• Nem Talált Eredményt

Basic rules of microbial growth Basic rules of microbial growth

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Basic rules of microbial growth Basic rules of microbial growth"

Copied!
28
0
0

Teljes szövegt

(1)

Basic rules of microbial growth Basic rules of microbial growth

Fermentation up stream and down stream processes

(2)

E.coli Vibrio cholerae

Saccharomyces cerevisiae

Mucor circenelloides Aszexuális gombanövekedés

(3)

Basic rules of microbial growth Basic rules of microbial growth

1=X0*20

2=X0*21

4=X0*22

n=1

n=2

n=3

Binary dividing microorganisms

8=X0*23

16=X0*24

n=3

n=4

n:no of new generations

. .

X=X02n

(4)

t g

n = t No of generations

Generációs idő - doubling time generation time

N, x

Cell number pc/ml

Cell mass: dw mg/ml, g/l,kg/m3

Basic rules of microbial growth Basic rules of microbial growth

n 0

t t

0 2 x 2

x

x =

g

=

MONOD, 1942

x dt .

dx = µ

µ: specific growth rate

(5)

x dt .

dx = µ

Specific growth rate

Basic rules of microbial growth Basic rules of microbial growth

dt dx x

≡ 1

µ h

-1

(6)

x dt .

dx = µ . N

dt

dN = ν

e t

x

x = µ N = N e ν t

Jacques Monod

Basic rules of microbial growth Basic rules of microbial growth

Specific proliferation rate Spec. Doubling rate

t 0 e x

x = µ N = N 0 e ν t

Relation between µ and tg:

= ln µ 2

t

g

(7)

x

t 0 e x

x = µ

Basic rules of microbial growth Basic rules of microbial growth

t

In reality

x

0

(8)

x

LAG

PHASE

ACCELERA TING

GROWTH

EXPONEN- TIAL

PHASE

Basic rules of microbial growth Basic rules of microbial growth

x

0

t

PHASE

GROWTH

PHASE DECLINING PHASE

(9)

x

0

t dx

x x

g

max

cot α = µ

Basic rules of microbial growth Basic rules of microbial growth

µ t

t

dt

dx

(10)

WHAT IS THE REASON OF THE EXISTENCE OD DECLINING PHASE?

1. NUTRIENT LIMITATION

2. TOXIC METABOLIT PRODUCT(S) 3. LACK OF SPACE

MONOD- model

µ µ

max

Basic rules of microbial growth Basic rules of microbial growth

S K

S

S

max +

µ

=

µ µ

max

2

Κ

S

S

CRITICAL

S

KRITICAL SUBSTRATE CONCENTRATION LIMITING SUBSTRATE

(11)

µ µ

max

Κ

SN

S

krN

S

0N

N-source

~ ~

µ µ

max

Κ

SC

S

krC

S

0C

C-Source

~ ~

FERM.TIME FERM.TIME

WHICH S WILL BE LIMITING

???

Basic rules of microbial growth Basic rules of microbial growth

NOTION OF THE LIMITING SUBSTRATE

µ

max

µ µ

max

Κ

SV

S

krV

S

0V

VITAMINe -source

~ ~

µ

Κ

SO

S

krO

S

0O

O

2

~ ~

Κ

S

S

krN

S

0N

Κ

S

S

kr

S

0

FERM.TIME

FERM.TIME

(12)

tgα=KS/µmax

1/ µ

1/S 1/µ

max

LINEWEAVER-BURK

tgα=1/µmax

S/ µ

K

S

/ µ

max

HANES v. LANGMUIR

S K

S S

µ µ= +µ max max

1 *

1 1 1

µ µ = + µ

max max Ks * S

Basic rules of microbial growth Basic rules of microbial growth

-1/K

S

1/S K

S

S

µ

µ /S µ

max

tg α =-K

S

µ

max

/K

S

µ µ = max KS − µ S

EADIE-HOFSTEE

(13)

dt dS x

1 dt dx x

1 S

x dS Y

dx

s /

x

=

= ∆

=

dx = µ

=

YIELD COEFF:

i s

/ x i

-Y

vagy

dS Y dx

i

=

=

FOR THE LIMITING S

EXTENSION

Basic rules of microbial growth Basic rules of microbial growth

dt x

r

x

= dx = µ

S x K

S Y

1 dt

r dS

S x K

S dt

r dx

S S

/ x S

S x

µ +

=

=

µ +

=

=

ALWAYS TRUE:

In the exponential and declining phase:

MONOD-model

Differential equation Can be solved

(14)

x

x

µ Y vagy -Y dt µ

dx

∆x

dx = = = = − =

Basic rules of microbial growth Basic rules of microbial growth

i x/s

S x S

x i

-Y vagy

Q Y µ µ

µ dt

dS dt

∆S

∆x dS

dx

i

=

=

=

=

=

(15)

Utilization of C/en source

S S

S = ∆

C

+ ∆

E

∆ S = ∆ S c + ∆ S E

What for?

incorporation energy production

Basic rules of microbial growth Basic rules of microbial growth

x x

x

E C

+ ∆

= ∆

Yield of incorp. carbon Energy yield Overall yield

Y Y

YY Y

1 Y

1 Y 1

C C

C

E

= −

= −

Y 1 Y

1 Y

1

E C

x/s

+

=

(16)

=

2 ∆ x

α α

1

∆ S

C

C-content of the cell mass C-content of the substráate 0,46-0,5 50%

2 1 C

c

S Y x

α

= α

∆ =

Glucose:0,4

Material balance for the incorporated carbon

Basic rules of microbial growth Basic rules of microbial growth

2

S

c

α

2 1

1

2 1

2 1

E

Y .

. Y Y

. Y

Y α − α

= α α −

α α α

=

(17)

Some cases from the product one can estimate the energy production and consumption

Assimilated Dissimilated EtOH yeast, sugar

AcOH A.aceti, alcohol

NADH !!!

Glükonsav A.suboxydans, glucose

Basic rules of microbial growth Basic rules of microbial growth

Assimilated Dissimilated

Strain cult. media ratio of cult. media

% %

Streptococcus faecalis

anaerobic growth complett 2 98 Saccharomyces cerevisiae complett

aerobic growth 10 90

anaerobic growth 2 98

Aerobacter cloaceae minimal 55 45

1,2,3,

(18)

∆ S = ∆ S c + ∆ S E

?

Cell growth Maintenance of viability Cell motion

Osmotic work

Basic rules of microbial growth Basic rules of microbial growth

Osmotic work

Mantenance of orderness

thermodynamics II.law resyntheses

Y x

S

x

S S

E

E g m

= =

+

∆ ∆

(19)

dS

dt Y

dx dt

x

= − 1 = − µ Y

dt dS dt

dS Y

dt

dS

g m

E x E

+ µ =

=

 

 

dS dt

x Y

g = µ dS

dt m = mx

1 1

Y Y

m

E EG

= +

µ

!!!

Basic rules of microbial growth Basic rules of microbial growth

dt = Y EG

dt = mx

µ x µ Y

x

Y mx

E EG

= +

1 1

Y Y

m

E EG

= +

µ

modell

(20)

1 1

Y Y

m

E EG

= +

µ

specific maintenance coefficient

g/gh =h

-1

1 1 1

Y Y Y

m

x s / c EG

= + +

µ

For the overall yield:

1

Basic rules of microbial growth Basic rules of microbial growth

Y x s / Y c Y EG µ

m µ 1 1

Y

c

+ Y

EG

1 Y

x s/

1

µ m

1 1

Y

c

+ Y

EG

S s

/

Y µ

x

= µ

m

µ

Y 1 Y

1

EG C

S µ+



 +

= µ

(21)

ATP-yield

Y x ATP

Y

ATP

Y

x s ATP s

= ∆ = ′

/ /

′ =

Y

x s/

MY

x s/

g/mol

g/mol

mol/mol

( ) ( )

m Y

1 Y

1

ATP ATP

ATP

ATP max

ATP ATP

m g

+ µ

=

∆ +

=

10,5 g/mol

Q

ATP

Y Y m

ATP ATP

= µ = µ +

ATP max

(8,3-32)

Basic rules of microbial growth Basic rules of microbial growth

culture specific mentenance

conditions coefficients

m mATP Aerobacter cloaceae aerobic, glucose 0,094 14 Saccharomyces cerevisiae anaerobic glucose 0,036 0,52

+ 0,1 mol/dm3 NaCl Saccharomyces cerevisiae anaerobic, glucose

+1,0 mol/dm3 NaCl 0,360 2,2 Penicillium chrysogenum aerobic 0.,022 3,2 Lactobacillus casei aeroic, glucose 0,135 1,5

(22)

O

P

Effectivity of oxidatíve phosphorilation

„P/O ratio”

mol/gatom

NADH + H+ + 1/2O2 + 3 ADP + 3 H3PO4 NAD+ + 3 ATP + 4 H2O

3/1=3

Basic rules of microbial growth Basic rules of microbial growth

x Y P

S

Y P

x p s

p

= ∆

= ∆

(23)

Q x S

. H x

. H Y x

Y

S x

kcal

H

= ∆

∆ +

= ∆

=

HEAT PROD. YIELD ENTHALPY OF

CELL MASS

ENTHALPY OF SUBSTRATE

METABOLIC

HEAT PRODUCTION

Basic rules of microbial growth Basic rules of microbial growth

HEAT PROD. YIELD

CELL MASS

x x/S

S

x/S S

x kcal

H

∆H Y ∆H

Y .∆∆S/∆

∆H x/ ∆/

.

∆H

∆x/∆S Y

Y = −

+

= −

=

IF THERE IS NO SIGNIFICANT EXTRACELLULAR PRODUCTION

(24)

RQ respiration quotient

2 2

O CO 2

2

2 2

q q dt

dO dt dCO O

CO = =

Basic rules of microbial growth Basic rules of microbial growth

C

6

H

12

O

6

+ 6O

2

6CO

2

+ 6 H

2

O

RQmax = 1

2C2H5OH + 6 O2 4 CO2 + 6 H2O RQmax =4/6= 0,67

C

6

H

12

O

6 C2H5OH

+ CO

2

2 CH3OH + 3 O2 2 CO2 + 4H2O C2H2O4 + ½ O2 2CO2 + H2O

RQmax =

RQmax =2/3= 0,67 RQmax =2/ ½ = 4

(25)
(26)
(27)

x x

P P x P

GAEDEN:production types

Primary products Secondary products

Growth associated Mixed type Non growth associated

µ

x

µ

x

µ

x

µ

P

µ

P

µ

P

(28)

KINETICS OF PRODUCT FORMATION

LUEDEKING – PIRET MODEL r dP

dt

dx

dt x x

dP dt

P

P x

= = +

= = +

α β

µ αµ β

1

µP

tgφ=α

III.

µX β

tgφ=α φ

φ β

III.

I II.

I: α> α> α> α> 0 és ββββ = 0 GROWTH

ASSOC.

II: αααα = 0 és β> β> β> β> 0 NONGROWTH

ASSOC

III: α> α> α> α> 0 és β> β> β> β> 0 MIXED TYPE

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

It is an important di ff erence between the two methods that in proportionate accounting, the proportional (quota) statement of financial position and profit and loss statement of

The sigmoid-type functions that have the form (4) and the λ , a, P i , and P t parameters, can be used as control tools in new product or service introductions so that the

After short historical remarks, a general structure of an ethic theory is proposed, encompassing principles, values, priority rules between such values, basic norms, rules and rights

In conformity with our results obtained at different sucrose concentrations, lo'w sucrose concentrations are advantageous both for the microbial growth and for

production efficiency from municipal waste liquor feedstock in microbial

We prove the practical feasibility of this in the case of a domestic startup company – whose basic goal is scalable growth – how to adapt and integrate the principles of

 Mainly default character of the rules: the partners shall be free to Mainly default character of the rules: the partners shall be free to deviate from

Based on the text of the stories, five specific elements of Sherlock Holmes’ method can be identified: 4 (i) observing the little things; 5 (ii) the role of deductive