• Nem Talált Eredményt

Furthermore, for any prime numberpand any polynomialf with integer coefficients, we show.f .wx//pf .wx/(mod p) and we give other curious congruences

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Furthermore, for any prime numberpand any polynomialf with integer coefficients, we show.f .wx//pf .wx/(mod p) and we give other curious congruences"

Copied!
14
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 20 (2019), No. 1, pp. 395–408 DOI: 10.18514/MMN.2019.2498

IDENTITIES AND CONGRUENCES INVOLVING THE GEOMETRIC POLYNOMIALS

MILOUD MIHOUBI AND SAID TAHARBOUCHET Received 13 January, 2018

Abstract. In this paper, we investigate the umbral representation of the geometric polynomials wnxWDwn.x/to derive some properties involving these polynomials. Furthermore, for any prime numberpand any polynomialf with integer coefficients, we show.f .wx//pf .wx/(mod p) and we give other curious congruences.

2010Mathematics Subject Classification: 05A18; 05A40; 11A07

Keywords: geometric umbra, geometric polynomials, identities, congruences

1. INTRODUCTION

The geometric numbers are quantities arising from enumerative combinatorics and have nice number-theoretic properties. In combinatorics, the n-th geometric num- ber (named also the n-th ordered Bell number) counts the number of ways to par- tition the set ŒnWD f1; : : : ; nginto ordered subsets [2,3,6]. The geometric poly- nomials are defined bywn.x/DPn

kD0

˚n

k kŠxk and satisfy the recurrence relation .xC1/wn.x/DxPn

jD0 n j

wj.x/; n1; [9], where ˚n

k is the .n; k/-th Stirling number of the second kind [2,26]. These polynomials have attracted attention from many researchers, see for instance [9,10,15–17]. ForxD1we obtain the geomet- ric numberswnWDwn.1/DPn

kD0

˚n

k kŠ, for more information about these numbers, see [6–8,11,12,14,28,29]. More generally, letwn.xIr; s/be then-th.r; s/-geometric polynomial defined by

wn.xIr; s/D

n

X

kD0

(nCr kCr

)

r

.kCs/Šxk:

This polynomial generalizes the geometric polynomialwn.x/Dwn.xI0; 0/and the polynomialwn.xIr; r/ introduced by Mez˝o [18]. Here, ˚n

k r denotes the.n; k/-th r-Stirling number of the second kind [4]. One can see easily that

w0.xIr; s/DsŠ;

w1.xIr; s/DsŠ.rC.sC1/x/;

c 2019 Miskolc University Press

(2)

w2.x; r; s/DsŠ.r2C.2rC1/.sC1/xC.sC1/.sC2/x2/:

We note that this generalization can be viewed as a particular case of that defined by Kargin et al. [16]. As it shown below, these polynomials are also linked to the absoluter-Stirling numbers of first kind denoted byn

k

r: Recall that ther-Stirling numbers can be defined by [4,26]

.x/nD

n

X

kD0

. 1/n k

"

nCr kCr

#

r

.xCr/k and.xCr/nD

n

X

kD0

(nCr kCr

)

r

.x/k;

where.˛/nD˛ .˛ nC1/ifn1,.˛/0D1.

This work is motivated by application of the umbral calculus method to determine identities and congruences involving Bell numbers and polynomials in the works of Gessel [13], Sun et al. [27], Mez˝o et al. [19] and Benyattou et al. [1]. In this paper, we will talk about identities and congruences involving the.r; s/-geometric polynomials based on the geometric umbra defined bywnx WDwn.x/:For more information about umbral calculus, see [5,13,22–25].

2. IDENTITIES INVOLVING THE.r; s/-GEOMETRIC POLYNOMIALS

The above recurrence relation is equivalent to .xC1/wnx Dx.wxC1/n; n1.

Furthermore, we have

Proposition 1. Letf be a polynomial andr; sbe non-negative integers. Then .xC1/f .wxCr/Dxf .wxCrC1/Cf .r/;

.wxCr/nCrD.nCr/Šxn.xC1/r; .wxCr s/n.wx/sDxswn.xIr; s/;

.wxCr/n.wxCs/sD.xC1/swn.xIr; s/:

Proof. It suffices to show the first identity forf .x/Dxn. For r D0 we have .xC1/wnx x.wxC1/n.nD0/:Assume it is true forr 1;then if we set

hn.r/WD.xC1/.wxCr/n x.wxCrC1/n we obtainhn.r/DPn

jD0 n j

hj.r 1/DPn jD0

n j

.r 1/j Drn;which concludes the induction step. For the other identities, since.x/nDPn

kD0. 1/n kn

k

xk and .x/nis a sequence of binomial type [20,23], we obtain

.wxCr/nCrD

nCr

X

jD0

nCr j

!

.r/j.wx/nCr j D.nCr/Šxn.xC1/r:

So, the polynomialsxswn.xIr; s/and.xC1/swn.x; r; s/must be, respectively,

n

X

jD0

(nCr jCr

)

r

.wx/jCsD

n

X

jD0

(nCr jCr

)

r

.wx s/j.wx/sD.wxCr s/n.wx/s;

(3)

n

X

jD0

(nCr jCr

)

r

.wxCs/jCsD

n

X

jD0

(nCr jCr

)

r

.wx/j.wxCs/sD.wxCr/n.wxCs/s:

The last two identities of Proposition1lead to:

Corollary 1. Let r; s be non-negative integers and f be a polynomial. Then .xC1/sf .wxCr s/.wx/sDxsf .wxCr/.wxCs/s:

Proposition 2. LetPnandTnbe the polynomials

Pn.xIr/D

n

X

jD0

. 1/j jCr r

!

xn j and Tn.xIr/D

n

X

jD0

nCr jCr

! xj:

Then .wx r 1/nDnŠPn.xIr/ and .wxCnCr/nDnŠTn.xIr/:

Proof. It suffices to observe that

.wx r 1/nD

n

X

jD0

n j

!

. r 1/j.wx/n j DnŠ

n

X

jD0

. 1/j jCr r

! xn j;

.wxCnCr/nD

n

X

jD0

n j

!

.nCr/n j.wx/j DnŠ

n

X

jD0

nCr jCr

! xj:

The following theorem can be served to derive several identities and congruences for the.r; s/-geometric polynomials.

Theorem 1. Letm; sbe non-negative integers andf be a polynomial. Then .xC1/mf .wx/ xmf .wxCm/D

m 1

X

kD0

f .k/.xC1/m 1 kxk; m1:

Proof. Setf .x/DPn

kD0akxk and use Proposition1to obtain .xC1/f .wx/ xf .wxC1/Df .0/C

n

X

kD0

ak

.xC1/wkx x.wxC1/k

Df .0/:

So, the identity is true formD1:Assume it is true form:Then .xC1/mC1f .wx/D.xC1/

m 1 X

kD0

.xC1/m 1 kxkf .k/Cxmf .wxCm/

D

m 1

X

kD0

.xC1/m kxkf .k/Cxm.xC1/f .wxCm/

(4)

and since.xC1/f .wxCm/ xf .wxCmC1/Df .m/;we can write

.xC1/mC1f .wx/D

m 1

X

kD0

.xC1/m kxkf .k/Cxm

xf .wxCmC1/Cf .m/

D

m 1

X

kD0

.xC1/m kxkf .k/Cxmf .m/CxmC1f .wxCmC1/

D

m

X

kD0

.xC1/m kxkf .k/CxmC1f .wxCmC1/

which concludes the induction step.

We note that forf .x/DxnandxD1 in Theorem 1 we obtain Proposition 3.3 given in [8].

Corollary 2. For any polynomialf there holds

f .wx/D 1 1Cx

X

k0

f .k/

x 1Cx

k

; x > 1 2:

Proof. FormD1 in Theorem1, when we replacef .x/byf .xCr/ we get the identityf .r/D.xC1/f .wxCr/ xf .wxCrC1/. Then

RHSD lim

n!1

1 1Cx

n

X

kD0

x 1Cx

k

.xC1/f .wxCk/ xf .wxCkC1/

D lim

n!1.f .wx/

x 1Cx

nC1

f .wxCnC1//Df .wx/

which completes the proof.

Corollary 3. Letn; r; sbe non-negative integers.

Forf .x/D.xCr/n.xCs/sor.xCr s/n.x/sin Corollary2we obtain

wn.xIr; s/D sŠ .1Cx/sC1

X

k0

kCs s

!

.kCr/n x

1Cx k

; x > 1 2:

Corollary 4. For any integersr0; s0andn1the polynomialwn.x; r; sC r/has only real non-positive zeros.

Proof. From Corollary3we may state xr.xC1/swnC1.xIr; sCr/Dx d

dx

xr.xC1/sC1wn.xIr; sCr/

(5)

and using the recurrence relation ofr-Stirling numbers we conclude that this identity remains true for all real numberx. So, by induction onn, it follows thatwn.xIr; sC

r/; n1;has only real non-positive zeros.

Lemma 1. For any non-negative integersn2there holds

.1Cx/wn 1.x/D

n

X

kD1

(n k )

.k 1/Šxk:

Proof. From the definition of geometric polynomials, we have

.1Cx/wn 1.x/D

n 1

X

kD1

(n 1 k

) kŠxkC

n 1

X

kD1

(n 1 k

) kŠxkC1

D

n

X

kD1

k

(n 1 k

) C

(n 1 k 1

)

.k 1/Šxk

D

n

X

kD1

(n k

)

.k 1/Šxk:

For more explicit formulae for geometric polynomials, see for example [15].

Proposition 3. Letn; r; sbe non-negative integers. Then log

1CX

n1

wn.xIr; s/

sŠ tn

D.rC.sC1/x/tC.sC1/.xC1/X

n2

wn 1.x/tn nŠ: In particular, forrDsD0we get

log

1CX

n1

wn.x/tn

DxtC.xC1/X

n2

wn 1.x/tn nŠ:

Proof. One can verify easily that the exponential generating function of the poly- nomialswn.xIr; s/is to be sŠexp.rt /.1 x.exp.t / 1// s 1:Then, upon using this generating function and the last Lemma, we can write

LHS Drt .sC1/ln.1 x.exp.t / 1//

DrtC.sC1/X

k1

xk

k .exp.t / 1/k

DrtC.sC1/X

k1

.k 1/ŠxkX

nk

(n k

)tn

(6)

DrtC.sC1/xtC.sC1/X

n2

tn

n

X

kD1

(n k )

.k 1/Šxk

D.rC.sC1/x/tC.sC1/.xC1/X

n2

wn 1.x/tn nŠ:

3. CONGRUENCES INVOLVING THE(R,S)-GEOMETRIC POLYNOMIALS

In this section, we give some congruences involving the.r; s/-geometric polyno- mials. LetZp be the ring ofp-adic integers and for two polynomialsf .x/; g.x/2 ZpŒx;the congruencef .x/g.x/ (modpZpŒx ) means that the corresponding coefficients off .x/andg.x/are congruent modulop:This congruence will be used later asf .x/g.x/and we will useabinsteadab(modp).

Proposition 4. Letn; r; sbe non-negative integers andpbe a prime number. Then, for any polynomialf with integer coefficients there holds

p 1

X

kD0

f .k/.xC1/p 1 kxkf .wx/:

In particular, forf .x/D.xCr s/n.x/sor.xCr/n.xCs/swe get, respectively,

p 1

X

kD0

.r sCk/n.k/s.xC1/p 1 kxk xswn.xIr; s/;

p 1

X

kD0

.rCk/n.sCk/s.xC1/p 1 kxk .xC1/swn.xIr; s/:

Proof. FormDpbe a prime number, Theorem1implies

LHS D.xC1/pf .wx/ xpf .wxCp/.xpC1/f .wx/ xpf .wx/Df .wx/:

For the particular cases, use Proposition1.

Corollary 5. Letn; r; s; m; qbe non-negative integers andp be a prime number.

Then, for any polynomialsf andgwith integer coefficients there holds .f .wx//pg.wx/f .wx/g.wx/:

In particular, we havewmpCq.xIr; s/wmCq.xIr; s/:

Proof. By Fermat’s little theorem and by twice application of Proposition 4 we may state

LHS

p 1

X

kD0

.f .k//pg.k/.xC1/p 1 kxk

p 1

X

kD0

f .k/g.k/.xC1/p 1 kxkDRHS:

(7)

We note that, forf .x/Dxm; g.x/DxqandxD1, Corollary5may be seen as a particular case of Theorem 3.1 given in [8].

Corollary 6. For any non-negative integersm1; n; r; sand any prime number p, there hold

.xC1/sC1.wm.p 1/.xIr; s/ sŠ/ .s r0/s.xC1/r0xp r0; r0¤0;

.xC1/sC1.wm.p 1/.xIr; s/ sŠ/ sŠ.xpC1/; r0D0;

wherer0randr02 f0; 1; : : : ; p 1g:

Proof. SetnDm.p 1/in Proposition4. Ifr0¤0we get

.xC1/swm.p 1/.xIr; s/

p 1

X

kD0

.r0Ck/m.p 1/.sCk/s.xC1/p 1 kxk

p 1

X

kD0; r0Ck¤p

.sCk/s.xC1/p 1 kxk

D

p 1

X

kD0

.sCk/s.xC1/p 1 kxk

.s r0Cp/s.xC1/r0 1xp r0

.xC1/sw0.xI0; s/ .s r0/s.xC1/r0 1xp r0 sŠ.xC1/s .s r0/s.xC1/r0 1xp r0

and ifr0D0we get

.xC1/sC1wm.p 1/.xIr; s/

p 1

X

kD1

.sCk/s.xC1/p kxk

D

p 1

X

kD0

.sCk/s.xC1/p kxk sŠ.xC1/p

D.xC1/sC1w0.xI0; s/ sŠ.xC1/p DsŠ.xC1/sC1 sŠ.xpC1/:

which complete the proof.

Remark1. ForrDsDm 1D0in Corollary6ornDpin Lemma1we obtain .xC1/wp 1.x/x xp which gives forxD1the known congruencewp 10, see [8].

(8)

Now, we give some curious congruences on.r; s/-geometric polynomials and on .r1; : : : ; rq/-geometric polynomials defined below.

Theorem 2. For any integersn; m; r; s0and any prime numberp −m;there holds

p 1

X

kD1

wnCk.xIr; s/

. m/k . m/n.wp 1.xIrCm; s/ sŠ/:

Proof. Upon using the identityxswn.xIr; s/D.wxCr s/n.wx/sand the known congruence. m/ k p 1k

mp 1 kwe obtain

xsLHS

p 1

X

kD0

p 1 k

!

mp 1 k.wxCr s/nCk.wx/s

D.wxCr s/n.wxCrCm s/p 1.wx/s

D

n

X

jD0

n j

!

. m/n j.wxCrCm s/jCp 1.wx/s

D. m/n.wxCrCm s/p 1.wx/s

.n1/

n

X

jD1

n j

!

. m/n j.wxCrCm s/jCp 1.wx/s

Dxs. m/nwp 1.xIrCm; s/

.n1/xs

n

X

jD1

n j

!

. m/n jwpCj 1.xIrCm; s/

xs. m/nwp 1.xIrCm; s/

.n1/xs

n

X

jD1

n j

!

. m/n jwj.xIrCm; s/

Dxs. m/nwp 1.xIrCm; s/Cı.n1/xs.wn.xIr; s/ . m/nsŠ/

DxsŒ. m/nwp 1.xIrCm; s/Cwn.xIr; s/ . m/nsŠ;

whereıis the Kronecker’s symbol, i.e.ı.n1/D1ifn1and0otherwise.

LetrqD.r1; : : : ; rq/be a vector of non-negative integers and let

wn.xIrq/D

nCjrq 1j

X

jD0

(nC jrqj jCrq

)

rq

.jCrq/Šxj; 0r1 rq;

(9)

where˚nCjrqj jCrq rq

are the.r1; : : : ; rq/-Stirling numbers defined by Mihoubi et al. [21].

This polynomial is a generalization of the r-geometric polynomials wn.xIr/ WD wn.xIr; r/.

Proposition 5. For any non-negative integersn; m and any primep−m; there holds

xrq

p 1

X

kD1

wnCk.xIrq/

. m/k . m/n. m/r1 . m/rq.wp 1.xIm; 0/ 1/:

In particular, forqD1andrqDr we obtain

xr

p 1

X

kD1

wnCk.xIr; r/

. m/k . m/n. m/r.wp 1.xIm; 0/ 1/:

Proof. By the identity.wx/nDnŠxnand by [21, Th. 10] we have

xrqwn.xIrq/D

nCjrq 1j

X

jD0

(nC jrqj jCrq

)

rq

.wx/jCrq

D

nCjrq 1j

X

jD0

(nC jrqj jCrq

)

rq

.wx rq/j.wx/rq

Dwnx.wx/r1 .wx/rq

D

jrqj

X

kD0

ak.rq/wnxCk

D

jrqj

X

jD0

aj.rq/wnCj.x/;

wherePjrqj

kD0ak.rq/ukD.u/r1 .u/rq:So, by application of Theorem2we get

xrq

p 1

X

kD1

wnCk.xIrq/ . m/k D

jrqj

X

jD0

aj.rq/

p 1

X

kD1

wnCjCk.xI0; 0/

. m/k

jrqj

X

jD0

aj.rq/. m/nCj.wp 1.xIm; 0/ 1/

D. m/n. m/r1 . m/rq.wp 1.xIm; 0/ 1/:

(10)

Remark2. Sincexrqwn.xIrq/Dwnx.wx/r1 .wx/rq;then, for g.x/Dxq.x/r1 .x/rq andf .x/Dxmin Corollary5we obtain

wmpCq.xIrq/wmCq.xIrq/;

wm.p 1/.xIrq/w0.xIrq/; r1 rq¤0; m0:

Corollary 7. Leta0.x/; : : : ; at.x/be polynomials with integer coefficients,

Rn;t.xIr; s/D

t

X

iD0

ai.x/wnCi.xIr; s/ and Lt.x; y/D

t

X

iD0

ai.x/yi:

Then, for any non-negative integersn; m; r; sand any primep−m;there hold

p 1

X

kD1

RnCk;t.xIr; s/

. m/k . m/nLt.x; m/.wp 1.xIrCm; s/ sŠ/:

Proof. Theorem2implies

p 1

X

kD1

RnCk;t.xIr; s/

. m/k D

t

X

jD0

aj.x/

p 1

X

kD1

wnCkCj.xIr; s/

. m/k

t

X

jD0

aj.x/. m/nCj.wp 1.xIrCm; s/ sŠ/

D. m/nLt.x; m/.wp 1.xIrCm; s/ sŠ/:

4. CONGRUENCES INVOLVINGwn.xIr; s/;Pn.x; r/ANDTn.x; r/

The following theorem gives connection in congruences between the polynomials wnandPn:

Theorem 3. Letn; rbe non-negative integers andpbe a prime number. Then, for m2 f0; : : : ; p 1gthere holds

p 1

X

kDm

. x/kwn.xIrCk; k/

.k m/Š . 1/mmŠ.rCm/nPp 1.x; m/:

In particular, formD0;we get

p 1

X

kD0

. x/kwn.xIrCk; k/

kŠ rn.1CxC Cxp 1/:

(11)

Proof. Fork < mwe gethmC1ip 1 kD0and formkp 1we have

hmC1ip 1 kD.mCp k 1/Š

mŠ D.p 1 .k m//Š

mŠ 1

. 1/k m .k m/Š: wherehxinDx.xC1/ .xCn 1/ifn1andhxi0D1:Then

LHS . 1/m

p 1

X

kD0

hmC1ip 1 kxkwn.xIrCk; k/

. 1/m

p 1

X

kD0

hm pC1ip 1 k.wxCr/n.wx/k

. 1/m

p 1

X

kD0

p 1 k

!

hm pC1ip 1 k.wxCr/nh wxik

D . 1/mmŠhm pC1 wxip 1.wxCr/n D . 1/mmŠ.wx mCp 1/p 1.wxCr/n

D . 1/mmŠ.wx mCrCm/n.wx mCp 1/p 1

D . 1/m

n

X

jD0

(nCrCm jCrCm )

rCm

.wx m/j.wx mCp 1/p 1:

But forj 1we have

.wx m/j.wx mCp 1/p 1D.wx mCp 1/jCp 1

.wx m 1/jCp 1D.jCp 1/ŠPjCp 1.x; mC1/

ı.jD0/Pp 1.x; mC1/;

hence, it followsLHS . 1/mmŠ.rCm/nPp 1.x; m/.

A connection in congruences between the polynomialswnandTnis to be:

Theorem 4. For any integersn; m; r0and any primep;there holds

p 1

X

kD0

. m/p 1 k.xC1/kwn.xIrCm; k/ rnTp 1.xIm/:

Proof. Upon using the identity.xC1/swn.xIr; s/D.wxCr/n.wxCs/s and the known congruence.m/p 1 k p 1k

h mip 1 k we obtain

LHS

p 1

X

kD0

p 1 k

!

hmip 1 k.wxCrCm/n.wxCk/k

(12)

p 1

X

kD0

p 1 k

!

hmip 1 k.wxCrCm/nhwxC1ik

D.wxCrCm/nhwxCmC1ip 1 .wxCmCr/n.wxCmCp 1/p 1

D

n

X

jD0

(nCr jCr

)

r

.wxCm/j.wxCmCp 1/p 1

D

n

X

jD0

(nCr jCr

)

r

.wxCmCp 1/jCp 1

D

n

X

jD0

(nCr jCr

)

r

.jCp 1/ŠTjCp 1.xIm j /

D.p 1/ŠTp 1.xIm/C

n

X

jD1

(nCr jCr

)

r

.jCp 1/ŠTjCp 1.xIm j /

rnTp 1.xIm/:

Corollary 8. LetRn;t.xIr; s/ be as in Corollary7. Then, for any non-negative integersn; m; r; sand any primep−m;there holds

p 1

X

kDm

. x/k k m

!Rn;t.xIrCk; k/

kŠ . 1/m.rCm/nLt.x; rCm/Pp 1.x; m/:

Proof. Theorem3implies

LHS D

t

X

jD0

aj.x/

p 1

X

kDm

. x/k k m

!wnCj.xIrCk; k/

t

X

jD0

aj.x/. 1/m.rCm/nCjPp 1.x; m/

. 1/m.rCm/nLt.x; rCm/Pp 1.x; m/:

REFERENCES

[1] A. Benyattou and M. Mihoubi, “Curious congruences related to the Bell polynomials,”Quaest Math., vol. 40, pp. 1–12, 2017, doi:10.2989/16073606.2017.1391349.

[2] K. N. Boyadzhiev, “A series transformation formula and related polynomials,”Int. J. Math. Math.

Sci., vol. 2005, no. 23, pp. 3849–3866, 2005, doi:10.1155/IJMMS.2005.3849.

(13)

[3] K. N. Boyadzhiev and A. Dil, “Geometric polynomials: properties and applications to series with zeta values,”Analysis Math., vol. 42, no. 3, pp. 203–224, 2016, doi:10.1007/s10476-016-0302-y.

[4] A. Z. Broder, “The r-Stirling numbers,”Discrete Math., vol. 49, no. 3, pp. 241–259, 1984, doi:

10.1016/0012-365X(84)90161-4.

[5] A. D. Bucchianico and D. Loeb, “A selected survey of umbral calculus,”Electron. J. Combin., vol. 2, pp. 1–34, 2000.

[6] M. B. Can and M. Joyce, “Ordered Bell numbers, Hermite polynomials, skew Young tableaux, and Borel orbits,” J. Comb. Theory Ser. A, vol. 119, no. 8, pp. 1798–1810, 2012, doi:

10.1016/j.jcta.2012.06.002.

[7] M. E. Dasef and S. M. Kautz, “Some sums of some importance,”College Math. J., vol. 28, pp.

52–55, 1997.

[8] T. Diagana and H. Ma¨ıga, “Some new identities and congruences for Fubini numbers,”J. Number Theory, vol. 173, pp. 547–569, 2017.

[9] A. Dil and V. Kurt, “Investigating geometric and exponential polynomials with Euler-Seidel matrices,”J. Integer Seq., vol. 14, no. 4, 2011.

[10] A. Dil and V. Kurt, “Polynomials related to harmonic numbers and evaluation of harmonic number series II,”Appl. Anal. Discrete Math., vol. 5, pp. 212–229, 2011.

[11] D. Dumont, “Matrices d’Euler-Siedel,”S´emin. Lothar. Comb., vol. 5, 1981.

[12] P. Flajolet and R. Sedgewick,Analytic combinatorics. Cambridge university press, 2009.

[13] I. M. Gessel, “Applications of the classical umbral calculus,”Algebra Universalis, vol. 49, no. 4, pp. 397–434, 2003, doi:10.1007/s00012-003-1813-5.

[14] R. D. James, “The factors of a square-free integer,”Canad. Math. Bull., vol. 11, pp. 733–735, 1968, doi:10.4153/CMB-1968-089-7.

[15] L. Kargin, “Some formulae for products of geometric polynomials with applications,”J. Integer Seq., vol. 20, no. 2, 2017.

[16] L. Kargin and B. C¸ ekim, “Higher order generalized geometric polynomials,” Turk. J. Math., vol. 42, pp. 887–903, 2018.

[17] L. Kargin and R. B. Corcino, “Generalization of Mellin derivative and its applications,”Integral Transforms Spec. Funct., vol. 27, pp. 620–631, 2016, doi:10.1080/10652469.2016.1174701.

[18] I. Mez˝o, “Periodicity of the last digits of some combinatorial sequences,”J. Integer Seq., vol. 17, no. 1, 2014.

[19] I. Mez˝o and J. L. Ram´ırez, “Divisibility properties of the r-Bell numbers and polynomials,”J.

Number Theory, vol. 177, pp. 136–152, 2017, doi:10.1016/j.jnt.2017.01.022.

[20] M. Mihoubi, “Bell polynomials and binomial type sequences,”Discrete Math., vol. 308, no. 12, pp. 2450–2459, 2008, doi:10.1016/j.disc.2007.05.010.

[21] M. Mihoubi and M. S. Maamra, “The (r1,..., rp)-Stirling numbers of the second kind,”Integers, vol. 12, no. 5, pp. 1047–1059, 2012, doi:10.1515/integers-2012-0022.

[22] T. J. Robinson, “Formal calculus and umbral calculus,”Electron. J. Combin., vol. 17, no. 1, p.

R95, 2010.

[23] S. Roman,The Umbral Calculus. Courier Corporation, 2013.

[24] S. M. Roman and G.-C. Rota, “The umbral calculus,”Adv. Math., vol. 27, no. 2, pp. 95–188, 1978, doi:10.1016/0001-8708(78)90087-7.

[25] G. C. Rota and B. D. Taylor, “The classical umbral calculus,”SIAM J. Math. Anal., vol. 25, no. 2, pp. 694–711, 1994, doi:10.1137/S0036141093245616.

[26] R. P. Stanley,Enumerative Combinatorics I. Cambridge University press,, 1997.

[27] Y. Sun, X. Wu, and J. Zhuang, “Congruences on the Bell polynomials and the derangement poly- nomials,”J. Number Theory, vol. 133, no. 5, pp. 1564–1571, 2013, doi:10.1016/j.jnt.2012.08.031.

[28] S. M. Tanny, “On some numbers related to the Bell numbers,”Canad. Math. Bull., vol. 17, no. 5, p. 733, 1975, doi:10.4153/CMB-1974-132-8.

(14)

[29] D. J. Velleman and G. S. Call, “Permutations and combination locks,”Math. Mag., vol. 68, no. 4, pp. 243–253, 1995, doi:10.2307/2690567.

Authors’ addresses

Miloud Mihoubi

USTHB, Faculty of Mathematics, RECITS Laboratory, P. O. Box 32 El Alia 16111 Algiers, Algeria E-mail address:mmihoubi@usthb.dz, miloudmihoubi@gmail.com

Said Taharbouchet

USTHB, Faculty of Mathematics, RECITS Laboratory, P. O. Box 32 El Alia 16111 Algiers, Algeria E-mail address:staharbouchet@usthb.dz, said.taharbouchet@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this article, we establish the existence of weak solutions for a nonlinear transmission problem involving nonlocal coefficients of p ( x ) -Kirchhoff type in two dif- ferent

We obtain results on nonexistence of nontrivial nonnegative solutions for some elliptic and parabolic inequalities with functional parameters involving the p ( x ) -

Abstract: In this paper we will give the behavior of the r−derivative near origin of sine series with convex coefficients.... Sine Series With Convex

Sándor and it helps us to find some lower and upper bounds of the form Ψ(x)−c x for the function π(x) and using these bounds, we show that Ψ(p n ) ∼ log n, when n → ∞

Sándor and it helps us to find some lower and upper bounds of the form Ψ(x)−c x for the function π(x) and using these bounds, we show that Ψ(p n ) ∼ log n, when n → ∞

In this paper, we study the generalized Jordan-von Neumann constant and obtain its estimates for the normal structure coefficient N(X), improving the known results of

We will show in this paper that S-shaped bifurcations occur for mixed solutions under generic conditions on the function f ( x ) , if the phase plane contains a period annulus which

For a family F of r-uniform hypergraphs (or graphs if r = 2), and for any natural number n, we denote by ex(n, F) the corresponding Tur´ an number ; that is, the maximum number of