)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page20of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

with the accuracyε >0(εsmall), then the theoretical minimal numbernεto be chosen is:

(3.10) nε:=

"

b−a επ

b

_

a

(f0)

# + 1

where[α]is the integer part ofα.

It is obvious that the best inequality we can get in (3.5) is for λi = 12 i= 0, n−1

obtaining the following corollary.

Corollary 3.4. Letf be as in Theorem3.2. Define

(3.11) Mn(f;t) := b−a πn

n−1

X

i=0

f;

i+ 1

2

b−t n +t,

i+1

2

a−t n +t

.

Then we have the estimate

(3.12)

(T f) (a, b;t)− f(t) π ln

b−t t−a

−Mn(f;t)

≤ b−a 2nπ

1

2(b−a) +

t− a+b 2

b _

a

(f0)

for anyt ∈(a, b).

This rule will be numerically implemented in Section5for different choices off andn.

(21)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page21of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

4. A More General Quadrature Formula

We may state the following lemma.

Lemma 4.1. Let u : [a, b] → R be a function of bounded variation on [a, b], 0 = µ0 < µ1 < · · · < µn−1 < µn = 1 andνi ∈ [µi, µi+1], i = 0, n−1.Then for anyt, τ ∈[a, b]witht6=τ, we have the inequality:

(4.1)

1 τ −t

Z τ t

u(s)ds−

n−1

X

i=0

i+1−µi)u[(1−νi)t+νiτ]

≤ 1

2∆n(µ) + max

i=0,n−1

νi− µii+1 2

τ

_

t

(u) ,

wheren(µ) := max

i=0,n−1

i+1−µi).

Proof. Consider the division of[t, τ](ift < τ) or[τ, t](ifτ < t) given by (4.2) In :xi := (1−µi)t+µiτ i= 0, n

. Then the pointsξi := (1−νi)t+νiτ i= 0, n−1

are betweenxi andxi+1. We have

xi+1−xi = (µi+1−µi) (τ−t) i= 0, n−1 and

ξi−xi+xi+1

2 =

νi−µii+1 2

(τ −t) i= 0, n−1 .

(22)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page22of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Applying the inequality (2.1) on [xi, xi+1] with the intermediate points ξi i= 0, n−1

, we get

Z xi+1

xi

u(s)ds−(µi+1−µi) (τ−t)u[(1−νi)t+νiτ]

≤ 1

2(µi+1−µi)|τ −t|+|τ −t|

νi− µii+1 2

xi+1

_

xi

(u) for anyi= 0, n−1. Summing overi, using the generalised triangle inequality and dividing by|t−τ|>0,we obtain

1 τ −t

Z b a

u(s)ds−

n−1

X

i=0

i+1−µi)u[(1−νi)t+νiτ]

n−1

X

i=0

1

2(µi+1−µi) +

νi− µii+1 2

xi+1

_

xi

(u)

≤ 1

2∆n(µ) + max

i=0,n−1

νi− µii+1 2

τ

_

t

(u) and the inequality (4.1) is proved.

The following theorem holds.

Theorem 4.2. Let f : [a, b] → R be a differentiable function such that its derivativef0 is of bounded variation on[a, b]. If0 =µ0 < µ1 <· · ·< µn−1 <

(23)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page23of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

µn= 1andνi ∈[µi, µi+1], i= 0, n−1 ,then (4.3) (T f) (a, b;t) = f(t)

π ln

b−t t−a

+ 1

πQn(µ, ν, t) +Wn(µ, ν, t) for anyt ∈(a, b), where

(4.4) Qn(µ, ν, t) := µ1f0(t) (b−a) + (b−a)

n−2

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia]

+ (1−µn−1) [f(b)−f(a)]

ifν0 = 0, νn−1 = 1,

(4.5) Qn(µ, ν, t) := µ1f0(t) (b−a) + (b−a)

n−1

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia]

ifν0 = 0, νn−1 <1,

(4.6) Qn(µ, ν, t) := (b−a)

n−2

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia]

+ (1−µn−1) [f(b)−f(a)]

(24)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page24of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

ifν0 >0, νn−1 = 1and (4.7) Qn(µ, ν, t)

:= (b−a)

n−1

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia]

ifν0 >0, νn−1 <1.

In all cases, the remainder satisfies the estimate:

|Wn(µ, ν, t)| ≤ 1 π

1

2∆n(µ) + max

i=0,n−1

νi− µii+1 2

(4.8)

× 1

2(b−a) +

t− a+b 2

b _

a

(f0)

≤ 1

π∆n(µ) 1

2(b−a) +

t− a+b 2

b

_

a

(f0)

≤ 1

π∆n(µ) (b−a)

b

_

a

(f0).

Proof. If we apply Lemma4.1for the functionf0, we may write that

f(τ)−f(t)

τ −t −

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

≤ 1

2∆n(µ) + max

i=0,n−1

νi− µii+1 2

τ

_

t

(f0)

(25)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page25of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

for anyt, τ ∈[a, b], t6=τ.

Taking theP V in both sides, we may write that (4.9)

1 πP V

Z b a

f(τ)−f(t) τ−t dτ

−1 πP V

Z b a

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

≤ 1 π

1

2∆n(µ) + max

i=0,n−1

νi− µii+1

2

P V Z b

a

τ

_

t

(f0)

dτ.

Ifν0 = 0, νn−1 = 1,then P V

Z b a

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

=P V Z b

a

µ1f0(t)dτ +

n−2

X

i=1

i+1−µi)P V Z b

a

f0[(1−νi)t+νiτ]dτ

+ (1−µn−1)P V Z b

a

f0(τ)dτ

1f0(t) (b−a) + (b−a)

n−2

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia] + (1−µn−1) [f(b)−f(a)].

(26)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page26of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Ifν0 = 0, νn−1 <1,then P V

Z b a

n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

1f0(t) (b−a) + (b−a)

n−1

X

i=1

i+1−µi)

×[f; (1−νi)t+νib,(1−νi)t+νia]. Ifν0 >0, νn−1 = 1,then

P V Z b

a n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

= (b−a)

n−2

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia]

+ (1−µn−1) [f(b)−f(a)]. and, finally, ifν0 >0, νn−1 <1,then

P V Z b

a n−1

X

i=0

i+1−µi)f0[(1−νi)t+νiτ]

! dτ

= (b−a)

n−1

X

i=1

i+1−µi) [f; (1−νi)t+νib,(1−νi)t+νia].

(27)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page27of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Since

P V Z b

a

τ

_

t

(f0)

dτ ≤ 1

2(b−a) +

t− a+b 2

b _

a

(f0) and

(T f) (a, b;t) = 1 πP V

Z b a

f(τ)−f(t)

τ −t dτ +f(t) π ln

b−t t−a

, then by (4.9) we deduce (4.3).

(28)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page28of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

5. Numerical Experiments

For a functionf : [a, b]→R,we may consider the quadrature formula En(f;a, b, t) := f(t)

π ln

b−t t−a

+Mn(f;t), t∈[a, b].

As shown above in Section 4, En(f;a, b, t)provides an approximation for the Finite Hilbert Transform (T f) (a, b;t) and the error estimate fulfils the bound described in(2.3).

If we consider the functionf : [−1,1]→R, f(x) = exp(x),then the exact value of the Hilbert transform is

(T f) (a, b;t) = exp(t)Ei(1−t)−exp(t)Ei(−1−t)

π , t∈[−1,1]

and the plot of this function is embodied in Figure1.

If we implement the quadrature formula provided by En(f;a, b, t) using Maple 6 and chose the value of n = 100, then the error Er(f;a, b, t) :=

(T f) (a, b;t)−En(f;a, b, t)has the variation described in the Figure2.

Forn =1,000, the plot ofEr(f;a, b, t)is embodied in the following Figure 3.

Now, if we consider another function,f : [−1,1] →R, f(x) = sinx,then

(29)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page29of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Figure 1:

the exact value of the Hilbert transform is

(T f) (a, b;t) = −Si(−1 +t) cos(t) +Ci(1−t) sin(t) π

+ Si(t+ 1) cos(t)−sin(t)Ci(t+ 1))

π , t∈[−1,1] ;

where Si(x) =

Z x 0

sin(t)

t dt, Ci(x) = γ+ lnx+ Z x

0

cos(t)−1

t dt;

having the plot embodied in the following Figure4.

If we choose the value of n = 100, then the error Er(f;a, b, t) for the function f(x) = sinx, x ∈ [−1,1]has the variation described in the Figure5 below.

(30)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page30of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Figure 2:

Moreover, forn =100,000, the behaviour ofEr(f;a, b, t)is plotted in Fig- ure6.

Finally, if we choose the function f : [−1,1] → R, f(x) = sin (x2),the Maple 6 is unable to produce an exact value of the finite Hilbert transform. If we use our formula

En(f;a, b, t) := f(t) π ln

b−t t−a

+Mn(f;t), t ∈[a, b]

forn=1,000, then we can produce the plot in Figure7.

Taking into account the bound(3.12)we know that the accuracy of the plot in Figure7is at least of order10−5.

(31)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page31of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Figure 3:

Figure 4:

(32)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page32of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Figure 5:

Figure 6:

(33)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page33of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

Figure 7:

(34)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page34of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

References

[1] G. CRISCUOLOANDG. MASTROIANNI, Formule gaussiane per il cal- colo di integrali a valor principale secondo e Cauchy loro convergenza, Calcolo, 22 (1985), 391–411.

[2] G. CRISCUOLO AND G. MASTROIANNI, Sulla convergenza di alcune formule di quadratura per il calcolo di integrali a valor principale secondo Cauchy, Anal. Numér. Théor. Approx., 14 (1985), 109–116.

[3] G. CRISCUOLOANDG. MASTROIANNI, On the convergence of an in- terpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp., 48 (1987), 725–735.

[4] G. CRISCUOLO AND G. MASTROIANNI, Mean and uniform conver- gence of quadrature rules for evaluating the finite Hilbert transform, in: A.

Pinkus and P. Nevai, Eds., Progress in Approximation Theory (Academic Press, Orlando, 1991), 141–175.

[5] C. DAGNINO, V. DEMICHELIS ANDE. SANTI, Numerical integration based on quasi-interpolating splines, Computing, 50 (1993), 149–163.

[6] C. DAGNINO, V. DEMICHELIS AND E. SANTI, An algorithm for nu- merical integration based on quasi-interpolating splines, Numer. Algo- rithms, 5 (1993), 443–452.

[7] C. DAGNINO, V. DEMICHELIS AND E. SANTI, Local spline approxi- mation methods for singular product integration, Approx. Theory Appl., 12 (1996), 1–14.

(35)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page35of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

[8] C. DAGNINOANDP. RABINOWITZ, Product integration of singular in- tegrands based on quasi-interpolating splines, Comput. Math., to appear, special issue dedicated to 100th birthday of Cornelius Lanczos.

[9] P.J. DAVIS AND P. RABINOWITZ, Methods of Numerical Integration, (Academic Press, Orlando, 2nd Ed., 1984).

[10] K. DIETHELM, Non-optimality of certain quadrature rules for Cauchy principal value integrals, Z. Angew. Math. Mech, 74(6) (1994), T689–

T690.

[11] K. DIETHELM, Peano kernels and bounds for the error constants of Gaus- sian and related quadrature rules for Cauchy principal value integrals, Nu- mer. Math., to appear.

[12] K. DIETHELM, Uniform convergence to optimal order quadrature rules for Cauchy principal value integrals, J. Comput. Appl. Math., 56(3) (1994), 321–329.

[13] S.S. DRAGOMIR, On the Ostrowski integral inequality for mappings of bounded variation and applications, Math. Ineq.& Appl., 3(1) (2001), 59–

66.

[14] D. ELLIOTT, On the convergence of Hunter’s quadrature rule for Cauchy principal value integrals, BIT, 19 (1979), 457–462.

[15] D. ELLIOTT ANDD.F. PAGET, On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals, Numer. Math., 23 (1975), 311–319.

(36)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page36of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

[16] D. ELLIOTT ANDD.F. PAGET, On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals: An addendum, Nu- mer. Math., 25 (1976), 287–289.

[17] D. ELLIOTT ANDD.F. PAGET, Gauss type quadrature rules for Cauchy principal value integrals, Math. Comp., 33 (1979), 301–309.

[18] T. HASEGAWAANDT. TORII, An automatic quadrature for Cauchy prin- cipal value integrals, Math. Comp., 56 (1991), 741–754.

[19] T. HASEGAWAANDT. TORII, Hilbert and Hadamard transforms by gen- eralised Chebychev expansion, J. Comput. Appl. Math., 51 (1994), 71–

83.

[20] D.B. HUNTER, Some Gauss type formulae for the evaluation of Cauchy principal value integrals, Numer. Math., 19 (1972), 419–424.

[21] N.I. IOAKIMIDIS, Further convergence results for two quadrature rules for Cauchy type principal value integrals, Apl. Mat., 27 (1982), 457–466.

[22] N.I. IOAKIMIDIS, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives, Math.

Comp., 44 (1985), 191–198.

[23] A.I. KALANDIYA, Mathematical Methods of Two-Dimensional Elastic- ity, (Mir, Moscow, 1st English ed., 1978).

[24] G. MONEGATO, The numerical evaluation of one-dimensional Cauchy principal value integrals, Computing, 29 (1982), 337–354.

(37)

Approximating the Finite Hilbert Transform via an Ostrowski Type Inequality for Functions of

Bounded Variation S.S. Dragomir

Title Page Contents

JJ II

J I

Go Back Close

Quit Page37of37

J. Ineq. Pure and Appl. Math. 3(4) Art. 51, 2002

[25] G. MONEGATO, On the weights of certain quadratures for the numerical evaluation of Cauchy principal value integrals and their derivatives, Numer.

Math., 50 (1987), 273–281.

[26] D.F. PAGETANDD. ELLIOTT, An algorithm for the numerical evaluation of certain Cauchy principal value integrals, Numer. Math., 19 (1972), 373–

385.

[27] P. RABINOWITZ, On an interpolatory product rule for evaluating Cauchy principal value integrals, BIT, 29 (1989), 347–355.

[28] P. RABINOWITZ, Numerical integration based on approximating splines, J. Comput. Appl. Math., 33 (1990), 73–83.

[29] P. RABINOWITZ, Application of approximating splines for the solution of Cauchy singular integral equations, Appl. Numer. Math., 15 (1994), 285–297.

[30] P. RABINOWITZ, Numerical evaluation of Cauchy principal value inte- grals with singular integrands, Math. Comput., 55 (1990), 265–276.

[31] P. RABINOWITZANDE. SANTI, On the uniform convergence of Cauchy principle value of quasi-interpolating splines, Bit, 35 (1995), 277–290.

[32] M.S. SHESHKO, On the convergence of quadrature processes for a singu- lar integral, Izv, Vyssh. Uohebn. Zaved Mat., 20 (1976), 108–118.

[33] G. TSAMASPHYROS AND P.S. THEOCARIS, On the convergence of some quadrature rules for Cauchy principal-value and finite-part integrals, Computing, 31 (1983), 105–114.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

FEDOTOV, A Grüss type inequality for map- ping of bounded variation and applications to numerical analysis integral and applications for special means, RGMIA Res. DRAGOMIR,

FEDOTOV, A Grüss type inequality for mapping of bounded variation and applications to numerical analysis integral and applications for special means, RGMIA Res.. DRAGOMIR,

ROUMELIOTIS, A new general- ization of Ostrowski integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means,

WANG, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and some numerical quadrature rules, Comput..

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

WANG, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers

Some estimations and inequalities are given for the higher order central mo- ments of a random variable taking values on a finite interval.. An application is considered for

Some reverses of the continuous triangle inequality for Bochner integral of vector- valued functions in Hilbert spaces are given.. Applications for complex-valued functions are