• Nem Talált Eredményt

Fakhara Sabir , Ruba Ismail and Ildiko Csoka and outlook lipid nanocarrier systems: statusquo drugs embeddedinto Nose-to-brain delivery ofantiglioblastoma

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Fakhara Sabir , Ruba Ismail and Ildiko Csoka and outlook lipid nanocarrier systems: statusquo drugs embeddedinto Nose-to-brain delivery ofantiglioblastoma"

Copied!
10
0
0

Teljes szövegt

(1)

Nose-to-brain delivery of

antiglioblastoma drugs embedded into lipid nanocarrier systems: status quo and outlook

Fakhara Sabir

Q11

, Ruba Ismail and Ildiko Csoka

UniversityofSzeged,FacultyofPharmacy,InstituteofPharmaceuticalTechnologyandRegulatoryAffairs,H-6720Szeged,Eötvösu.6,Hungary

Gliobla

Q13

stoma (GBM) is one of the most devastating and deadly types of tumor. Among all the present treatment strategies, the utmost prerequisite is prolonged intervention at the malignant site. The blood–brain barrier (BBB) is the bottleneck in the delivery of ant

Q14

i-GBM drugs and invasive treatment

comes with many pitfalls. This review will discuss the potential of embedding antitumor drugs into nanocarriers for intranasal delivery. Additionally, it emphasizes the significance of applying quality by design (QbD) methodology from the early development stages to ensure the high quality, safety and efficacy of the developed carrier system.

Introduction

Malignant gliomas(MGs) arethe most lethal formsof primary centralnervoussystem(CNS)malignancy,classifiedbasedonan augmenting level of undifferentiation, anaplasia and prolifera- tion. WHO classified gliomas intofour clinical grades: grade I (astrocytoma); grade II (diffuse astrocytoma, the most distin- guished form); grade III (anaplastic variants of astrocytoma);

and grade IV (glioblastoma) [1]. Pleomorphic glioblast

Q15 oma is

calledglioblastomamultiforme(GBM)becausethesemalignant cellsshow a discrepancy in structureand morphology [2].The currenttreatmentstrategiesforGBMincludesurgery,radiothera- pyandchemotherapy.Thefocus ofresearcherstotreatGBM is challenging because surgery and radiotherapy are not good optionsbecauseofitstopographicallydiffusenature[3].Eventu- ally,understandingthepatternofspreadofindividualmalignant cellsoverlongdistancesandintopartsofthebrainisessentialfor patientsurvival.Apresentliteraturesurveyrevealsthatthereare just a few available therapies that could significantly improve survivalchances[4].Thecircumventionoftheblood–brainbarrier (BBB)throughstraightinterventionintoinsubstantialbrain tis- sues can result in severe neurotoxicity and loss of brain key functionality. Consequently, there is a need to design a more specificandrational(noninvasive)approachtotargetGBM.Itis alsonecessarytoexplorethepotentialdifferencesinpermeability

betweenthe intactand malignant brain toovercome the chal- lengesinbraintargeting[5].Figure1demonstratesthedifferences betweenbarriersintheintactbrainandinglioblastoma.

Theintranasalrouteisadirectandsimpleapproach,including many advantagesofhigher bioavailability,shorter onsetofac- tion, circumventionof systemic toxicity, noninvasivenessand clearance. Additionally, avoiding the BBB could significantly increase the concentration of theactive pharmaceutical agent inthecentralnervoussystem(CNS).Accordingtodatapresentin the literature, pharmacological active agents can be delivered throughthenasalcavityviathetrigeminalandolfactorynerves.

Drugpermeationisbasicallydependentuponthekeycharacter- istics of an active agent or carrier, like its metabolic stability, solubility,residencetimeinthemucouslayerandrateofmuco- ciliaryclearance[6].

Thesafetyandtoxicologicalevaluationofproductsdelivered intranasally is of great importance. The prolonged contact of formulationscontainingcytotoxicmaterialscancauseciliotoxi- city,tissuedamageandirritation[7].Therefore,regardlessofthe presence of carrier-free approaches for intranasal delivery, a carriersystemcouldbeusefultodeliverchemotherapeuticsvia theintranasalroute; amongalldeliverysystems, nanoparticle- basedcarriershavebeenintenselystudiedforresearchimaging, treatment anddiagnosis ofbrain tumors. Lipid-basedcolloidal systems, for example liposomes and solid lipid nanoparticles, increased drug transfer to the brain through the intranasal

ReviewsPOSTSCREEN

Correspondingauthor:Csoka,I. (csoka@pharm.u-szeged.hu)

1359-6446/ã2019PublishedbyElsevierLtd.

(2)

route[8].Forinstance,invitrohemolysisandcytotoxicitystudies ofdoxorubicin(DOX)-loadedliposomalnanoparticleswereper- formed,whichresultedinspecificityandenhancedlevelsofdrug accumulation in gliomas [9,10].Colloidal nanocarrier systems [liposomes, solid lipidnanoparticles (SLNs), lipoproteins,lipo- plexes, etc.] have shown clear amassing in gliomas but the shortening ofnoninvasive accumulationandretentionevalua- tiontoolscouldhindermonitoringtheexactdurationandloca- tionofnanoparticleswithinthebrain[11].Thisreviewwillfocus onthepotentialoflipidnanocarriersystemstodeliveranticancer drugs via the intranasal route, as well as the significance of applyingqualitybydesign(QbD)softwareforthetargeteddeliv- eryofcytotoxicmaterialsviatheintranasalroutetomaintainthe safetyandprod

Q16 uctprofile.

Strategies to circumvent the BBB: bottleneck in targeting glioblastoma

Scientists have been working to develop versatile methods to circumvent the BBB, which include the opening of the BBB, intranasaldeliveryandpenetrationviatheBBBbycellularinter- nalization.Theoverexpressionofreceptors(likelow-densitylipo- protein, nicotinic acetylene choline, insulin-like growth factor (IGF),transferrinreceptors,diphtheriatoxin,leptinandscavenger receptortypeB)hasbeenreportedontheBBB.Thespecificligand functionalizationandattachmentcaninterveneindrugtransport viatheBBB.Thispreciseandsensitivetypeofinteractionbetween ligands and receptors governs receptor-mediated transport [12–14].However,therearelimitationsin implementationofa functionalizedorspecificligandattachedmoiety.First,itcanlose Immune cell

release factors

Blood

Epithelial barrier fenestrated vessels

CSF

Continous endothelial Astrocyte endfoot

Pericyte Basement

membrane

Lipophilic diffusion

Fenestra Leaky junction

Invading and growing tumor cells

Enhanced permeability leakage Altered active efflux transport Detached

astrocyte

Active ef flux

transport

(a)

(b)

(c)

Blood CSF barrier

Drug Discovery Today

FIGURE1 Challengesinbloo

Q1 dtobraindeliveryinabraintumor.Thefigureillustratesthecomparisonbetweenbarriersinnormalbrainandinglioblastomamultiforme (GBM).(a)Normalblood–brainbarrier(BBB)composedof:astrocyte(roleinmorphology),pericyte,endothelialcells(roleintightjunctionstructureand vasoregulation).(b)Blood–tumorbarrier(deatchedastrocyte,fenestra,leakyjuctions–bloodvesselsthatsupplythetumorareleakyandincompletelyformed butthehealthybraincomponentsarestillpresentinthemainregionofGBM).(c)Blood–cerebrospinal-fluid(CSF)barrier(composedofachoroidplexushaving epithelialcellsandtightjunctions,increasedlevelofalbuminintheCSFinGBMwhichmightcausedisturbanceoftheBBBorreleasefromtumor).

ReviewsPOSTSCREEN

(3)

itstherapeuticactivity;second,allpresentstrategiesareinvasive andaccumulationofdrugcargosintheliverandotheroff-target sitesgover

Q17 nsitstherapeuticefficacy[7].Therefore,thereisaneed fornoninvasivedeliveryapproachestoachievethebesttherapeu- ticgoals.

An alternative route of administration

An alternative route of administration to CNSdrug delivery is intranasaladministration.Theintranasaldelivery(IND)routeisa noninvasive, direct and more effective route of administration thanintravenous(i.v.) deliveryandcanavoidtheBBB together with systemic side effects. The IND pathways (trigeminal and olfactory pathways) in the nasal cavity are reasons for direct deliverytothebrainandresultingoodpharmacokinetic/pharma- codynamic(PK/PD)profilesforCNSdrugs.Drugdeliveryfromthe noseviathetrigeminalpathwayfollowseitheraxonalorendocy- totictransport,whereastheolfactorypathwayisfurtherdivided intointraneuronaland extraneuronal pathways.The intraneur- onalpathwayfollowsaxonaltransportandittakeshoursordays fortheAP

Q18 Itoreachthetargetsite,whereastheextraneuronalpath followstheperineuralrouteanditjusttakesafewminutestoreach thetargetsite[15,16].Furthermore,thisdeliveryroute isanew approachforthedeliveryofpotentactiveagentsandforantineo- plastic agentsthat can beloadedinto nanocarriersto ensurea bettersafetyprofile.Byusingthisroute,nanoparticlescancarry drugseasilytothetargetsite,andcanbypassthemainbarriers:the BBBandtheblood–cerebrospinal-fluidbarrier(BCSFB).Thereare manystudiesrevealingbettertargetdeliveryofCNSdrugsviathe intranasalrouteincontrasttoi.v. administration.Schio

Q19 thetal.

reported that IGF-1, when givenintranasally, had greater CNS efficacywhencomparedwithi.v.intervention.Manyotherstudies alsoshowedthattheintranasaldeliveryoftheAPIledtobetter cure rates of CNS diseases, such as depression, autism, eating disorders, Parkinson’s disease (PD) and Huntington’s disease (HD),aswellasvariousotherdiseases yettobetreated.Besides theseadvantages,thereisalonglistoffactorsthatcanlimitthe permeabilityofdrugcarriersviatheintranasalroute.Therefore, whiledesigningintranasalformulations,thefactorsregardingthe anatomyandthephysiologyofthenasalcavityshouldbeconsid- ered.Thevibrissaeofthenasalvestibuleandthetransepithelial regionoftheatrium(narrowestregion)arethepartsthatarethe leastpermeable.Bycontrast,otherpartslikethesuperior,middle andinferiorturbinateoftherespiratoryregionaremoreperme- able,whereasthespecializedciliatedolfactorynervecellsofthe olfactoryregionhavedirect accessto theCSF. Table1explains how the structures of the nasal cavity affect permeability via the intranasal route [16,17]. By considering the crucial factors

affecting drug delivery via the nasal cavity, a formulation can bedesignedfornose-to-braindeliverywithincreasedpermeation, low clearance and high mucoadhesion by the application of theQbD[18].

Nanocarrier systems for nose-to-brain delivery

Thesafetydataforintranasalformulationsareofgreatimportance.

Nanoparticleshavethepotentialtoimprovenose-to-braindeliv- ery because they have can avoid enzymatic degradation and transportfromP-glycoprotein(P-gp)effluxproteins.Thesecarrier systemscanenhancetherapeuticbraindeliveryby usingbioad- hesivematerialsandalsobyopeningtheclosedjunctionsofthe nasal epithelial membrane. The transport of nanoparticles through the intranasal route takes place via olfactory neurons by endocytoticorneuronalpathways.Theconfocalmicroscopy study of polystyrene nanoparticles reported that nanocarriers within the range 20–200nm can follow clathrin-coated pits;

however, nanoparticles in the size range 200–1000nm can be transportedviacaveolae-mediatedendocytosis[7,15].

Nanoparticlescanalsofollowthetransport fromendothelial cells to olfactory neurons via endocytosis or pinocytosis and move along the axon. For this transport pathway, thesize of nanoparticlesshouldbewithinthediameteroftheaxon,whichis upto 100–700nm. Therefore, theintranasal deliveryof nano- particlescouldbeapromisingchoicefortargetinglife-threaten- ingdiseaseslikeglioblastoma.Regardingthecarriersystems,theQ20 essentialclassesofnanoparticlesthatareatthecenteroffocusfor braintargetingincludepolymericnanoparticlessuchasmicelles, ironoxidenanoparticles,goldnanoparticles,quantumdotsand lipid-based nanoparticles likenanolipid carriers (NLCs),SLNs, liposomes,lipoplexesandlipoproteins[19].Ingeneral,nanopar-Q21 ticlescaninducetoxicitydependingupontheirinternalization siteandcomposition. Itisalsoreportedthatnanoparticlescan induceinflammation,DNAdamageandoxidativestress.TheIND of metal nanoparticles into brain is relatively wellknown for harmful neurological effects. The extensive exposure of metal nanoparticles can cause serious damage and even can lead to diseasessuchasAlzheimer’sdisease(AD)andparkinsonism.The present study is relevant to lipid nanoparticles that are most biocompatible andleasttoxicin nature.Clearance ofnanopar- ticles from the brain occurs via the mononuclear phagocytes system (MPS). The aspects of toxicity and clearance via macrophages are not accurate and might be caused by variations in nanoparticles properties (like charge, shape, size, coating)anduseofdifferentquantificationmethods[20].Figure2 explains the nanoparticle attributes influencing drug delivery viatheintranasalroute.

TABLE1

Impactofvariousstruct

Q6 uralcharacteristicsofnasalcavityonpermeation

Structuralparts/regionofthenasalcavity Effectonpermeation Refs

Nasalhairs(vibrissae)ofthenasalvestibule(sebaceousglands) Leastpermeableowingtothepresenceofkeratinizedcells [17]

Transepithelialregionoftheatrium(narrowestregion) Lesspermeablebecauseithasasmallsurfaceareaandstratifiedcellsare presentanteriorly

[35]

Superior,middleandinferiorturbinateoftherespiratoryregion Mostpermeableregionduetogreatersurfaceareaandincreasedblood supply

[36]

Specializedciliatedolfactorynervecellsoftheolfactoryregion Directpathwaytocerebrospinalfluid(CSF) [35]

Ciliatedcellsandsquamousepithelialcellsofthenasopharynx Nasalcavitydrainagereceiver [17]

ReviewsPOSTSCREEN

(4)

Lipid nanocarriers: a promising approach for intranasal delivery

For significant nose-to-brain delivery, a colloidal drug delivery system is the most suitablesystem that refersto increased bio- availabilityandsustainedreleaseandhighstabilityoftheAPI.The enhancedbiocompatibility,highscalability,safetyandefficacyof lipidnanoparticlesmadethemsuperiorcarriersfornose-to-brain delivery.Incontrasttolipidnanopar

Q22 ticles,polymericnanoparti-

cleshavelowscalability,highcytotoxicity(e.g.,100%mortality was reported when cells were treated with polyester polymer nanoparticles)andpoortolerability.Mostlipidnanoparticleshave aparticlesizewithintherange50–1000nm.Asdescribedinthe previoussection,aparticlesizebetween50and700nmisthemost favorable for intranasal delivery via neuronal transport [15].

Amongtheselipidcarriers,liposomesandSLNsdiscussedinthe following section have shown greater therapeutic efficacy in GBM. The lipidnanoformulations of anticancer agentsprovide enhanceddrugstability,PK,drugdistributionandefficacycom- paredwithotherapproaches[7].

Therapeutic efficacy of lipid nanoparticles in targeting glioblastoma

Liposomes, SLNs, lipoproteins, lipoplexes and nanostructured lipid carriershave been widely usedfortargeting glioblastoma.

Liposomesarebilayersphericalbiocompatiblecarriersandthese lipid-basednanostructuresareactuallythepioneersoflipid-based particlesemployedforparenteral deliverywith diameter ranges from10to 1000nm and areprecursorsofNLCsandSLNs[21].Q23 Table2summarizestheuseofliposomesinthemanagementof MGsviadifferentdeliveryroutes.Theresultsofallthesestudies revealedanincreaseinsurvivaltimealongwiththeinhibitionof proliferation[22].Itshouldbeconsideredthatvariousliposomal factorslikethesize,particlediameteranduptakebytheMPScan becrucialfortargeting[23].

Lipid nanoparticles including SLNs and NLCs are the most suitableamongallotherlipidnanoparticles,withoutbeingcon- strainedbytheirlimitations.Thestealthabilityoflipidnanopar- ticlesishigherthanotherpolymericnanoparticlesagainsttheMPS becausetheyarefabricatedfrombiocompatiblesubstancessuchas abrewofnaturallipids[24].Table3demonstratesthetherapeutic efficacyofSLNsandNLCsintargetingglioblastoma.Theresultsof all previousstudiesrevealed the decrease intumor growth,the increaseinthelifespanoftheanimalsusedandtheinhibitionof cellproliferation.

Theprovenefficacy(fromstudiesmentionedinTables2and3) oflipidnanoparticlesintargetingglioblastomahasshowntheir potentialtoencapsulateanticancerdrugs.Furthermore,theselipid nanoparticleshaveagoodabilitytoprotecttheloadedAPIand, Shape and charge

Drugs Covalently bound, Easy adsorbtion, low MN, Potent

Other features

Particle size Composition Natural, Synthetic Spherical +ive

Cube Rod like

-ive Zero

Toxicity, Immunogenicity , Retention time, Avoid mucocililary clearance

200-1000 nm 100-700 nm (Albumin, Chitosan, Lipids) (Polymeric, Inorganic)

Drug Discovery Today

FIGURE2 Nanoparticleattrib

Q2 utesinfluencingthedeliveryofAPIviatheintranasalroute.Thefigureillustratesthesignificantfeaturesofnanoparticlesforintranasal deliverylikepysiochemicalproperties(size,charge,composition)andothersignificantfeaturessuchaslowimmunogenicity,lowtoxicity,avoidingmucociliary clearanceand

Q3 increasedretentiontime(highmucoadhesivity).

ReviewsPOSTSCREEN

(5)

because of their occlusive nature, they can also increase nasal retentiontime.Thesefeaturesmakelipidnanoparticlesasignifi- cantcarrierfornose-to-braindeliverybecausetheycanavoidthe cytotoxicityissuesofantineoplasticdrugs[7,25].

Novel lipid nanoparticle formulation for targeting glioblastoma via IND

Newdeliveryapproachesare requiredin researchto efficiently target brain tumors. Curcumin-loaded NLCs (CUR-NLC) for TABLE2

Applicationsofliposomesinthemanagementofglioblastomamultiforme(GBM)

Encapsulatedsubstance Modelofstudy Typeofliposomes Centralnervoussystem(CNS)action/effects onGBM

Refs

Doxorubicin Clinicalstudy PEG-liposomes Enhancedefficacy

Inhibitionoftumorgrowth Enhancedsurvivaltime

[37]

Interferon(IFN)-b

Plasmid

Clinicalstudy Cationicliposomes Antiproliferative Reductionoftumorsize

[38]

Recombinentherpes simplex

virusthymidineskinase (adenoviralcarrier)

Gliomamodelin mouse

Cationicliposomes Reducedimmunogenicity Antiproliferative

[39]

Antisensegrowthfactor Human

malignantglioma celllines

Cationicliposomes Inhibitionoftumorgrowth [40]

Lomustine Rabitglioma

model

Temperature-sensitive liposomes(TSL)

Thermotargetingwithinhibitionoftumorgrowth [41]

EPIplu

Q7 scelecoxib Mice PTDpeptideattachedliposomes Destructionofgliomavasculogenicmimicrychannels [42]

Q8PTX Mice Dualtargeting,cellpenetrating

peptidattachedliposomes

Selectivetargeting Inhibitionoftumorgrowth

[43]

siRNA Mice Ligand-targetedliposomes(CTX) Enhancetheefficacyandinternalizationintoglioma cells

[40]

DNRandquinacrine Mice Ligand-targetedliposomes

(WGAandTAM)

Killingofglioblastomacellsanddimishingbrain gliomas

[44]

DOXandironoxid

Q9 e Mice Ligand-targetedliposomes(RGD) Enhancetargetingabilityandsite-specificdelivery [45]

Irinotecan Rats Ligand-targetedliposomes Inhibittumorgrowthincreaselifespanofrats [46]

DOX Rats Lactoferrinliposomes Destructionoftumorcellsandsignificantenhanced

survivalrateintumor-bearingrats

[47]

TABLE3

SummaryofapplicationsofSLNs/NLCsintargetingglioblastomamultiforme(GBM)

Encapsulatedsubstance Modelofstudy TypeofSLN/NLCs Centralnervoussystem(CNS)action/

effectsonGBM

Refs

Carmustine U87cellline(Invitrohumanbrainmodel) Cationicsolidlipidnanoparticles (CASLNs)

Antiproliferativeeffect

Decreaseexpressionoftumornecrosis factor(TNF)-a

[48]

Doxorubicinandetoposide U87celllines,HBMEC,humanastrocytes CASLNs Significantreductionintumorgrowth [49]

Edelfosine(EDF) GliomacelllineC6invivoC6glioma xenografttumor

SLNs(composedofcompritolor) Theantimalignanteffect,inhibitionof tumorgrowth

[50]

Cytarabine(CRB) EL-4celllines NLCs Cytotoxiceffectontumorcellline [51]

siRNAs U87MGcelllinesandtumorxenograftforin vivostudy

Low-densitylipoprtoein(LDL) andpolyethyleneglycol(PEG) SLNs

Thedecreaseintumorcellproliferation [52]

Camptothecin(CPT) BCECPorcinebraincapillaryendothelial cellscomparedwith(RAW264.7)

CA-SLNs Highercytotoxicityinbraincells enhanceantitumorefficacy

[53]

Etoposide K562cellline,MTTassayandflow cytometry

NLCSwithtransferrin Enhancedcellularuptakeand antiproliferativeeffect

[54]

Lockednucleicacid(LNA) (antioncogenicmiR-21)

U87MG(malignantgliomacellline) Lipidnanocapsule(LNCs)with L-1peptide

ReductionofmiR-21expressionand antiproliferative

[55]

Curcumin U251MGcellline,ratsbearingC6gliomas CA-LNCs Thedecreaseintumorsizeand malignancy

[56]

Resveratrol(RVR) U87cellline FunctionalizedSLNs Enhancecytotoxicity [57]

Doxorubicin(DOX) BBBmodel(hcmec/D3cell) CA-SLNs Increasedtoxicityforglioblastomacells [58]

Polo-likekinase1(PLK1) siRNAs(siPLK1)

Ratsbearingorthotopicxenograftmodel HA-LNPs(hyaluronicacid) Increasedcelldeath(byreducing expressionofPLK1)

[59]

Temozolomide(TMZ) U87MGinvitrocellslines NLCs Verymuchenhancedantitumoractivity [60]

Vincristine(VCR)andTMZ U87MGinvitrocelllineandmiceinduced withmalignantgliomamodel

SLNsandNLCs NLCSshowbetterantitumoractivity thanSLNs

[61]

ReviewsPOSTSCREEN

(6)

intranasaladministrationweredevelopedwithaparticlediame- terof146nm,encapsulationefficiency(EE)of90%,achargeof 21mVandpolydispersityindex(PDI)ratingof0.18.Theresults ofthefollowinginvestigationrevealtheincreasedcytotoxicityof CUR-NLCcomparedwiththatoffreeCURinthegliomacellline U373MG. The biodistribution study for the same formulation showedanincreased drugconcentrationinthebrain after the intranasalapplicationof NLCs.Theresultsof thisstudyled to the conclusion that CUR-NLC is an efficient delivery system for targeting glioblastoma [23]. Temozolomide-loaded NLCs (TMZ-NLC) were prepared to ensure brain targeting via the intranasal route.Theoptimizedformulationshoweda particle sizewithinthenanorange,zetapotentialof15mV,entrapment efficiencyof81%andPDIof0.2.Theresultsoftheinvivostudies indicated the significant enhanced brain concentration of TMZ-NLCincomparisonwithTMZdispersion(i.v.,intranasal).

ThehighestconcentrationofTMZ-NLCinthebrainprovedthe efficacy of this direct intranasal administration of NLCs. The following studydescribed thattheintranasaladministrationof NLCs increasedresidencetime andresultedin higherbioavail- abilityinthebrainatlowerdoses,denotingthisdeliveryroute themostsuitablefortargetingglioma[26].

Novel farnesyl thio salicylic acid (FTA)-loaded lipid cationic hybrid nanoparticles(HNPs)wereformulatedandevaluatedfor antitumoractivityviatheintranasalroute.Glioma2(RG2)cells wereplacedintoWistarrats.Thetumor-bearingratsweretreated with FTA-encapsulated HNPsby intranasal and i.v. administra- tion.TheevaluationoftumorsizeswithFTA-encapsulatedHNPs resulted in a clear decrease (55%) in tumor size. This study proved that the intranasal intervention ofFTA-loaded HNPs is an equally effective approach in glioblastoma targeting. The resultsofallstudiessupporttheuseoftheINDroutefortargeting glioblastomabyusinglipidcarriers[27].

Mechanism of nanoparticle drug delivery via the intranasal route

Theintranasallyadministered formulationwilldepositonthe pseudostratifiedcolumnarepithelium(arespiratorytractinthe nasalcavity). Thesiteofdepositionoftheintranasalformula- tion administered in the form of solution, spray or gel (via applicator) is the front region of the nasal cavity. However, thereareafewdevicesthatcansettlethedrugformulationina higherregionofthenasalcavity.Thenanoparticlesintervene viaintranasalpassagedepositedat thesiteofthenasal cavity dependingonitsproperties likesize,charge andlipophilicity.

Therearefouroptionsforthedrug,eithertoenterviathenasal epithelial tissue and arrive at the circulation or be unloaded alongthegastrointestinaltract(GIT)throughthenasopharynx bytheciliaryclearancenetwork.Thesystemismadeupofcilia, whicharemotileandbeatinasynchronizedmanner,thereby propelling theviscoussuperiorpartdorsallyagainstthenaso- pharynxquickly(5mm/min).Inaddition,enzymaticactivityis also higher in the nasal cavity deep in the olfactory region (enzymes likecytochromeP450dependent peptidases, mono- oxygenase andproteasesare involvedinthatprocedure)[28].

Thenose-to-braindeliveryofthenanoparticleswillfollowthe transport from endothelial cells tothe olfactory neurons via

endocytosisorpinocytosisandmovealongtheaxonoritwill followthetrigeminalnerve pathway.Forthistransport path- way,thesizeofnanoparticlesshouldbewithinthediameterof theaxon: 100–700nm [29].Figure3 explains allthe possible mechanisms and pathwaysinvolved inthe transport of lipid nanoparticles.

In vitro / in vivo / ex vivo models for testing nose-to-brain delivery

Foranexplorationofthemechanismbehindthetransportof drugsviatheintranasalroute,differenttypesofinvitro,invivo andexvivomodelsareused.Thesediversetypesofmodelsare appliedfordifferentstudies:invitromodelsforpermeationand diffusion studies; in vivo models for the determination of absorptionand PK profile of theAPI; and ex vivo models for perfusionstudiesinthe nasalcavity. Theselection of invivo models should be adequatefor studyingthe anatomy ofthe nasalcavity.The firstanimalmodelusedforintranasalstudy was the rat and, later, with the development in absorption data, other animal models like sheep, monkey, mouse and rabbit were also used. For adequate PK studies rabbit, dog, sheepandmonkeymodelsarecommonlysuggested,whereas mouse and rat models are used for preliminary absorption studies[30].

Besides the significance of in vivo models, the transport mechanism of drug absorption from the nasal route had to beexplored.Invitromodelswerefabricated toreplace thein vivoandexvivomodels.Furthermore,itisdifficulttoextrapo- latethedataof theabsorption andkineticsstudiesobtained fromtheanimalmodelstohumans(owingtothedifferenceof species).Itis necessary toselectadequate celllines thatcan reproduceresultsatsignificantlylowcosts.Thereareanumber ofinvitrocellculturemodelslikeNAS2BL(originatingfromrat nasalsquamouscarcinoma),BT(originatingfrombovinetur- binates), CaCo-2 cell lines (from human colon carcinoma), Calu-3(originatingfromhumanlungadenocarcinoma),RPMI 2650 (from human nasal epithelial tissues) and 16HBE14o- (fromhumannormalbronchialepitheliumofmaleheartlung transplant patient) [30]. Among these models, CaCo-2 and RPMI2650 areusedtoevaluatepermeability andabsorption viathenasalroute.However,therearesomedisadvantagesof cell lines, for example RPMI 2650 are undifferentiated cells thatencounterthe limited expression of ciliated and goblet cells. Theabsence of a developedmonolayer makesthis cell lineimpracticaltouseforatransportstudy.Bycontrast,Calu- 3cellscandevelopmonolayersandaresuitablefortransport studybuttheoriginofthiscelllineisnotthenormalepithelial cellsofthenasalcavity.The16HBE14o-celllinepossesseshigh transepithelialelectricalresistance (TEER)makingit suitable for transportation study but this cell line originates from normalbronchialepitheliumofamaleheart andlungtrans- plantpatient.Forthedeterminationofdrugdeliveryandthe development of formulations via the intranasal route, it is important touse reliable ex vivo models. The excised tissue isusuallyfromthenasalmucosaofslaughteredorexperimen- tal animals (rats, rabbits, dogs, monkeys, sheep) or from humansaswell.Theexvivostudyisveryimportanttoobtain

ReviewsPOSTSCREEN

(7)

alltheinformationregardingthetoxicity,efflux,metabolism and permeation of the developed formulation. Besides the manyadvantagesofexvivomodels,thereareafewlimitations, suchasthelackofinterstitialflowratedeterminationandthe thicknessofnasalepithelialtissuesoftheexcisedmucosa.The Ussing chamber is the ex vivo nasal model for permeability studies[31].

Significance of QbD in the early development of a lipid carrier system for targeting glioblastoma

Dependingonup-to-dateknowledgeaboutbarrierslimitingthe INDofanticancerdrugstargetingbraintumors,lipid-basednano- carriersystemscouldofferapromisingstrategy.However,because

manyformulationparameters and regulatoryaspectsshouldbe considered, the QbD concept or the GMP of the 21st century should be followed. The main elements of QbD methodology aredescribedintherelevantguidelinesoftheInternationalCoun- cilonHarmonization(ICH),specificallyICHQ8(R2),Q9andQ10;

andtheseinclude:(i)definingthequalitytargetproductprofile (QTPP);(ii)selectingthecriticalqualityattributes(CQAs)ofthe targetedproduct;(iii)selectingtheproductionmethodanddefin- ingthecriticalprocessparameters(CPPs)thatcanhighlyaffectthe CQAs;and(iv)analysisoftheinitialriskassessment(RA),whichis followedbyoptimizingtheleveloftheriskyfactorsbyapplyinga suitabledesign ofexperiment (DOE) [32]. Thevery firststepof QbDistocollectallthedatafrompreviousstudiesthatcouldaffect

4 Mucociliary clearance

3 Neurological pathways

Trigeminal nerve system Olfactory nerve

Lungs

Elimination

Blood flow 1 Airway

Nanoparticles with

enhanced mucoadhesivity Lipid nanoparticles loaded with anti glioblastoma drugs

2 Nasal vein

Targeting GBM

a) b)

Drug Discovery Today

FIGURE3 Possiblemecha

Q4 nismsoflipidnanoparticlesacrossthenasalmembrane.Thefiguredemonstratesthatlipidnanoparticleswithenhancedmucoadhesivitywill followfourpossiblepathways:(i)airway;(ii)nasalvein;(iii)neurologicalpathway;and(iv)mucociliaryclearance.Thenanoparticleswillfollowthetransportfrom endothelialcellstoolfactoryneuronsviaendocytosisorpinocytosisandmovealongtheaxonorfollowthetrigeminalnervepathway.

ReviewsPOSTSCREEN

(8)

thetargetproductprofile.Afterearlyknowledgeofspacedesign and evaluation of QTPPS,CQAs and CPPs, the RA application revealedtheattributeshavingthehighestimpactonthefinallipid nanoformulation quality for IND. Figure 4 demonstrated the descriptionofQbDmethodologyinearlydevelopmentofalipid carriersystemfornose-to-braindeliverybasedontherelevantICH guidelines[33,34].

Concluding remarks and future directions

This review summarizes theimportance of nose-to-brainde- liveryintargetingGBM.Nanoformulationsare consideredas one of the most important targeting carriers. Besides many advantages,nanoformulationsloadedwithcytotoxicmaterial canstillaccumulateinotherpartsandtissuesofthebody,for instanceintheliver,spleenandkidney.Therefore,itisneces- sarytodesign andfabricateamethodthatcanovercomethe

shortcomingsofpreviouslyusedcarriersanddeliveryroutes.

The alternative route and the lipid nanocarrier provide chances to deliver anticancerdrugs (with potential efficacy) againstGBM,andthiswillbeanewandexpedientapproachto GBMtreatmentstrategies.Furthermore,forsuccessfulINDof anticancerdrugs, risk assessmentis the main componentof QbDwhichshouldbeappliedusingspecialsoftwaretocalcu- latetheriskseverityofCQAsandCPPsregardingtheencapsu- lationofpotentialAPI intolipid-basedcarriersystems.Thus, theapplicationoftheQbDconceptcansavetimeandeffortby directingthefocustowardstructuringthequalityineachstep offormulationdesign.

Conflicts of interest

Theauthorsdeclarenoconflictsofinterest,financialorotherwise.Q24 Definition of

TPP and QTPP

Identififying CQAs and QAs

Design of product/process

Design space Pocess robustness

New QbD or control strategy for manufacturing process

Primary knowledge Space development

Selection of critical process steps Identification of CPPs

Development data Manufacturing data

Knowledge space

Design space Literature information

Molecule properties Mechanism of action Non-clinical studies Clinical experience

Process development Manufacturing data Process characterisation Process Validation RA

RA RA

Drug Discovery Today

FIGURE4 Stepsandelemen

Q5 tsofqualitybydesign(QbD)methodologythatwillhelptodesignandvalidatetheprocessfordevelopmentofintranasalformulation.Step 1:identificationoftargetproductprofile(TPP)andqualitytargetproductprofile(QTPP),whichcomprisestherapeuticandotherqualityrequirements.Step2:

identificationofcriticalqualityattributes(CQAs),whichareassociatedwithin-processmaterials,andcriticalprocessparameters(CPPs)havinganeffecton CQAs.Step3:riskassessment(RA)isaprocessofcollectinginformationtosupportriskdecisionanditisalsoamainactivityofQbDmethodologythatcanbe performedatinitialandfinalphasesofdevelopment.

ReviewsPOSTSCREEN

(9)

Acknowledgments

F.S.madesubstantialcontributionstowritingthemanuscriptand designingthe figures and tables. R.I. contributedto evaluating themanuscript,writingtheQbDandgeneralopinionsections,in

addition to making critical revision of the whole manuscript.

I.C. contributed to the conception of the manuscript, planningandsupervisingtheworkateachstepandgivingthe finalapproval.

References

1Hombach-Klonisch,S.etal.(2018)Glioblastomaandchemoresistancetoalkylating agents:involvementofapoptosis,autophagy,andunfoldedproteinresponse.

Pharmacol.Ther.184,13–41

2vanSchaijik,B.etal.(2019)Circulatingtumorstemcellsandglioblastoma:areview.

J.Clin.Neurosci.61,5–9

3Zhang,Q.etal.(2018)Currentstatusandpotentialchallengesofmesenchymal stemcell-basedtherapyformalignantgliomas.StemCellRes.Ther.9,1–9 4Mughal,A.A.etal.(2018)Patternsofinvasivegrowthinmalignantgliomas

thehippocampusemergesasaninvasion-sparedbrainregion.Neoplasia20, 643–656

5Sekerdag,E.etal.(2017)Nose-to-braindeliveryoffarnesylthiosalicylicacid loadedhybridnanoparticlesinthetreatmentofglioblastoma.J.Neurol.Sci.381, 171–172

6Tucker,C.etal.(2018)Theintranasalrouteasanalternativemethodofmedication administration.Crit.CareNurse38,26–31

7Battaglia,L.etal.(2018)Lipidnanoparticlesforintranasaladministration:

applicationtonose-to-braindelivery.ExpertOpin.DrugDeliv.15,369–378 8Shankar,R.etal.(2018)Lipidnanoparticles:anovelapproachforbraintargeting.

Pharm.Nanotechnol.6,81–93

9Lakkadwala,S.andSingh,J.(2019)Co-deliveryofdoxorubicinanderlotinib throughliposomalnanoparticlesforglioblastomatumorregressionusinganinvitro braintumormodel.ColloidsSurf.BBiointerfaces173,27–35

10Shah,M.K.etal.(2019)Lipidnanocarriers:preparation,characterizationand absorptionmechanismandapplicationstoimproveoralbioavailabilityofpoorly water-solubledrugs.Biomed.Appl.Nanoparticles2019,117–147

11Glaser,T.etal.(2017)Targetednanotechnologyinglioblastomamultiforme.Front.

Pharmacol.8,166

12He,Q.etal.(2018)Towardsimprovementsforpenetratingtheblood–brain barrierrecentprogressfromamaterialandpharmaceuticalperspective.

Cells7,24

13Pires,P.C.andSantos,A.O.(2018)Nanosystemsinnose-to-braindrug delivery:areviewofnon-clinicalbraintargetingstudies.J.Control.Release 270,89–100

14Md,S.etal.(2018)Nano-carrierenableddrugdeliverysystemsfornosetobrain targetingforthetreatmentofneurodegenerativedisorders.J.DrugDeliv.Sci.

Technol.43,295–310

15Selvaraj,K.etal.(2018)Nosetobraintransportpathwaysanoverview:potentialof nanostructuredlipidcarriersinnosetobraintargeting.Artif.CellsNanomed.

Biotechnol.46,2088–2095

16Mistry,A.etal.(2009)Effectofphysicochemicalpropertiesonintranasal nanoparticle transitinto murine olfactory epithelium. J. Drug Target17, 543–552

17Schwarz,B.andMerkel,O.M.(2019)Nose-to-braindeliveryofbiolog

Q25 ics.FutureSci..

http://dx.doi.org/10.4155/tde-2019-0013

18Pallagi,E.etal.(2018)Initialriskassessmentaspartofthequalitybydesignin peptidedrugcontainingformulationdevelopment.Eur.J.Pharm.Sci.122, 160–169

19Qindeel,M.etal.(2019)DevelopmentofnovelpH-sensitivenanoparticlesloaded hydrogelfortransdermaldrugdelivery.DrugDev.Ind.Pharm.45,1–29 20Rizvi,S.A.andSaleh,A.M.(2018)Applicationsofnanoparticlesystemsindrug

deliverytechnology.SaudiPharm.J.26,64–70

21Liao, W.et al.(2018) Recent advances on glioblastoma multiforme and nano-drug carriers:

areview.Curr.Med.Chem..http://dx.doi.org/10.2174/0929867325666180514113136 22Riaz,M.etal.(2018)Surfacefunctionalizationandtargetingstrategiesofliposomes

insolidtumortherapy:areview.Int.J.Mol.Sci.19,195

23Madane,R.G.andMahajan,H.S.(2016)Curcumin-loadednanostructuredlipid carriers(NLCs)fornasaladministration:design,characterization,andinvivostudy.

DrugDeliv.23,1326–1334

24Anand,A.etal.(2019)Braintargeteddeliveryofanticancerdrugs:prospective approachusingsolidlipidnanoparticles.IETNanobiotechnol.13,

353–362

25Sandoval,M.A.etal.(2012)EGFR-targetedstearoylgemcitabinenanoparticlesshow enhancedanti-tumoractivity.J.Control.Release157,287–296

26Khan,A.etal.(2016)Braintargetingoftemozolomideviatheintranasalroute usinglipid-basednanoparticles:brainpharmacokineticandscintigraphic analyses.Mol.Pharm.13,3773–3782

27Sekerdag, E. et al. (2017) A potential non-invasive glioblastoma treatment:

nose-to-braindeliveryoffarnesylthiosalicylicacidincorporatedhybrid nanoparticles.J.Control.Release261,187–198

28Crowe,T.P.etal.(2018)Mechanismofintranasaldrugdeliverydirectlytothebrain.

LifeSci.195,44–52

29Samaridou,E.andAlonso,M.J.(2018)Nose-to-brainpeptidedeliverythepotential ofnanotechnology.Bioorg.Med.Chem.26,2888–2905

30Sousa,F.andCastro,P.(2016)Cell-basedinvitromodelsfornasalpermeability studies.InConceptsandModelsforDrugPermeabilityStudies(Sarmento,B.,ed.),pp.

83–100,Elsevier

31ErdÅ,F.etal.(2018)Evaluationofintranasaldeliveryrouteofdrugadministration forbraintargeting.BrainRes.Bull.143,155–170

32Nayak,A.K.etal.(2019)Applicationofqualitybydesignforthedevelopmentof biopharmaceuticals.InPharmaceuticalQualitybyDesign.pp.399–411,Elsevier Q26 33Cso´ka,I.etal.(2018)Extensionofquality-by-designconcepttotheearly

developmentphaseofpharmaceuticalR&Dprocesses.DrugDiscov.Today23, 1340–1343

34Pallagi,E.etal.(2018)Initialriskassessmentaspartofthequalitybydesignin Q27 peptidedrugcontainingformulationdevelopment.Eur.J.Pharm.Sci.122,160–169 35Saudagar,R.andKulkarni,M.M.(2017)Reviewonin-situnasalgeldrugdelivery

system.Res.J.Pharm.Technol.10,1870

36Palhal,A.P.etal.(2017)In-situnasalgel:modernisticadvancementindrugdelivery..Q28 2017.http://dx.doi.org/10.20959/wjpr201711-9512

37Beier,C.P.etal.(2009)RNOP-09:pegylatedliposomaldoxorubicineandprolonged temozolomideinadditiontoradiotherapyinnewlydiagnosedglioblastomaa PhaseIIstudy.BMCCancer9,308

38Yoshida,J.etal.(2004)Humangenetherapyformalignantgliomas(glioblastoma multiformeandanaplasticastrocytoma)byinvivotransductionwithhuman interferonbgeneusingcationicliposomes.HumanGeneTher.15,77–86 39Jahangiri,A.etal.(2017)Convection-enhanceddeliveryinglioblastoma:areviewof

preclinicalandclinicalstudies.J.Neurosurg.126,191–200

40Aigner,A.andKo¨gel,D.(2018)Nanoparticle/siRNA-basedtherapystrategiesin glioma:whichnanoparticles,whichsiRNAs?Nanomedicine13,89–103 41Song,J.etal.(2018)Effectivenessoflomustineandbevacizumabinprogressive

glioblastoma:ameta-analysis.OncoTarget.Ther.11,3435

42Ju,R.-J.etal.(2016)Destructionofvasculogenicmimicrychannelsbytargeting epirubicinpluscelecoxibliposomesintreatmentofbrainglioma.Int.J.Nanomed.

11,1131

43Liu,Y.etal.(2016)Dualreceptorrecognizingcellpenetratingpeptide modifiedliposomesforanti-gliomatherapy.Nanomed.Nanotechnol.Biol.Med.

2,500

44Li,X.-T.etal.(2014)Multifunctionaltargetingdaunorubicinplusquinacrine liposomes,modifiedbywheatgermagglutininandtamoxifen,fortreatingbrain gliomaandgliomastemcells.Oncotarget5,6497

45Pacheco-Torres,J.etal.(2015)ImageguideddrugreleasefrompH-sensitiveion channel-functionalizedstealthliposomesintoaninvivoglioblastomamodel.

Nanomed.Nanotechnol.Biol.Med.11,1345–1354

46Chen,P.-Y.etal.(2012)Comparingroutesofdeliveryfornanoliposomalirinotecan showssuperioranti-tumoractivityoflocaladministrationintreatingintracranial glioblastomaxenografts.NeuroOncol.15,189–197

47Chen,H.etal.(2011)Lactoferrinmodifieddoxorubicin-loadedprocationic liposomesforthetreatmentofgliomas.Eur.J.Pharm.Sci.44,164–173 48Kuo,Y.-C.andLiang,C.-T.(2011)Inhibitionofhumanbrainmalignant

glioblastomacellsusingcarmustine-loadedcatanionicsolidlipid

nanoparticleswithsurfaceanti-epithelialgrowthfactorreceptor.Biomaterials 32,3340–3350

49Kuo,Y.-C.andLee,C.-H.(2015)Inhibitionagainstgrowthofglioblastoma multiformeinvitrousingetoposide-loadedsolidlipidnanoparticleswith r-aminophenyl-a-D-manno-pyranosideandfolicacid.J.Pharm.Sci.104, 1804–1814

ReviewsPOSTSCREEN

(10)

50Kuo,Y.-C.andWang,C.-C.(2015)Carmustine-loadedcatanionicsolidlipid nanoparticleswithserotonergic1Breceptorsubtypeantagonistforinvitrotargeted deliverytoinhibitbraincancergrowth.J.TaiwanInst.Chem.Eng.46,1–14 51Sharma,P.etal.(2011)Developmentandevaluationofnanostructuredlipidcarriers

ofcytarabinefortreatmentofmeningealleukemia.J.Nanosci.Nanotechnol.11, 6676–6682

52Jin,J.etal.(2011)Invivospecificdeliveryofc-MetsiRNAtoglioblastomausing cationicsolidlipidnanoparticles.Bioconj.Chem.22,2568–2572

53Martins,S.M.etal.(2013)Braintargetingeffectofcamptothecin-loadedsolidlipid nanoparticlesinratafterintravenousadministration.Eur.J.Pharm.Biopharm.85, 488–502

54Khajavinia,A.etal.(2012)Targetingetoposidetoacutemyelogenousleukaemia cellsusingnanostructuredlipidcarrierscoatedwithtransferrin.Nanotechnology23, 405101

55Griveau,A.etal.(2013)SilencingofmiR-21bylockednucleicacid–lipid nanocapsulecomplexessensitizehumanglioblastomacellstoradiation-induced celldeath.Int.J.Pharm.454,765–774

56Chen,Y.etal.(2016)Nanostructuredlipidcarriersenhancethebioavailabilityand braincancerinhibitoryefficacyofcurcuminbothinvitroandinvivo.DrugDeliv.23, 1383–1392

57Jose,S.etal.(2014)Invivopharmacokineticsandbiodistributionofresveratrol- loadedsolidlipidnanoparticlesforbraindelivery.Int.J.Pharm.474,6–13 58Chirio,D.etal.(2014)Positive-chargedsolidlipidnanoparticlesaspaclitaxel

drugdeliverysysteminglioblastomatreatment.Eur.J.Pharm.Biopharm.88, 746–758

59Cohen,Z.R.etal.(2015)LocalizedRNAitherapeuticsofchemoresistantgrade IVgliomausinghyaluronan-graftedlipid-basednanoparticles.ACSNano9, 1581–1591

60Song,S.etal.(2016)NovelRGDcontaining,temozolomide-loading nanostructuredlipidcarriersforglioblastomamultiformechemotherapy.Drug Deliv.23,1404–1408

61Wu,M.etal.(2016)Vincristineand temozolomidecombinedchemotherapy forthetreatmentofglioma:acomparisonofsolidlipidnanoparticlesand nanostructuredlipidcarriersfordualdrugsdelivery.DrugDeliv.23,2720–2725

ReviewsPOSTSCREEN

Ábra

FIGURE 1 Challenges in bloo
FIGURE 2 Nanoparticle attrib
FIGURE 3 Possible mecha
FIGURE 4 Steps and elemen

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The anticancer activity of 8-hydroxyquinolines may be related to the formation of (redox active) metal complexes with essential ions such as iron and copper 7,40

In line with this, our aim was to generate silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to study the effect of the obtained nanoparticles

As a consequence of the similar coordination properties of the essential Cu(I) and the toxic Hg(II) ions, the cellular regulation and protection systems for controlling

This shows that a recently introduced class of systems of difference equations, contains a subclass such that one of the delays in the systems is equal to four, and that they all

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

Magnetic nanoparticle systems that are relevant for nanomedicine applications [1,2], such as biomedical imaging, magnetically targeted drug delivery, magneto-mechanical actuation

Core-shell systems based on magnetic nanoparticles coated by polymer  tailoring the properties of magnetic nanoparticles in a highly modular fashion by control of