• Nem Talált Eredményt

On discretizing integral norms of exponential sums

N/A
N/A
Protected

Academic year: 2022

Ossza meg "On discretizing integral norms of exponential sums"

Copied!
18
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On discretizing integral norms of exponential sums

András Kroó1

AlfrédRényiInstituteofMathematicsandBudapestUniversityofTechnologyandEconomics,Budapest, Hungary

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received5January2021 Availableonline21October2021 Submittedby S.Tikhonov

Keywords:

Marcinkiewicz-Zygmund BernsteinandMarkovtype inequalitiesforgeneralexponential sums

DiscretizationofLpnorm Multivariateexponentialsums Exponentialsumswithnonnegative coefficients

InthispaperwestudyLp Marcinkiewicz-Zygmundtypeinequalities

c1

1≤j≤N

wj|g(xj)|pgpLp(K)c2

1≤j≤N

wj|g(xj)|p

forgeneralexponentialsumsoftheformg(x)=

1≤j≤najeλj,x, x,λjRd,aj R.Oneof themainresultsofthepaperassertsthatwhen1p<,K= [a,b]

andtheexponentssatisfyrelationsλj+1λj,1jn1, max1≤j≤n|λj| Λ then Marcinkiewicz-Zygmund type inequalities hold for certain point sets of cardinality

Ncnln1p+1Λ .

Since the dependence of cardinality on the parameters,Λ appears only in the logarithmic term, this bound is “almost” degree and separation independent.

Moreover,thediscretemeshesxjandweightswj=xj+1xjaregivenexplicitlyand theyareuniversalinthesensethattheyworkforanyexponentialsumasabove.This resultwillrelyonsomenewdegreeindependentBernstein-Markovtypeinequality for exponentialsums.Moreoverwewillextendour considerationstomultivariate exponentialsums.Inaddition,itwillbeshownthatmuchstrongerresultsholdfor exponentialsumswithnonnegativecoefficients.

©2021TheAuthor(s).PublishedbyElsevierInc.Thisisanopenaccessarticle undertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

ConsiderthespaceLp(K),1≤p≤ ∞endowedwith someprobabilitymeasure onthecompactset K⊂ Rd. Then givenasubspaceU ⊂Lp(K) theMarcinkiewicz-Zygmundtype problemfor 1≤p<∞consists

E-mailaddress:kroo.andras@renyi.mta.hu.

1 SupportedbytheNKFIH- OTKAGrantK128922.

https://doi.org/10.1016/j.jmaa.2021.125770

0022-247X/©2021TheAuthor(s). PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(2)

infindingdiscretepointsetsYN={x1,...,xN}⊂K andcorrespondingpositiveweights wj >0,1≤j≤N suchthatforanyg∈U wehave

c1

1jN

wj|g(xj)|p≤ gpLp(K)≤c2

1jN

wj|g(xj)|p (1)

with someconstants c1,c2 >0 depending onlyon p,dand K. Incasewhen K = [a,b] R isan interval on thereal line anatural choiceof theweights associated with the pointsa < x1 < x2 < ... < xN < b is givenbywj=xj+1−xj,1≤j≤N−1.InthisrespecttheclassicalMarcinkiewicz-Zygmundinequalityfor trigonometricpolynomialsstatesthat(1) holdsforthespaceU=Tnoftrigonometricpolynomialsofdegree

≤nand uniformlydistributed pointsontheperiodwith wj= n1 andN = 2n+ 1.Clearly thecardinality ofthediscretepointsetN = 2n+ 1 isoptimalhere.Thisequivalencerelationturnedouttobeaneffective tool usedforthediscretizationoftheLpnormsoftrigonometricpolynomialswhichiswidelyappliedinthe study oftheconvergenceofFourierseries,LagrangeandHermiteinterpolation,positivequadratureformu- las,scattereddatainterpolation,seeforinstance[9] forasurveyontheunivariateMarcinkiewicz-Zygmund typeinequalities.AnimportantgeneralizationoftheclassicalMarcinkiewicz-Zygmundinequalityfortheso called doubling weights wasgivenbyMastroianniand Totik[10].Various extensionsof theMarcinkiewicz- Zygmund inequality for multivariate algebraic and trigonometric polynomials can be found in [1], [4]

and [2].

Inthispaper wewillconsiderproblem (1) forgeneralrealexponentialpolynomials oftheform

g(x) =

1≤j≤n

ajeλj,x, aj R, xRd (2)

with arbitrarygiven λj Rd. Ingeneral,resultsrelated tothese exponential sumsdependonthe number n of terms in the sums and the size of λj-s. The “degree” of these exponential polynomials is given by max1jnj|. Here and throughout the paper |· | denotes the usual Euclidian norm of vectors in Rd. Naturally oneshould tryto aim for discrete meshes with possibly smallestcardinality. A particularly in- teresting problem consists inobtaining discrete meshesof cardinality depending onlyon the dimensionn of theexponential sums(2), thatis independent of their degree. For the trigonometric exponential sums with λj-s being of the form λj =inj,nj Z this question is discussed in detailin the survey paper [2].

In particular in[12] Theorem1.1 itis shownthatfor generaltrigonometric exponential sumsonecanget meshes ofcardinality∼n.Intrigonometric casethebasicproperty whichisthemaintool ofinvestigation isthepairwiseorthogonalityofexponentials.Inthegeneralalgebraiccasetheexponentsin(2) donothave this crucial feature. So instead of orthogonalityour considerations will rely heavily on Bernstein-Markov type inequalities for the size of derivatives of exponential sums. We will verify in this paper some new degree independentBernstein-Markov typeinequalitiesforexponential sums.This will allowus toextend Marcinkiewicz-Zygmund typeinequalitiesto generalrealexponential sums.Inparticular, itwill beshown (see Theorem1below) thatthere existmeshesYN={x1,...,xN}⊂[a,b]⊂Rofcardinality

N ∼nln1p+1 Λ

(3)

so that (1) holds with weights wj := xj+1−xj for every 1 p <∞ and every exponential polynomial (2) withany λj R satisfying λj+1−λj >0,1≤j ≤n−1 andmax1jnj| Λ. Animportant featureof thisresultis thefactthatthe cardinalityofthe discretemesh isofoptimal ordern, whiletheir degreeΛ andtheseparationparameteroftheexponentsessentiallyappearonlyinthelogarithmicterm.

So inthis sense ourbound is“almost”degree andexponent independent.The explicitlygivendiscrete sets usedinTheorem1areuniversalinthesensethattheyworkforallexponentialsumsasabove.Wewillalso includesimilar resultsfor multivariateexponentialsums.Finally,we willpresentsomenewdimensionand

(3)

degreeindependentBernstein-Markovtypeinequalitiesformultivariateexponential sumswithnonnegative coefficients.ThiswillleadtoaconsiderableimprovementofthecorrespondingMarcinkiewicz-Zygmundtype inequalitiesformultivariateexponentialsumswithnonnegativecoefficients.Itshouldbealsonotedthatall discretemeshesareconstructedinthispaperexplicitly.

2. Marcinkiewicz-Zygmundtype inequalitiesforgeneralexponentialsums

ThenexttheoremwhichisoneofthemainresultsofthispaperpresentsaMarcinkiewicz-Zygmundtype inequalityforgeneralreal univariateexponentialsumsbasedonpointsetsofcardinalityN ≤cnlnp1+1 Λ. Theorem 1.Let 1 p < ∞,[a,b] R,0 < 1,n N,Λ > 1. Then there exist discrete points sets YN={x1< ...< xN}⊂(a,b)of cardinality

N ≤cpnln1p+1Λ

wherec>0isanabsolute constant,sothat forevery exponentialsum (2) witharbitrary λj R satisfying λj+1−λj

b−a,1≤j≤n−1, max

1≤j≤nj| ≤Λ wehave

1 2

1≤j≤N−1

(xj+1−xj)|g(xj)|p≤ gpLp([a,b])2

1≤j≤N−1

(xj+1−xj)|g(xj)|p. (4)

Remark1.Oneshouldnote the factthatthe discrete nodesprovided byTheorem 1are rather universal, they work for all exponential sums satisfying the separation condition λj+1−λj ba,1 j n−1 and the upper bound max0≤j≤nj| Λ. In addition the dependence of cardinality on the parameters ,Λ appearsonly inthe logarithmic term, so the bound on cardinalityis “almost” degreeand separation independent. It shouldbe alsomentioned thattheconstants 12 and2in(4) canbe replaced by1−ξ and 1+ξ, respectively,with anarbitrarily small 0< ξ <1.Of course, onewouldhave topay aprice forthis inthe sense that this will make theconstant inthe upper bound forthe cardinality of YN dependent on ξ. The proof ofTheorem 1 given belowindicatesthatconstants of order lnξξ canbe used for theupper boundof cardinality.Inarecentpaper[8] theprecise dependenceofthis constantonparameterξ >0 was givenintheclassicalunivariate trigonometriccase.

TheproofoftheaboveMarcinkiewicz-ZygmundinequalitywillbebasedonanewdegreeindependentLp Bernsteintypeinequalityforderivativesofexponentialsums(2).WewillalsousethefollowingLp,1≤p<

Bernsteintypeinequalityforderivativesofunivariateexponential sumsfn(x)=

1jncjeλjxgivenin [5],Theorem3.4

fnLp[−1+δ,1−δ] 2n1

δ fnLp[−1,1], 0< δ <1. (5) ThiselegantresultprovidesexponentindependentupperboundsforLpnormsofderivativesofexponential sums inside the interval. The drawback of the above estimate is the appearance of the term 1δ in the upperestimate whichleadsto largerthan requireddiscretizationsets inLp Marcinkiewicz-Zygmund type inequalities. Our next lemma shows that introducing a weight 1−x2 into the Lp norms of derivatives of exponential sums allows to replace 1δ by a substantially smaller term ln2δ. This improvement will be subsequentlyusedinordertoverifynearoptimaldiscretizationmeshes.

(4)

Lemma 1.Let1 ≤p< ∞,0 < δ < 1,n N. Then forany distinct real numbers λ1,...,λn R and any exponential sum fn(x)=

1jncjeλjx,∀cj R wehave

(1−x2)fn(x)Lp[−1+δ,1−δ]9nln1p 2

δfnLp[−1,1]. (6)

Proof. Using(5) withany 0< t<1 andmultiplyingthep-thpowerofthisestimatebytp−1 yields

tp−1 1−t

1+t

|fn(x)|pdx≤ (2n1)p t

1

1

|fn(x)|pdx, 0< t <1.

Integratingaboveinequalitywithrespect tot∈[δ2,1] wehave 1

δ 2

1−t

1+t

tp−1|fn(x)|pdxdt≤(2n1)p 1

δ 2

dt t

1

1

|fn(x)|pdx= (2n1)pln2 δ 1

1

|fn(x)|pdx.

Furthermore applyingFubinitheoremfortheintegralontheleft handsideofaboveestimateimplies 1

δ 2

1−t

−1+t

tp1|fn(x)|pdxdt=

1− δ2

−1+δ2 1−|x|

δ 2

tp1|fn(x)|pdtdx= 1 p

1− δ2

−1+δ2

|fn(x)|p((1− |x|)p(δ 2)p)dx

1 p

1δ

1+δ

|fn(x)|p((1− |x|)p(δ

2)p)dx 1 p

1δ

1+δ

|fn(x)|p((1− |x|)p((1− |x|)/2)p)dx

1 p2p+1

1−δ

−1+δ

|fn(x)|p(1−x2)pdx.

Thus combiningthelast twoestimatesabovewearriveat

1−δ

−1+δ

|fn(x)|p(1−x2)pdx≤p22p+1npln2 δ 1

1

|fn(x)|pdx.

Finally takingthep-throotaboveyieldstherequiredestimatewithaconstantc≤4e2e 9.

ByastandardlineartransformationLemma1canbeextendedtoanyinterval [a,b]⊂R.

Corollary1.Let1≤p<∞,[a,b]⊂R,0< δ <b2a,n∈N.Thenforanydistinctrealnumbersλ1,...,λnR and anyexponential sum fn(x)=

1≤j≤ncjeλjx,∀cjRwe have (b−x)(x−a)fn(x)Lp[a+δ,b−δ] 9(b−a)

2

lnb−a δ

1p

nfnLp[a,b]. (7) AnimportantfeatureofLemma1consistsinthefactthatitprovidesanestimateforthederivativesof exponential sums

1≤j≤najeλjx, x,aj R whichis independentof theexponentsλj. Infactthesize of thederivativesessentiallydependsjustonn,thenumberoftermsintheexponentialsum.Whatmakesthis

(5)

happenis thepresence oftheweight(b−x)(x−a) inthenorm ofthe derivatives.This weightenforces a lineardeclineattheendpointsoftheinterval.Anaturalquestionarisesinthisrespect:cananupperbound similar toLemma1holdwithaweight(b−x)(x−a)1ε forsomeε>0?Thenextsimpleexampleshows thatingeneral,theanswertothisquestionisnegative,i.e.,lineardeclineoftheweightiscrucialhere.

Example.Let n = 1 and consider the exponent g(x) = eλx > 4. Clearly with any 0 < ε < 1 and 0< δ <1/3 wehave

x(1−x)1−εg(x)2L2[δ,1−δ]

1δ

1 2

x2(1−x)2−2ελ2e2λxdx≥λδ2

8 (e2λ(1−δ)−eλ).

Thussettingδ=λ1 implieswhenλ>4

x(1−x)1−εg(x)2L2[δ,1δ] λ1e

8 (e−2−e−λ)≥ceλ2ε−1. Sinceinaddition,

g(x)2L2[0,1] ≤e λ wearriveat

x(1−x)1−εg(x)2L2[1

λ,11λ]≥ceλ2ε−1≥cλg(x)2L2[0,1].

Note thatwhen n = 1 and δ = 1λ we get an upper bound of magnitude O(logλ) in the Bernstein type estimate(6) whichmeansthatnomatterhowsmallisε>0 anupperboundsimilarto(6) isimpossiblefor theweight(b−x)(x−a)1−ε.Obviouslythesameconclusionholdsfortheweight(b−x)1−ε(x−a),aswell.

ThenextlemmaprovidesanexplicitconstructionofnodesusedforthediscretizationoftheLpnormsof theexponentialsums.Essentially thesenodesarechosento beequidistributedwithrespect tothemeasure

μ1(E) :=

E

dx

x(1−x), E⊂(0,1) appearingintheBernsteintypeinequality(6).

Lemma2.Forany 0< h<1/2andm≥1set

xj,m:= 1

1 + 1−hh e−(j−1)/m, 1≤j≤N =Nm:= [2mln1−h h ] + 2.

Then1−h≤xNm,m1−h/e and

xj+1,m−xj,m4x(1−x)

m , x∈(xj,m, xj+1,m), 1≤j≤Nm1. (8) Proof. Clearly

2 ln1−h

h ≤Nm1

m 2 ln1−h h + 1

(6)

and thusweobtain

1−h= 1

1 +1−hh e2 ln1−hh ≤xNm,m 1

1 +1−hh e1 1−h e.

Sethj:= 1−hh e(j1)/m.Thenevidently xj+1,m−xj,m

1−xj+1,m

= hj−hj+1

hj+1(1 +hj) hj

hj+1 1 =em1 1 2 m.

Hence

xj+1,m−xj,m 2

m(1−x), x∈(xj,m, xj+1,m).

Similarly,

xj+1,m−xj,m xj,m

= 1 +hj

1 +hj+1 1 hj

hj+1 1 =em1 1 2 m,

yielding that

xj+1,m−xj,m 2

mxj,m 2

mx, x∈(xj,m, xj+1,m).

Thus forany x∈(xj,m,xj+1,m) wehavethat xj+1,m−xj,m 2

mmin{1−x, x} ≤ 4x(1−x)

m .

WewillalsoneedbelowanLMarkovtypeinequalityverifiedin[7] formultivariateexponentialsumson convexbodies.Letusdenoteby∇gthegradientofadifferentiablefunctiong,|∇g|standsforitsEuclidian norm which isused indefining∇gL(K):= supx∈K|∇g(x)|. Inaddition, c will denote possiblydistinct positive absoluteconstants.

Lemma 3.Let K⊂Rd,d≥1be aconvex body with rK being theradius of its largestinscribed ball. Then for every exponential sum g(w) =

1≤j≤ncjeλj,w,w Rd with λj Rd satisfying max1jnj| Λ, j+1−λj|≥ rK,j=k,0< ≤1

∇gL(K) cd3n3Λ

gL(K).

In addition,when d= 1thestronger inequality

gL[a,b] ≤cnΛ

gL[a,b]

holds.

AstandardconsequenceofanLMarkovtypeinequalityisacorrespondingNikolskiitypeupperbound forsupnormsviatheLp norms.NamelywecaneasilydeducefromLemma3thenext

(7)

Corollary2. Forany convexbody K⊂Rd,d≥1and every exponentialsum g(w)=

1≤j≤ncjeλj,w,w∈ Rd with λj Rd satisfying j+1−λj| rK,j = k,0 < 1, max1≤j≤nj| Λ we have for any 1≤p<∞and someconstant c(K,d)>0depending onK,d

gL(K)≤c(K, d) n3Λ

dp

gLp(K). (9) Whend= 1 wehave thestrongerestimate

gL[a,b] ≤c(a, b)

1p

gLp[a,b]. (10)

Proof. FirstweneedtoobservethatwhenK⊂RdisaconvexbodythenforanyddimensionalballBrRd ofradius rcenteredinKits intersectionwith K willhaveLebesguemeasure atleast c(K,d)rd with some fixed constantdepending only onK and d. Furthermore, assuming thatgL(K) = 1=g(y),y K we have by Lemma3 thatg(x) 12 whenever x K∩Br with Br being the ball centered at y and radius r:= 2cd3n3Λ.Hence

gpLp(K)

K∩Br

|g|p2−pc(K, d)rd2−pc(K, d) n3Λ

d

withaproperc(K,d)>0.Thisclearlyimplies(9).Thesecond claimfollowsanalogously.

Nowwehaveallthetoolsneededinorder toproveTheorem 1.

Proof of Theorem1. Clearly,itsufficestoverifythetheoremwhen[a,b]= [0,1],thegeneralcasewillthen followbyastandardlineartransformation.Wewill usetheelementaryestimate

b a

g(x)dx−(b−a)g(a)

(b−a) b a

|g(x)|dx

applied to the function g(x) = |f(x)|p on the interval [xj,m,xj+1,m] where xj,m,1 j Nm1 is the discretepointset specifiedinLemma2.Thenitfollowsthat

xj+1,m

xj,m

|f(x)|pdx−(xj+1,m−xj,m)|f(xj,m)|p

(xj+1,m−xj,m)

xj+1,m

xj,m

p|f(x)|p1|f(x)|dx.

Applyingestimate(8) ofLemma2wehave

xj+1,m

xj,m

|f(x)|pdx−(xj+1,m−xj,m)|f(xj,m)|p 4p

m

xj+1,m

xj,m

x(1−x)|f(x)|p1|f(x)|dx, 1≤j≤Nm1.

Summingupaboveupperboundsfor1≤j ≤Nm1 wearriveat

xNm

x1,m

|f(x)|pdx−

1≤j≤Nm−1

(xj+1,m−xj,m)|f(xj,m)|p 4p

m

xNm

x1,m

x(1−x)|f(x)|p−1|f(x)|dx.

(8)

Moreover, applyingtheHölderinequalitytotheintegralontherighthandside itfollowsthat

xNm

x1,m

|f(x)|pdx−

1≤j≤Nm−1

(xj+1,m−xj,m)|f(xj,m)|p 4p

mfp−1Lp[0,1]x(1−x)f(x)Lp[x1,m,xNm]. Thus

fpLp[0,1]

1≤j≤Nm−1

(xj+1,m−xj,m)|f(xj,m)|p 4p

mfpLp[0,1]1 x(1−x)f(x)Lp[x1,m,xNm]

+

x1,m

0

|f(x)|pdx+ 1 xNm

|f(x)|pdx. (11)

Now weneedtoestimatethethreetermsontherighthandsideof(11).

InordertoestimatethefirsttermrecallthatbyLemma2wehave1−h≤xNm,m1−h/eandx1,m=h.

Therefore

x(1−x)f(x)Lp[x1,m,xNm]≤ x(1−x)f(x)Lp[h/e,1h/e]. Furthermore, applyingestimate(7) with[a,b]= [0,1] andδ:= he yields

x(1−x)f(x)Lp[h/e,1−h/e] 9

2(1lnh)1pnfLp[0,1]. Using thelastupperboundforthefirsttermontherighthandsideof (11) weobtain

4p

mfp−1Lp[0,1]x(1−x)f(x)Lp[x1,m,xNm] 18p

m (1lnh)1pnfpLp[0,1].

Forthesecond andthirdtermsontherighthandsideof(11) wecanproceed using(10) asfollows

x1,m

0

|f(x)|pdx+ 1 xNm,m

|f(x)|pdx≤2hfpL[0,1]≤c1h

1p

fpLp[0,1].

Substitutingthelast twoboundsinto (11) wearriveat

fpLp[0,1]

1≤j≤Nm−1

(xj+1,m−xj,m)|f(xj,m)|p 18p

m (1lnh)1pnfpLp[0,1]+c1h

1p

fpLp[0,1]. (12) Now settingh:=ξ

1p

andm:= pn(1−lnh)

1 p

ξ evidentlyyields

fpLp[0,1]

1jNm1

(xj+1,m−xj,m)|f(xj,m)|p

(18 +c1fpLp[0,1].

Since 0< ξ <1 canbe chosen arbitrarily thelast estimate obviously impliestherequired Marcinkiewicz- Zygmundtypeinequalityafterproperchoiceoftheconstantξ.

(9)

Itremainsnowto checkthecardinalityNm= [2mln1−hh ]+ 2 ofthediscretepointset.Clearly Nm≤cmln 1

h ≤cpnln1p+1 1

h ≤cpnln1p+1 . Recallingthatj+1−λj|≥,j =k andmax1≤j≤nj|≤Λ it followsthat

(n1)2Λ (13)

i.e.,ln ≤clnΛ.ThisclearlyyieldsthatNm≤cpnln1p+1 Λ.

Remark 2.Theorem 1 provides explicit discrete meshes xj of cardinality nln1p+1 Λ for the weighted Marcinkiewicz-Zygmund type inequalitieswith weights xj+1−xj. The nodes xj are equidistributedwith respect to themeasure μ1(E)=

E

x(1−x)dx , E (0,1).It shouldbe noted thatTheorem 1remainsvalid for any sequence of nodes satisfying (8) together with theproper restrictions onthe first and last nodes.

In addition, therestrictions of theexponents imposedin Theorem 1wereused only for thefirst and last intervals ofthe partition.This meansthat“near”discretization ofthe normfLp[δ,1−δ] ispossible using orderofnlog1δ nodeswithouttheseparationandthedegreerequirementsontheexponents.

The argumentsgiven in theproof of Theorem 1canbe used to derive aMarcinkiewicz-Zygmund type resultwith equalweights 1foruniformly distributeddiscrete meshesx0:=h,xj :=h+1−2hm j,0≤j ≤m leadingtothenext

Proposition 1.Let 1 p< ∞,0 < 1,n N,Λ > 1. Then given equidistributed discrete points sets x0:=h,xj :=h+1m2hj,0≤j≤m, h=c

1p

of cardinality

m≤c1n Λ

2p

wherec,c1>0areproper absoluteconstants, wehavethat 1

2m

1jm1

|g(xj)|p≤ gpLp[0,1] 2 m

1jm1

|g(xj)|p (14)

forevery exponentialsum (2) satisfyingλj+1−λj ≥,1≤j≤n−1andmax1≤j≤nj|≤Λ.

Proof. SincetheproofofthepropositionusesthesametechniqueasTheorem1wegiveabriefoutline.The BernsteintypeinequalityofLemma1canbereplacedbyestimate(5).Thensimilarlyto(12) wewillarrive at

fpLp[0,1] 1 m

0≤j≤m−1

|f(xj,m)|p cpn

mhfpLp[0,1]+c1h

1p

fpLp[0,1]. Now setting h :=ξ

1p

and m := pnξh with a proper 0< ξ <1 will lead to aMarcinkiewicz-Zygmund typeresultwithequalweights 1anduniformly distributedmeshofcardinality

m≤cn

p1

≤cn Λ

p2

. Notethatthelastestimateabovefollowsfromtheinequality(13).

(10)

Remark 3.As noted at the end of the proof of Theorem 1under given assumptions on exponents λj we have that(n1) 2Λ. Thus the quantity Λ appearing both in Theorem 1 and Proposition 1 ideally is of order n for proper distributions of exponents λj. This results in discrete meshes of cardinality nlnp1+1n, 1 ≤p<∞ inTheorem 1. Similarly inProposition 1when all weights equal 1the cardinality will be of order n1+2p for every 1 p < . In a recent paper [3], Theorem 2.3 the authors verified a weighted Marcinkiewicz-Zygmund type inequality for Lp,1 p 2 norm with meshes of cardinality

nln3n and arbitrary n-dimensionalsubspaces of L. This is a rather general beautiful result, but in contrast to Theorem 1 theweights andmeshes are notgiven explicitly. In additionin [3], Theorem 2.2 a Marcinkiewicz-Zygmund typeresultwith weights1isverifiedfor Lp,1≤p≤2 normswiththecardinality ofthediscretemeshbeingeffectedbythequantityappearinginarequiredNikolskiitypeinequality.Onthe other handit isknownthatforgeneral exponentialsumsthe magnitudeof thefactorsinaNikolskii type inequality depends onthe exponentsλj and it canbe verylarge, see [6], Theorem 1. Henceeven though Theorem 1and Corollary 3are lessgeneral incomparison to [3] in termsof subspacesconsideredfor the exponential sums our results provide a compensation in terms of explicit nature of meshes and weights, theiruniversality,smallercardinalityofdiscretemeshesand theirvalidityforevery1≤p<∞.

We canextend Marcinkiewicz-Zygmundtype inequalitiesfor generalmultivariate exponential sums, as well. Similarly to the univariate case this can be done by applying the Bernstein-Markov type estimates verifiedearlier.Inaddition,wewillhavetoovercomeatechnicaldifficultyrelatedtotheseparationcondition

j+1−λj|≥δ whichneeds tobe imposedon theexponents.Forthis end thenextauxiliaryproposition, see [7], Lemma5willberequired.

Lemma 4.Letλj Rd,1≤j n,d 2satisfy the separationcondition j −λk| ≥δ > 0,j =k. Then for any w∈Rd,w=0any every >0there existu∈Rd,|w−u|≤, |w|=|u| sothat with some cd >0 depending only ondwe have

j−λk,u| ≥ cdδd−1

|w|d2n2, ∀j=k. (15) The above lemma shows that the separation condition j −λk| δ > 0,j = k is preserved in a certain form when the exponentsare restricted to small perturbations of arbitrarily chosen lines. Clearly the orthogonal projections of λj-s into lines {tu : t R},u Sd1 are given by λj,uu, where these projectionsareseparatedbyquantitiesj−λk,u|.

Consider the unit cube in Rd given by Id := [0,1]d. Using Bernstein-Markov type estimates verified aboveandseparationLemma4we canprovethenextMarcinkiewicz-Zygmundtypeinequalityforgeneral multivariateexponentialsumsonthecube.WeshallusebelowthenotationA∼Binordertoindicatethat c1(d,p)A≤B≤c2(d,p)Awithsomepositiveconstants c1(d,p),c2(d,p) dependingonlyonp,d.

Theorem 2.Let1≤p<∞,d,n∈N,Λ>1,0< δ <1,andconsiderany λj Rd,1≤j≤nsatisfying

j−λk| ≥δ >0, j=k, max

1≤j≤nj| ≤Λ.

Then thereexistpositiveweights b1,...,bN anddiscretepointsetsYN={w1,...,wN}⊂Id of cardinality N ≤c(d, p)ndlndp+dΛ

δ, so thatforevery exponential sum g(w)=

1jncjeλj,w,w∈Rd wehave

(11)

gpLp(Id)

1iN

bi|g(wi)|p. (16)

Proof. The proof of the theorem would be a straightforward product type argument if the separation conditionj−λk|≥δ >0,j =k wastruefortheorthogonal projectionsofλj-sto everycoordinateaxis in Rd. Indeed, if this was the case then successive integration plus standard inductionwould accomplish theproof. Thus ifj−λk,es|≥δ >0,j =kwith someδ >0 and es := (δs,i)1≤i≤d Rd,1≤s≤d being thestandard basis in Rd then for certain positive weights b1,...,bN and a discrete point set YN = {x1,...,xN}⊂Id ofcardinalityN ≤c(d,p)ndlndp+dδΛ

gpLp(Id)

1≤i≤N

bi|g(xi)|p, g(x) =

1≤j≤n

cjeλj,x. (17)

Nowwewill applyLemma4tocertainproperlychosenvectors. Forany< 4d1 set es:= (1−)es+

k=s

ek, 1

2 <|es|<2, 1≤s≤d.

Note that each coordinate of es is not smaller than . By Lemma 4 for every 1 s d there exist usRd,|esus|≤,|es|=|us| sothat

j−λk,us| ≥ cdδd−1

n2 , ∀j =k. (18)

Sinceallcoordinatesofes arethecondition|esus|≤impliesthat usRd+:={x= (x1, ..., xd)Rd:xj0,|x|= 1}. ConsidernowtheparallelepipedinRd givenby

Jd:={t1u1+...+tdud, 0≤ts 1

1 + 2d, 1≤s≤d}. SinceusRd+ and|esus|≤,1≤s≤ditiseasyto checkthatJd ⊂Id.

Denote by T : Rd Rd theregular matrixtransformation definedby T(es)= 1+2dus ,1≤s≤d. Then evidently,T(Id)=Jd.Furthermore,notethat

us

1 + 2des

es

1 + 2des

+ |eses|

1 + 2d + (2d+ 1)(3d+ 1), 1≤s≤d.

Evidently,thismeansthatforeveryx=

1sdtses∈Id,0≤ts1 wehave

|x−T(x)|=

1sd

tses

1sd

ts us

1 + 2d =

1sd

ts

es us

1 + 2d

≤d(3d+ 1).

Henceforanyx∈Id\JdwehavethatT(x)∈Jdand|x−T(x)|≤d(3d+ 1).ObviouslythismeansthatId iscontainedina1+d(3d+ 1)dilationofJd abouttheoriginwhichinturnimpliesthatμ(Id\Jd)≤cd whereμstandsfortheLebesguemeasure.

Considernowanyexponentialsumg(w)=

1≤j≤ncjeλj,w,wRd withj−λk|≥δ >0,j=k.Since Jd⊂Id andμ(Id\Jd)≤cdwehaveby(9)

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Naturally, there are many different types of random sequences; we will consider the simplest case when the gaps n k+1 − n k are indepen- dent, identically distributed (i.i.d.)

In this paper, we establish new conditions for exponential stability and instability of the trivial invariant torus of nonlinear extension of dy- namical system on torus which

The aim of this paper is to present some results on the exponential stability of the zero solution for a class of fractionally perturbed ordinary differential equations,

In this paper, we obtain a Halanay-type inequality of integral type on time scales which improves and extends some earlier results for both the continuous and discrete cases..

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

The main purpose of this paper is to use a Grüss type inequality for Riemann- Stieltjes integrals to obtain a sharp integral inequality of Ostrowski-Grüss type for functions whose

Móricz, A general moment inequality for the maximum of the rect- angular partial sums of multiple series,

We extend a general Bernstein-type maximal inequality of Kevei and Mason (2011) for sums of random variables.. Keywords: Bernstein inequality, dependent sums, maximal