• Nem Talált Eredményt

resin reinforced composites sculptable conventional, bulk-fill andshort-fibre polymerization pulp during chamber of flowableand Degree of conversion and in vitro temperature riseof ScienceDirect

N/A
N/A
Protected

Academic year: 2022

Ossza meg "resin reinforced composites sculptable conventional, bulk-fill andshort-fibre polymerization pulp during chamber of flowableand Degree of conversion and in vitro temperature riseof ScienceDirect"

Copied!
15
0
0

Teljes szövegt

(1)

Availableonlineatwww.sciencedirect.com

ScienceDirect

j ou rn a l h o m epa ge :w w w . i n t l . e l s e v i e r h e a l t h . c o m / j o u r n a l s / d e m a

Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and

short-fibre reinforced resin composites

Edina Lempel

a,∗

, Zsuzsanna ˝ Ori

b,c

, Dóra Kincses

a

, Bálint Viktor Lovász

d

, Sándor Kunsági-Máté

c,e

, József Szalma

f

aDepartmentofRestorativeDentistryandPeriodontology,UniversityofPécs,5DischkaGy ˝oz ˝oStreet,PécsH-7621, Hungary

bDepartmentofGeneralandPhysicalChemistry,UniversityofPécs,6IfjúságStreet,PécsH-7624,Hungary

cJánosSzentágothaiResearchCenter,20IfjúságStreet,PécsH-7624,Hungary

dUniversityofPécsMedicalSchool,12SzigetiStreet,PécsH-7624,Hungary

eFacultyofPharmacy,InstituteofOrganicandMedicinalChemistry,UniversityofPécs,12SzigetiStreet,Pécs H-7624,Hungary

fDepartmentofOralandMaxillofacialSurgery,UniversityofPécs,5DischkaGy ˝oz ˝oStreet,PécsH-7621,Hungary

a r t i c l e i n f o

Keywords:

Pulpaltemperature Degreeofconversion Resincomposite Bulk-fill Fiber-reinforced

a bs t r a c t

Objective.Determinethedegreeofconversion(DC)andinvitropulpaltemperature(PT)rise oflow-viscosity(LV)andhigh-viscosity(HV)conventionalresin-basedcomposites(RBC), bulk-fillandshort-fibrereinforcedcomposites(SFRC).

Methods.Theocclusalsurfaceofamandibularmolarwasremovedtoobtaindentinethick- nessof2mmabovetheroofofthepulpchamber.LVandHVconventional(2mm),bulk-fill RBCs(2–4mm)andSFRCs(2–4mm)wereappliedinamold(6mminnerdiameter)placedon theocclusalsurface.PTchangesduringthephoto-polymerizationwererecordedwithather- mocouplepositionedinthepulpchamber.TheDCatthetopandbottomofthesampleswas measuredwithmicro-Ramanspectroscopy.ANOVAandTukey’spost-hoctest,multivariate analysisandpartialeta-squaredstatisticswereusedtoanalyzethedata(p<0.05).

Results.ThePTchangesrangedbetween5.5–11.2C.AllLVand4mmRBCsexhibitedhigher temperaturechanges.HigherDCweremeasuredatthetop(63–76%)ofthesamplesascom- paredtothebottom(52–72.6%)inthe2mmHVconventionalandbulk-fillRBCsandineach 4mmLVandHVmaterials.TheSFRCsshowedhighertemperaturechangesandDC%as comparedtotheotherinvestigatedRBCs.ThetemperatureandDCwereinfluencedbythe compositionofthematerialfollowedbythethickness.

Significance.ExothermictemperatureriseandDCaremainlymaterialdependent.HigherDC valuesareassociatedwithasignificantincreaseinPT.LVRBCs,4mmbulk-fillsandSFRCs exhibitedhigherPTs.Bulk-fillsandSFRCsappliedin4mmshowedlowerDCsatthebottom.

©2021TheAuthors.PublishedbyElsevierInc.onbehalfofTheAcademyofDental Materials.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.

org/licenses/by/4.0/).

Correspondingauthorat:DepartmentofRestorativeDentistryandPeriodontology,UniversityofPécs,5.DischkaGyStreet,PécsH-7621, Hungary.

E-mailaddress:lempel.edina@pte.hu(E.Lempel).

https://doi.org/10.1016/j.dental.2021.02.013

0109-5641/©2021TheAuthors.PublishedbyElsevierInc.onbehalfofTheAcademyofDentalMaterials.Thisisanopenaccessarticle undertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

1. Introduction

Settingreactionofphoto-polymerizableresin-basedcompos- iterestorativematerials(RBC)isinducedbylightcuringunits (LCU)atdifferentirradiancelevelsand exposuredurations.

Acertainlevelofradiantexposureensuresagivendegreeof monomertopolymerconversion(DC)inthe RBC[1,2].The amount oflight energytransmittedto the RBC restoration isinfluencedbyseveral factors,suchasexposureduration, powerdensityoftheLCU,theaccordancebetweenthespectral absorption range ofthe photoinitiatorsand spectralemis- sion profileof the curing unit, distancebetween the light guidetipandtherestoration,composition,shade,opacityand thicknessoftheRBCmaterial[1,3–6].Evenifthesamenum- berofradicalsaregenerated, manyofthemdonotlast as longundertheconditionofhigherincidentlightirradiance andshorterirradiationtimeasthosegeneratedunderlower incident lightirradianceand longer irradiation time.Thus, evenat an identical radiantexposure, the rate of spectral radiantpowerdeliverymayalsoinfluencethedegreeofcon- versionoflightactivatedRBCs[7].Severalstudiesconfirmed thatahigherdegreeofpolymerizationleadstobetterphys- icalandchemicalpropertiessuchascompressive strength, microhardness,wearresistanceandbiocompatibility[8–11].

Consequently,enhancingtheDCisessentialforthedurabil- ityofRBCrestorations[12].AnimprovedDCcanbeachieved byusingahigh-irradiancecuringunitand/orbylengthening theexposureduration[13],however,thisprocessesinvolves thermal reactions, which represent a potential hazard for thedentalpulptissue[14,15].Despiteattemptstodefinethe thresholdtemperaturevaluewhichwouldindicateapoten- tially irreversiblepulpaldamage,the multiplicityoffactors involvedintheheattransfer(thicknessofthedentaltissues, effectofbloodcirculationinthepulpchamber,fluidmotionin thedentinaltubulesandthesurroundingperiodontaltissues) makesitdifficulttotranslateinvitrofindingstoclinicallyrel- evantinferences[14,16,17].Eventhoughtherealvalueofthe potentiallyharmfulcriticaltemperatureriseisstillcontrover- sial,itiswidelyacceptedthatthetemperatureriseinthepulp shouldbekeptaslowaspossibleduringdentalprocedures involvingthepolymerizationoflightcuredmaterials[18–21].

Temperature rise during polymerization of RBCs is attributedtoboththeexothermicreactionofpolymerization and the energyabsorbed during the irradiationfrom LCUs [22,23].Severalstudiesinvestigatedthistopic,addressingthe effectofRBCtype,shade,thickness,curingunitradiantenergy andspectralcharacteristics ontemperature risewithinthe pulpchamber[15,24–27].Mostoftheinvestigationsfound,that comparedtothelowintensitycuringunits,thehigh inten- sitytypesproducedasignificantlyhighertemperaturerisein thepulpchamber[17,28].Asidefromthethermaleffectofthe lightcuringunit,theexothermicreactionistheothermain contributingfactortotheincreaseintemperatureduringthe earlystagesofpolymerization[29].Thecompositionofthe RBCcanalsoinfluencethermalchanges.TheamountofC C bondsisproportionaltotheexothermicheatgeneratedduring cureandtheinorganiccompartmentsaffecttheheatdiffu- sionwithinthematerialbytheircapacitytoabsorbexternal energy[30,31].Thus,thematrixtofillerratio,thecharacteristic

featuresofthedimethacrylatemonomers,fillerparticlesand pigmentsalsoplayimportantrolesinthetemperatureriseof RBCs[23,29].

NumeroustypesofdentalRBC areavailableonthemar- ketwithdifferentmatrix-fillercomponents,consistenciesand recommendedapplicationmethods.Besidestheconventional high-viscositypastesandlow-viscosityflowableRBCs,applied incrementallymaximumintwo-millimeter-thicklayers,the so-calledbulk-fillRBCsareincreasinglypopularamongclin- icians,sincetheseareapplicableinathicknessof4–5mm withoutlayering.Althoughitwasreported,thatthesebulk-fill materialsshowlowerpolymerizationshrinkage,theadequacy ofthedepthofcureisstillcontentious[32–34].Theincreased thicknessoftheRBClayernegativelyinfluenceslighttrans- missionandDC[35].Thethermalloadonthepulptissueis alsocontroversial.Anumberofresearchersfoundthatbulk-fill RBCsgeneratedagreaterincreaseinpulpaltemperaturethan conventionalones[36,37].Onthecontrary,someoftheinvesti- gationsconcludedthatbulk-fillRBCs,especiallyhigh-viscosity pastescanreducethermalloadonthepulpchamber[28,38].

Although,particulateRBCsaredurablerestorativematerials, oneofthemostfrequentfailuresisthefractureoftherestora- tion[39].Toovercomethismechanicallimitationandenhance theirphysicalproperties,fiberreinforcementofconventional dental compositeswas introduced. Thereinforcement was duetothestresstransferfrom thematrix totheshortran- domlyorientedfiberswhichoccursuponloadingleadingto highfractureresistance[40,41].Whilesculptableandflowable short-fibrereinforcedresincomposites(SFRC)areincreasingly usedmaterialsinclinicalpractice,especiallyindeepcavities, accordingtoourbestknowledge,nodataareavailableinthe literatureaddressingthethermaleffectofthesematerialson thepulp.

Thepurposeofthepresentstudywastocompareinvitro thethermalchangeinthepulpchamberduringthepolymer- izationofhigh-andlow-viscosityconventionalRBCsapplied in2mmthickness,light-curedfor20or40sandhigh-and low-viscositybulk-fillandshort-fibrereinforcedRBCsplaced in2and4mmlayerthicknessexposedtolightfor20sthrough aremainingdentinethicknessof2mm.Furtheraimswereto determinethedeliveredradiantexposureandrelatedDCof theinvestigatedmaterialsandtoassesstheinfluenceoflayer thicknessandexposuretimeonpulpaltemperatureriseand DC.

2. Materials and methods

2.1. Resincompositesandradiantexposure

DuringthisinvitrostudysixbrandsofRBCs–aconventional high-viscosity (HV) sculptable microhybrid, a low-viscosity (LW)flowablenanofill,HVandLVbulk-fillandHVandLVshort- fibrereinforcedRBC –wereanalyzed.Thebrands,chemical compositionsandmanufacturersarepresentedinTable1.

Materialsweretestedinthelayerthicknessrecommended bythemanufacturer,thusconventionalhigh-viscosity(Conv- HV-2 mm) and low-viscosity (Conv-LV-2 mm) RBCs in 2 mmlayerthickness,high-viscosity(Bulk-HV-4mm)andlow- viscosity(Bulk-LV-4mm)bulk-fillandSFRC(SFRC-HV-4mm

(3)

Table1–Materials,manufacturersandcomposition.

Group Material Manufacturer Shade Organicmatrix Filler Fillerloading

(vol%/wt%) Highviscosity

conventional RBC

FiltekZ250 3MESPE,St.Paul, MN,USA

A2 BisGMA,UDMA,

BisEMA, TEGDMA

0.01–3.5␮m (mean0.6) Zr-silica

60/82

Lowviscosity conventional RBC

FiltekSupreme Flowable Restorative

3MESPE,St.Paul, MN,USA

A2 BisGMA,

TEGDMA, Procrylatresin

20–75nmsilica, 0.6–10␮mcluster Zr-silica,0.1–5

␮mYbF3

46/65

Highviscosity bulk-fillRBC

FiltekOneBulk FillRestorative

3MESPE,St.Paul, MN,USA

A2 AFM,UDMA,

AUDMA,DDDMA

20nmsilica,4–11 nmzirconia, clusterZr-silica, 0.1␮mYbF3

58.5/76.5

Lowviscosity bulk-fillRBC

SurefilSDRFlow+ Dentsply, Milford,DE,USA

U Modified

UDMA,TEGDMA, di-and trimethacrylate resins

4.2␮mBa-Al-F-B silicateglass, Sr-Al-Fsilica,YbF

47.4/70.5

Highviscosity short-fibre reinforcedRBC

EverXPosterior GCEurope, Leuven,Belgium

U BisGMA,

TEGDMA,PMMA

0.7␮mbarium glass(65.2%),17

␮mx1-2mm shortE-glass fibers(9%)

53.6/74.2

Lowviscosity short-fibre reinforcedRBC

EverXFlow GCEurope, Leuven,Belgium

U BisEMA,UDMA 0.7␮mbarium

glass(45%),6× 140␮mshort E-glassfibers (25%)

48/70

Abbreviations:RBC:resinbasedcomposite;U:universal;UDMA:urethanedimethacrylate;AUDMA:aromaticurethanedimethacrylate;AFM:

additionfragmentationmonomer;DDDMA:1,12-dodecanedimethacrylate;TEGDMA:triethyleneglycoldimethacrylate;BisEMA:bisphenol- Apolyethyleneglycoldietherdimethacrylate;BisGMA:bisphenol-Adiglycidiletherdimethacrylate;PMMA:polymethylmethacrylate;vol.%:

volume%;wt.%:weight%.

Table2–Meantemperaturechange(T),timetoreachthemaximumtemperature(Tmax),returningtimetotheinitial temperatureofinvestigatedresin-basedcomposites(RBC)withstandarddeviations(S.D.).

GroupofRBCs InvestigatedRBCs Curingtime/Layer thickness

MeanT(oC)(S.D.) Meantime(s)to Tmax(S.D.)

Meanreturntime (s)(S.D.)

ConventionalRBC

FiltekZ250 (Conv-HV)

20s/2mm 5.2(0.6) 28.2(2.6) 107.2(4.9)

40s/2mm 8.5(0.8) 49.8(2.9) 282.6(5.4)

FiltekSupreme Flowable(Conv-LV)

20s/2mm 6.8(0.4) 29.8(1.9) 95.0(4.6)

40s/2mm 11.2(1.0) 50.8(3.6) 220.4(5.1)

Bulk-fillRBC

FiltekOneBulkFill Restorative (Bulk-HV)

20s/2mm 4.9(0.3) 25.2(2.3) 101.8(2.4)

20s/4mm 5.8(0.6) 26.0(2.6) 341.6(6.2)

SDRFlow+(Bulk-LV) 20s/2mm 6.0(1.0) 27.4(2.9) 98.8(5.3)

20s/4mm 7.5(0.8) 31.0(2.2) 310.4(7.4)

Short-fibre reinforcedRBC

EverXPosterior (SFRC-HV)

20s/2mm 5.8(0.5) 24.8(2.8) 122.0(6.1)

20s/4mm 7.9(0.8) 24.8(3.1) 404.6(5.3)

EverXFlow (SFRC-LV)

20s/2mm 7.7(0.7) 32.8(2.2) 112.6(4.9)

20s/4mm 9.0(1.2) 29.2(2.3) 384.6(7.6)

andSFRC-LV-4mm)RBCsin4mmlayerthickness.Inaddition, thelast4RBCsweremeasuredin2mmthicknessaswell(Bulk- HV-2mm;Bulk-LV-2mm;SFRC-HV-2mm;SFRC-LV-2mm).All materialswereirradiatedwiththesameLightEmittingDiode (LED)curingunit(LED.D,Woodpecker,Guilin,China;average lightoutput givenbythe manufacturer850–1000mW/cm2;

␭=420–480nm;8mmexit diameterfiberglasslightguide) instandardmode for20 saccordingtothe manufacturer’s instruction,poweredbyalinecordatroomtemperatureof23

C±1C,controlledbyanair-conditioner.Additionally,tosee theinfluenceofexposureduration,samplesofconventional

RBCswerealsopolymerizedwithanextendedexposuretime of40s(Conv-HV-2mm-40s;Conv-LV-2mm-40s).Theradi- antexitance(mW/cm2)andexposure(J/cm2)deliveredbythe LCUoperatinginthestandardmodeweremeasuredusinga checkMARCradiometer(BluelightAnalytics,Halifax,Canada).

Measurementswererecordedintheabovementionedtwelve groups,fivetimesforeachduringthepreparationofthespec- imens(n=60).RegardingthetypeofRBC,layerthicknessand exposuredurationthe investigatedgroupsare presentedin Table2.TheradiantexitanceatthetipoftheLCUwasdeter- minedbyplacingthetipdirectlyatadistanceof0mmfrom

(4)

theradiometersensorandtheradiantexposurewascalcu- latedbothatanexposuredurationof20sand40s.Thiswas repeatedwiththeinterpositionofablackpaperwitha6mm diameterholeonit,torepresenttheirradiancedeliveredto thetopofthematerials.Thelightattenuationoftheempty cylindricalpolytetrafluoroethylene(PTFE)moldwithaninner diameterof6mm,externaldiameterof12mmandheightof 2or4mmwasalsomeasuredbyplacingthetipoftheLCU directlyoverthemold.Interpositionofablackpaperwitha 6mmdiameterholebetweenthemoldandthesensorpre- ventedlighttransmissionthroughthemoldtothecheckMARC sensor.Theradiantexposurevalueswerecalculatedfromthe recordedradiantexitancebothatacuringtimeof20sand40s.

Toestimatetheradiantexitanceandradiantexposuretrans- mittedthrougheachRBCduringpolymerization,themoldwas positionedcentrallyonthesensor.Polyester(Mylar)stripwas usedtoseparatethesensorfromtheRBCwhichwasfilledin themold.ToavoidcontactwithoxygenthetopoftheRBCwas protectedwithaMylarstripbeforethepolymerization.

2.2. Micro-Ramanspectroscopymeasurement

ThesameRBCsamplesmadetoestimatetheradiantexposure transmittedthrough each RBC during polymerization were usedtomeasuretheDC.Thesampleswerethenplacedinan incubator(Cultura,IvoclarVivadent,Schaan,Liechtenstein)at 37±1Cand90%±10%relativehumidityandstoredindark.

The24hpost-cureDCvaluesofthepolymerizedRBCsam- pleswereexaminedusingaLabramHR800ConfocalRaman spectrometer(HORIBAJobinYvonS.A.S.,LongjumeauCedex, France).Thefollowingsetsofparameterswereapplieddur- ingthemicro-Ramanmeasurements:20mWHe-Nelaserwith 632.817nmwavelength,spatialresolution∼15␮m,magnifi- cation×100(OlympusUKLtd.,London,UK).Usingaspectral resolutionof∼2.5cm−1, satisfactoryresults were obtained sincethe two peaks analyzedwere ∼30 cm−1 apart. Spec- trawere takenbothonthetop andbottomsurfacesofthe RBC specimensatthree randomlocations (central, periph- eralregionand areabetween)andwithanintegrationtime of10s.Tenacquisitionswereaveragedforeachgeometrical point.SpectraofunpolymerizedRBCweretakenasreference.

Post-processingofspectrawasperformedusingthededicated softwareLabSpec5.0(HORIBAJobinYvonS.A.S.,Longjumeau Cedex,France).Theratioofdouble-bondcontentofmonomer topolymerintheRBCwascalculatedaccordingtothefollow- ingequation:

DC%=

1−

R

cured

Runcured

×100

whereR is the ratio of peak intensitiesat 1639cm1 and 1609cm−1associatedtothealiphaticandaromatic(unconju- gatedandconjugated)C CbondsincuredanduncuredRBCs, respectively.

2.3. Samplepreparationforpulpaltemperature measurement

Afreshlyextracted,caries-free,cleanedhumanthirdmolarto beusedinthisstudywaskeptwetindistilledwater.Asingle toothmodelwaschosenforallexperimentaltrialstolimitany

Fig.1–(OPTIONAL)Schematicfigureoftheexperimental set-upforpulpaltemperaturemeasurements.

effectsofstructuralandcompositionaldifferencesinenamel and dentin.Theocclusalsurfacewas groundflat leavinga dentinthicknessoftwomillimetersfromtheroofofthepulp chamber.Theapicesoftherootsweresectioned5mmfrom the furcationtoexposethe rootcanals.Allpulpal residues were removed withendodontic files. This wasfollowed by 5.25%sodium-hypochloritethensalineirrigationanddrying withpaperpoints.Aholewascreatedonthemesialsideofthe toothwithaone-millimeterdiametercylindricaldiamondbur toallowtheinsertionofthe0.5mmdiameterCu/CuNither- mocoupleprobes(K-type,TCDirect,Budapest,Hungary).The thermocouplesensorwasfixedtothedentinonthetopofthe pulpchamberbymeansofathinlayerofcyanoacrylateglue (LoctiteSuperGlue,Loctite,Düsseldorf,Germany).Thelateral holewasclosedwithflowableRBC(FiltekSupremeFlowable, 3M,St.Paul,MN,USA).Theremainingdentinthicknessand positionofthethermocouplewereassessedradiographically.

Thentoreplicatethepulptissue,thepulpchamberandroot canalswereinjectedwithECGgel(AquaSoundBasic,Ultra- gelHungary2000,Budapest,Hungary).FlowableRBCwasused tocloseapicalorificesandthetoothwasembeddedinclear acryliconemillimeterbelowthe cemento-enameljunction.

Thetoothwasimmersedinawaterbathof36.5±0.5C.

Temperaturemeasurementsand heat registrationswere recorded by a registration device (El-EnviroPad-TC, Lascar ElectronicsLtd.,Salisbury,UK)attachedtotheK-typethermo- couplewithafrequencyofonemeasurementpersecondand resolutionof0.1C.ThePTFEmoldwasstackedontopofthe flatandpolishedocclusalsurfaceofthetooth.Firstofall,the thermaleffectofthelightcuringunit-bothaftera20and40 sexposure-wasmeasuredthroughtheempty2-and4-mm deepmold(Fig.1).Thetemperaturechangesofeachinvesti- gatedRBCswerealsomeasured:conventionalRBCsappliedin 2mmthicknesswithanexposuretimeof20and40s,bulk-fill andSFRCRBCsappliedin2-and4-mmthicknessesexposed for20s.Asnodental adhesivesystemwasused,thepoly- merizedRBCcouldeasilyberemovedfromthemoldwithout leavinganydepositsonthedentinsurface.Thisenabledthe useofthesametoothforeachmeasurement.Lightcuringwas initiatedwhenthetemperaturestabilizedaftertheRBCappli- cation.Temperatureswererecordedatthebeginning ofthe irradiationsandmeasurementscontinueduntiltheyreturned

(5)

totheinitialtemperature.Temperaturechangewasexpressed asthedifferencebetweentherecordedmaximaltemperature andtheinitialambienttemperature.Although,thetemper- atureofthe waterbathapparatus wassettoconstant,the repetitivemeasurementsfoundatemperaturevariationof0.5

C.Therefore, inordertoreduceerrorscaused byenviron- mentaltemperature changes,when calculating theresults, thetemperaturechangewasusedinsteadofthemaximum temperaturemeasurement.

Thetimetoreachthemaximumandtheinitialtempera- tureafterpolymerizationwerealsorecorded.Theprocedure wasrepeatedfivetimesforeachcombination(n=60).

2.4. Statisticalanalysis

The statistical analyses were performed with SPSS v. 26.0 (SPSS,Chicago,IL,USA).Totestthenormalityofthedistri- butionofthedatatheKolmogorov–Smirnovtestwasapplied, followedbyaparametric statisticaltest.Thedifferences in temperaturechange,timetoreachthemaximum,returntime andinDCbetweenthetopandbottomoftheinvestigatedRBCs werecomparedwithone-wayanalysisofvariance(ANOVA).

Tukey’sposthocadjustmentwasusedformultiplecompari- soninallANOVAmodels.Multivariateanalysis(generallinear model)and partialeta-squared statistics were usedtotest theinfluenceanddescribetherelativeeffectsizeformaterial andthicknessasindependentfactors.Atwo-tailedindepen- dentt-testwasusedtocomparethedifferencebetweenthe temperaturechangethroughtheempty2vs.4mmdeepmold, irradiatedfor20vs.40s.Pvaluesbelow0.05wereconsidered statisticallysignificant.

3. Results

Basedonmeasurementstakenatthreedifferentlocationson theradiograph(buccal-radialprojection),thethicknessofthe remainingocclusaldentinwas2.1±0.2mm.Themaximum radiantexitanceoftheLEDLCUwas1170±15mW/cm2.The deliveredmaximumincidentradiantexposureswith20and 40sexposuredurationwere23.4±0.1and46.8±0.2J/cm2, respectively.Theradiantexitancewasreducedto930mW/cm2 bythe6mmorifice,thustheradiantexposureswith20and 40sexposuredurationswere18.6and37.2J/cm2,deliveredto thetopofthespecimens.The2−4mmdistancebetweenthe lightguide tipandtheradiometersensorand,additionally, the limitedorifice (6 mm indiameter) ofthe mold signifi- cantlydecreased theradiantexposure.Through the empty 2and 4mmmold,theradiantexposuredecreasedby42% (13.5J/cm2±0.1)and63%(8.7J/cm2±0.1),respectively.The LCUincreasedthepulptemperatureby2.7and5.1Cwhen theocclusalsurfacewasirradiatedthroughthe2mmdeep emptymoldfor20and40s,respectively.Thedifferencewas statisticallysignificant(t(8)=11.7,p<0.001).Comparedtothe 2mmdeepmold(2.7C),thetemperatureincreasewassig- nificantlylower(t(8)=4.4,p<0.01)throughthe4mmdeep emptymold(1.9C)lightcuredfor20s.Themeantemperature changesoftheinvestigatedRBCs,thetimesittooktoreachthe maximumaswellasreturntotheinitialtemperaturesafter polymerizationarepresentedinTable2.

Regardingtheexothermicreaction,eachRBCproducedsta- tisticallysignificantlyhighertemperatureincreaseinthepulp chamberthantheLEDunitalone.Subtractingthetempera- turerisecausedbytheLCUfromthethermalchangeinthe pulpchamberinducedbytheRBCgivesanestimationofthe heatgeneratedbytheexothermicreaction.Accordingtothis calculation–whichdoesnotaccountforthethermaltransfer betweenthethermodynamicsystemanditsenvironment–, theorderofexothermicthermalchangesthroughthe2mm dentinthickness wasthe following:SFRC-LV-4 mm(6.3 C)

>SFRC-HV-4mm(5.2C)>Bulk-LV-4mm(4.8C)>Conv-LV-2 mm(4.1C)>Bulk-HV-4mm(3.1C)>Conv-HV-2mm(2.5C).

Thecomparisonofthermalchangeofhigh-andlow-viscosity conventional,bulk-fillandSFRCRBCswithrepresentativereg- istrationcurvesisshowninFig.2(A,B).

Ingeneral,thelow-viscosityRBCsshowedstatisticallysig- nificantly(p<0.001)highermeantemperaturechangeduring polymerization,irradiatedfor20s.Amongthedifferentgroups ofmaterials,theSFRCRBCsshowedasignificantlyhighertem- peraturechange(p<0.001).TheflowableRBCsneededlonger timetoreachthemaximumtemperature,butitwasstatisti- callysignificantonlyforthebulk-fillRBCs.However,thetime ittooktoreturntotheinitialambienttemperaturewassig- nificantly shorter (p< 0.001)for each low-viscosity RBC as comparedtothecondensableones.Thethermalchangesof sculptableandflowableconventionalRBCs irradiatedfor20 and40swithrepresentativetemperatureregistrationcurves arereportedinFig.3(A,B).

The extended exposure duration significantly increased themean temperaturechange(p<0.01)oftheinvestigated conventional RBCs.Subtractingthe thermalchange caused by the LCU(5.1 C –40 s) alone, the exothermic tempera- tureriseinthepulpchamberwasestimatedtobe3.4Cfor theConv-HV-2mm-40sandalmostdouble,6.1CforConv- LV-2mm-40s.Although,theexposuredurationwasdoubled, thetimetoreachthemaximumtemperaturewasnot,how- everthetimeittooktoreturntobaselinewasmorethantwo timeslongercomparedtothesamplespolymerizedfor20s.

Regarding the influenceoflayerthickness, a1–2 C higher temperatureincreasewasmeasuredinthecaseofthicker(4 mmvs.2mm)samples,whichweresignificantforalltypesof investigatedmaterials.Thethermalchangesofhighandlow viscositybulk-fillandSFRCRBCsin2-and4-mmlayerthick- nesses with representative temperature registration curves arepresentedinFig.4(A–C).

The temperature valueswere predominantly influenced bymaterial(p<0.001)followed bythickness(p<0.001)with partialeta-squaredvaluesof0.74and0.49,respectively.The interactionoffactorsmaterialxthicknessdidnotshowastatis- ticallysignificanteffectonthetemperaturechange(p=0.16) (partialeta-squared:0.15).Thetimetoreachthemaximum temperaturewasnotsignificant(p>0.05)asafunctionoflayer thicknesses,however,thetimetoreturntobaselinetempera- turewasthreetimeslongerforthethickersamples,whichwas statisticallysignificantforallgroupsofmaterials(p<0.001).

Thetemperatureincreaseduring20sofpolymerizationwas notconsistentwiththeradiantexposuresmeasuredthrough the2-and4-mmthicksamples.

Thelightattenuationwassignificant throughthe2mm (SFRC-LV-2mm54%<SFRC-HV-2mm56%<Bulk-LV-2mm73%

(6)

Fig.2–(A)Thermalchangeofhighandlowviscosityconventional,bulk-fillandshort-fibrereinforcedresin-based compositespolymerizedfor20s.Distinctalphabeticindicatesstatisticallysignificantdifferencebetweenthematerials.(B) Representativeregistrationcurvesofhighandlowviscosityconventional(2mm),bulk-fill(4mm)andshort-fibrereinforced (4mm)resin-basedcompositespolymerizedfor20s.

<Bulk-HV-2mm82%=Conv-LV-2mm82%<Conv-HV-2mm 88%) and 4mm (SFRC-LV-4mm 68% <SFRC-HV-4 mm71%

<Bulk-LV-4mm89%<Bulk-HV-4mm92%)thickRBCsamples.

Themeandeliveredradiantexposuresatthebottomof2−4 mmthickRBCmaterialsduringpolymerizationaregivenin Table3.

RegardingtheDCatthetopandbottomsurfacesinsam- plesappliedin2mmthickness,percentagesrangedbetween 66–75.4% and 60–72.6%, respectively. When samples were appliedinathicknessof4mmthevaluesrangedbetween 63–76%atthetopand52–69%atthebottom(Table3).Conv-

HV-2 mm, Bulk-HV-2 mmand all the 4mmthick samples (Bulk-HV-4 mm, Bulk-LV-4mm, SFRC-HV-4 mm, SFRC-LV-4 mm)showedstatisticallysignificantdifferencesbetweenthe topandbottomDCvalues(Fig.5and6).

The2mmthicklow-viscosityRBCs(Conv-LV-2mm,Bulk- LV-2 mm, SFRC-LV-2 mm) and SFRC-HV-2 mm provided similarlyhighDCvaluesonthetopasatthebottom.Thehigh- estDCatthetopwasachievedintheSFRCsamplesregardless ofthesamplethickness,followedbythelow-viscosityconven- tionalandbulk-fillRBCsappliedin2-and4-mmthicknesses.

The lowest degree of polymerization at the top was mea-

(7)

Fig.3–(A)Thermalchangeofhighandlowviscosityconventionalresin-basedcompositespolymerizedfor20svs.40s.

Distinctalphabeticindicatesstatisticallysignificantdifferencebetweenthematerials.(B)Representativeregistrationcurves ofhighandlowviscosityconventionalresin-basedcompositepolymerizedwith20svs.40s.

suredinthe high-viscosityconventional andbulk-fillRBCs.

TheresultsregardingtheDCatthebottomsurfaces,arecon- sistentwiththedecreasedradiantexposuredeliveredthrough the4mmthickspecimens.ThelowestDCwasachievedbythe Bulk-HV-4mm,followedbytheConv-HV-2mmandBulk-HV-2 mm.SignificantlyhigherDCvaluesweredetectedinBulk-LV- 4mmandSFRC-HV-4mmsamples.ThehighestDCsatthe bottomweremeasuredinallthe2mmthickflowablemate- rials(Conv-LV-2mm,Bulk-LV-2mm,SFRC-LV-2mm)and in SFRC-LV-4mmsamples.Theeffectsizeoffactor materialis significant(p<0.001)(partialeta-squaredis0.94)andhigher

ontheDCthantheeffectsizeoffactorthickness(partialeta squareis0.79),whichwasalsofoundtobeastrongandsta- tisticallysignificanteffect(p<0.001).Theinteractionbetween thetwovariables,materialxthickness,significantlyinfluenced theDCvalues(p=0.001)withaneffectsizeof0.35.

4. Discussion

Inthis invitrostudy theinfluenceofthepolymerizationof high-andlow-viscosityconventional,bulk-fillandSFRCRBCs

(8)

Fig.4–(A)Thermalchangeofhighandlowviscositybulk-fillandshort-fibrereinforcedresin-basedcompositesin2mmvs.

4mmlayerthickness.Distinctalphabeticindicatesstatisticallysignificantdifferencebetweenthematerials.(B)

Representativeregistrationcurvesofhighandlowviscositybulk-fillresin-basedcompositepolymerizedin2mmvs.4mm layerthickness.

(C)Representativeregistrationcurvesofhighandlowviscosityshort-fibrereinforcedresin-basedcompositepolymerizedin 2mmvs.4mmlayerthickness.

Table3–Topandbottomdegreeofconversionoftheinvestigatedmaterialsandradiantenergydeliveredtothebottom of2and4mmthickspecimens.

Resin- based composite (RBC)

Exposure duration

Layer thickness

Mean radiant energy (J/cm2)(S.D.)

Degreeofconversion(DC)(%)

Top Bottom DC 95%CI p-valuea

Lower Upper

FiltekZ250 20s 2mm 1.6(0.1) 66 60.4 5.6 −7.87 −3.72 <0.001

40s 2mm 3.2(0.2) 69 67 2 −3.36 −0.03 0.04

FiltekSupreme Flowable

20s 2mm 2.4(0.06) 72 70 2 −4.09 0.98 0.19

40s 2mm 4.7(0.1) 77 74 3 −6.18 0.18 0.06

FiltekOneBulkFill

Restorative 20s 2mm 2.4(0.1) 66 60 6 −8.72 −3.61 <0.001

4mm 0.7(0.05) 63 52 11 −13.57 −8.47 <0.001

SDRFlow+ 20s 2mm 3.6(0.07) 70 69 1 −3.16 0.96 0.25

4mm 1.0(0.08) 70 65 5 −5.11 −3.97 <0.001

EverXPosterior 20s 2mm 5.9(0.05) 75.4 72.6 2.8 −5.88 0.29 0.07

4mm 2.5(0.08) 73 68 5 −6.87 −3.16 <0.001

EverXFlow 20s 2mm 6.2(0.05) 75 72 3 −4.84 0.68 0.12

4mm 2.8(0.1) 76 69 7 −10.95 −3.01 <0.001

a One-wayanalysisofvariance(ANOVA)andTukey’sposthocadjustment.

onthermalchangeinthepulpchamberwasinvestigatedwith additionalmeasurementoftheDCanddeliveredenergyden- sityonthetopandbottomsurfacesofthesamples.

Thestudywascarriedoutonarepresentativepermanent molartooth without the use ofanadhesivesystem forall experimentalgroupstoprovidethesametooth-relatedcon- ditionsfor all the measurements and eliminate any effect whichmay arise from structuraland opticaldifferences of the enamel and dentin. The remaining dentin thickness

betweentheinvestigatedmaterialsandthepulpchamberin thepresentinvestigationwas2mm.Although,dentinhasa relatively lowthermalconductivity,thepotentialforpulpal damageisexpectedtobegreaterindeepcavities,wherethe tubularsurfaceareaincreasesandthelightattenuationeffect islower[42–44].Asidefromthedistancebetweenthefloorof thecavityandthepulp,theperfusionrateandeffectofthe pulpalbloodcirculation,thevolumeandmotionofthefluid inthedentinaltubulesaswellasthesurroundingperiodontal

(9)

Fig.5–Degreeofconversionatthetopoftheinvestigated materials.The*markindicatesstatisticallysignificant differencebetweentheinvestigatedmaterials.

Fig.6–Degreeofconversionatthebottomofthe investigatedmaterials.The*markindicatesstatistically significantdifferencebetweentheinvestigatedmaterials.

tissuesalsoplayimportantrolesinheatconductionandpro- tectionagainsttheriseofpulpaltemperature[45].According toasimulationstudyonpulpalmicrocirculationconducted byKodonasetal.,theapplicationofathermalstimulussig- nificantlyinfluencestemperaturerise inthepulpchamber.

Resultsshowedatwo-fourtimeshighertemperatureincrease inthe pulpwithoutwaterperfusion[46].Asalimitationof ourstudy,theexperimentaldesignlackedasimulationofthe microcirculation.Althoughthetoothwasimmersedin36.5± 0.5Cwaterbathandheldatthistemperatureforthedura- tionofthe study,thisphysiologicaltemperatureisnotable toaccount forall the mechanisms bywhich heat is dissi- patedinvivo.Thereasonwhytheauthorsemployedsucha studydesignwastoillustratethetemperaturechangeswhich arisespecificallyduetotheextentoftheexothermicreaction occurringintheinvestigatedmaterials.

Inthepresentstudy,asecondgenerationLEDLCUwasused toinitiatepolymerizationwitharadiantexitanceof1170±15 mW/cm2atawavelengthrangeof420−480nm.Validpower

measurementsweremadebyacalibratedportableradiome- ter,namelycheckMARC[47],howeverthebeamprofileand surfaceareaoftheactivelighttipwerenotanalysed.Thisis alimitationofourexperimentaldesign,sinceitwasdemon- strated,thatmostoftheLCUs–especiallylowbudgetLCUs, like LED.D–exhibitedhighlynon-homogeneouslightbeam profilesandcouldhaveverydifferentlightoutputcharacter- istics[48,49].Although,thiscouldaffectpulpaltemperature riseandinfluence,especially,DC–evenatdifferentlocations ofthetopandbottomsurfaces–,thesameunitinstandard- izedconditionswasusedtopolymerizeeachmaterialinthe presentstudyandthusenablesthecomparisonoftheresults.

Thepositioningofthelightguidetipwasalsostandardized, ensuringeachsamplereceivedthesamelightbeamcharacter.

Furthermore,thecuringunitpoweredbyalinecordprovided aconstantlightoutputlevel.

TheLCUincreasedthepulpaltemperaturetoadifferent extentthroughtheempty2and4mmdeepmold(6mmin diameter), irradiatedfor20 and 40s, however,the thermal changes(1.9–5.1C)didnotexceedthepathologicalthreshold consideredtobe5.5CaccordingtoZachandCohenfindings [14].PohtoandScheininalsoreportedthatthecriticaltemper- atureforreversiblepulpdamagewasbetween42Cand42.5C [50].However,Baldissaraetal.didnotfindanaverageincrease of 11.2 C toaffect the pulpsignificantly [18]. Despite the attemptstodevelopreliablemethodologiestosimulateinvivo condition,awiderangefrom1.5to23.2Ctemperaturerise inthepulpchamberwasreportedinvitroduringlightexpo- sure[51].Accordingtoseveralinvestigations,theintensityand duration oftheappliedlightseemedtobethemostcrucial factor inpulpaltemperature rise[15,16,20,46,52,53].Present resultsconfirmthisstatement.Asdemonstratedonconven- tional RBCsan extendedexposureduration(40 s)resulting inadoubledpowerdensityinduced60%highertemperature riseinthepulpchambercomparedtoanirradiationtimeof merely20s.Inspiteoftheimportanceattributedtothecuring lightasapossibleheatsource,itisimportanttoemphasise, thatthelightisattenuatedwithdistance,andthediameter ofthecavityorificealsolimitstheentranceofthe photons whichservenotjustheat,butalsoaselectromagneticenergy fortheprocessofpolymerization[51].Thus,thestrengthof thelightoutputusedinphotopolymerizationcarriesadual importance:ononehand,itshouldbehighenoughtobeable toactivatesufficientfreeradicalstoensureaclinicallyaccept- ablerateofpolymerization,howevernottoohighastoproduce heatdamageinthepulp.Ourresultsshowedthattheradi- antexposureoftheLCUdeliveredthroughthe2and4mm deepemptymoldwith6mmorificediameterwasdecreased by42%and63%,respectively,withanexposuredurationof20 s.Therelatedpulpaltemperatureincreasethroughthe2mm remainingdentinwas1.9and2.7C,respectively.However,the heatgeneratedtogetherwiththeexothermicreactionofthe RBCsand conductedtothepulpchamberwashighenough toreachorexceedthecriticaltemperatureatwhichpulpal damagebeginsinalmostallthematerials.Thisisincontrast topreviousstudieswhichshowedthattheheatproducedin anirradiatedemptycavitywasalwayshigherwhencompared tothepolymerizationofa2mmthickcompositeincrement.

Theauthorsattributedtheirresultstotherestorativemate- rial’sattenuatingcapacityagainsttheexothermaleffectofthe

(10)

polymerization[15,54].Otherinvestigationshowevershowed thatthebiggestrisktopulphealthoccursduringphotopoly- merization,although,the thermaleffect ofthecuring unit andthematerialdependentexothermicheatproductionisnot separated[37,53].

The maximum temperature values measured ranged between41.4and47.7Cinourstudy.Thesedataarecom- parabletotheresultsofotherstudies,wherethegeometryof RBCsaresimilartothatofourspecimens[16].Inthepresent research,thesameLEDunitwith20sdurationwasusedto polymerizethedifferenttypesofinvestigatedmaterials,thus thesameenergydensitywasdeliveredonthetopofeachspec- imen.Thisstudydesigntogetherwiththesingletoothmodel [23] provided uniform conditions allowing to compare the exothermictemperaturerise betweendifferentRBCs.Thus, theexothermicreactionisproportionaltotheamountofresin availableforpolymerization[29,55,56].Accordingtothisstate- ment,because oftheir higher resin content flowable RBCs shouldexhibitahighertemperaturerisethan non-flowable materials.InlinewithBaroudiet al.andAkarsuetal., our findingsalsoconfirmedthatflowableRBCspolymerizewith amoreintenseexothermicreaction[23,38].Ourresultshow- evershowedhighertemperaturerises(5.2–11.2C),evenwith aremainingdentinthicknessof2mm.Thereasonforsucha differencemaylieinthestudydesign.Bloodcirculationwas simulatedintheabove-mentionedstudies,whileismissing fromourmethodology.Preparinguniform2mmthicksamples fromalltestedRBCsprovidedresultswhichwerecompara- bleandmadeitpossibletoexaminetheeffectofthevariable compositionofconventional,bulk-fillandSFRCRBCs-forthe same viscosity - onpulpal temperature rise. These results showed thatthe detecteddifferences were significant only betweenbulk-fillandSFRCRBCsinbothviscositieswhilethe conventionalonesproducedsimilartemperaturechangesto thatofbulkandSFRCRBCs.Thecalculationofthepartialeta- squared valuespertainingtofactor materialalso supported thesignificantinfluenceofRBCcompositionontemperature change.

Regardinglayerthickness,statisticallysignificanttemper- aturerisesin4mmcomparedto2mm-thicksampleswere detectedinthebulk-fillandSFRCmaterials.Yasaetal.also foundhighertemperatureriseincaseofthebulk-fillsamples usedin4mm,comparedtotheconventionalRBCwhichwas appliedintwoincrementsof2mmlayers[37].Exothermicdif- ferencesmayariseduetothepresenceofhigheramountsof monomersina4mmthickmaterial.Although,it hasbeen reportedthatincreasedfillercontentcandecreasethetem- peraturerise[57],thechemicallyinertfillersarecapableof absorbingexternalenergy,thusmayplayanindirectrolein thetemperaturerise[58].Moreover,heatgeneratedwithina viscousresin,becomesincreasinglydifficulttoremovewith increasingvolumeoftheresin material[59].Although, our results indicated that higher glass-fiber content increases temperaturerise,incontrasttoourinvestigationIldayetal.did notfindtheadditionofglass-fiberstoinfluencetemperature rise.[60].Comparingthe2mmthickconventionallowviscous RBCtothe2and4mmthicklowviscousbulk-fill,theresults showedinsignificantdifferencescomparedtoourresultsas mentionedabove.Theeffectsizeofthicknessonthethermal changeofRBCsduringpolymerizationwasfoundtobesignif-

icant,howeverithadaweakereffectcomparedtothematerial factor.ThisisincontrastwithParetal.,whosuggestedthat thetemperaturerisewasmostlydeterminedbythevariations ofradiantenergydeliveredtothebottomofthespecimens, hencethecuringunittypeandlayerthicknessplayedmore importantrolesthanthematerialitself[61].Differencesmay havealsoresultedfromthedifferentexperimentalconditions, likethestudydesignforthetemperaturemeasurement,from thetypeoftheLCUused,exposuretimeapplied,thetypeand shadeoftheinvestigatedRBCs,thedimensionsofthespeci- mens,thecoloroftheTeflonmold,etc.

Notonlythedentinthickness,butdifferencesinsurface- to-volumeratiosofvariousresinmaterialscouldaccountfor thedifferencesintheefficiencyofheatdissipation.Thismight bemoreimportantthanthepeaktemperaturewithintheresin [62].

Ourresultsdemonstratedthatthetemperaturecontinues torisealmostlinearlywhilethelightisonreachingthepeak 8–12saftertheexposurewasfinished.Otherauthorsfound thetemperaturerisetooccurassoonasthelightsourcewas activatedandthepeaktemperaturetimetobemainlydepen- dentonthedentinthicknessleftabovethepulpchamber[55].

Runnaclesetal.observedsimilardynamicsinaninvivostudy designtoo,whereT,aswellaspeaktemperatureincreases were continuedtobedetectedforapproximately 10safter teethwereexposedtothelight[63].Thiswasexplainedbythe heat-storingcapacityofdentin[64]whichresultedinagrad- ualdissipationofthermalenergytowardsthepulp,leadingto asustainedtemperatureriseinthepulpchamberevenafter thecuringlightwasshutoff.Additionally,asitwasdiscussed above, the amount of inert filler particles, especially glass fibers,couldhavealsostoredexternal(curinglight)andinter- nal(exothermic)heatenergy[58].Thisfactorwassupported byourpresentfindings,sincehigherfillerloadingresultedin alonger mean timerequiredtoreturnto theinitialpulpal temperature. Inadditiontotheinfluencing effectofdentin thicknessandthepropertiesoftheinvestigatedmaterial,the studydesignalsoplaysasignificantroleonheatdissipation whichmakesitdifficulttocomparedifferentresearchfind- ings.

PohtoandScheininnotedthatthedurationofthethermal irritationisanotherfactorinpulpaldamage,since2minat 46Ccancauseanarrestofbloodcirculation[50].According toourmeasurements,thetimeittookforthetemperatureto returntotheinitialrangedbetween95.0–404.6s.Eventhough themaximumtemperaturedetectedinhigh-viscositymate- rials waslower thaninlow-viscosityRBCs,theytookmore timetocooldown.Thepulpaltemperaturehoweverdecreased below42Cwithin80sinallcases,evenwithoutsimulation ofthepulpalcirculation.

Regardingtheradiantenergymeasuredatthebottomof thesamples,valueswere54–92%lowerthantheincidentradi- antenergymeasuredatthetopofthe2-and4-mmthickRBC samples.Thelightattenuationwasstronglyinfluencedbythe materialcomposition,shadeandthickness.Previousstudies haveshownthatfactorssuchaspolymericmatrixrefractive index,monomertype,fillertype,loadingandsizecaninflu- encelighttransmittanceinRBCs[65,66].Higherfillercontent andthickersamplesdecreasedradiantenergyradically,while amoretranslucentshadeandhigherglass-fibercontentpro-

(11)

videdforahigherradiantenergylevelatthebottomofthe4 mmthicksamplesascomparedtothe2mmthick,A2shaded materials.ThiswasinlinewithGaroushietal.,whoalsofound moretranslucent bulk-fillsand shortfiber-reinforced RBCs withbulkshade(universalshade)toallowforahigherlight transmissioncomparedtotheconventionalresincomposites [35].Although,thefillerratioofFiltekSupremeFlowableisthe lowestamongthetestedRBCs,thelightattenuationthrough the2mmthick samplewas 82%.Inspitethe factthatthe morepigmentedA2shadeofthismaterialandthequalityof thefillerparticles(Zr-silicaclusters)mayexhibithigherlight distribution withinthe material, the monomer to polymer conversionstillreachedahighdegree.Itiswell-documented, thatradiant exposureundoubtedly influencesthe DC [1,5], however,thepolymerizationkineticshavebeenfoundtobe highlycomplex,and irradiance,exposureand composition canindependentlyaffecttheDC[58,67].BucutaandIliefound microhardnesstobeabove80%whentheenergymeasured atthebottomofthesampleswaslargerthan0.7J/cm2.While theincreasewasproportionaltotheamountoftransmitted light,theyalsofoundthefillercontenttohaveahighereffect ontheresultscomparedtothe transmittedirradiance[11].

OurresultsdemonstratedthesametendencyforDC-which hasastrongcorrelationwithhardness[68]-,sincethelowest DCwasmeasuredwithmeanradiantenergyof0.7J/cm2(Fil- tekOneBulkRBCin4mmthickness)androsewithincreasing lighttransmittance.AccordingtoShortalletal.’sfindings,indi- vidualproductsrequiredifferentlevelsofradiantexposureto provideoptimalproperties[25].

Thedegreeofconversionatthetopandbottomsurfaces ofthedifferentRBCswereassessedusingmicro-Ramanspec- troscopywhichallowsthedirectdetectionoftheamountof unreactedC Cintheresinmatrix[58].Raman-spectrawere takenafter24h,sincesignificantincreaseinDCtakesplace evenaftertheremovaloftheirradiationsource,uptoamax- imum of24 hpost-irradiation [69]. Regarding conventional RBCs,the2mmthickflowablesamplereachedahighdegreeof conversionwithoutsignificantdifferencebetweenthetopand bottomsurfacesirrespectiveofwhethertherecommendedor doubledexposuretimewasapplied.ThisRBChasthe low- estfillercontentamongtheinvestigatedmaterials.Halvorson etal.demonstrated,thatincreasingthe fillerratio progres- sivelydecreasesconversion,becauseanincreasedamountof fillerparticlesisanobstacletopolymerpropagation[70].Sim- ilarDCvaluesweredetectedinthe2mmthicklowviscous bulk-fillandthelowandhighviscousSFRCs.Lightpenetra- tionthroughthe2mmSFRCsampleswashigher,whichmay beexplainedbythemoretranslucentglassfillersandfibers.

SFRCmaterials(EverXPosteriorandFlow)areuniqueamong theotherscontainingrandomlyorientedshortglassfibersin mmscale.Thehightranslucencyoftheglassfibersmayhave increasedlightpenetrationindeeperregionsresulting ina higherdegreeofconversion.Thisisinlinewiththefindings ofGaroushietal.andGoraccietal.[35,71].Although,theshort glassfibercontentincreasedto25%intheflowableEverXcom- paredtothe9%ofthehighviscousEverXPosterior,theDC andthelighttransmittancedidnotincreasesignificantly.The temperaturerisehoweverwasmorepronounced[72].Consid- eringthemonomercontentoftheinvestigatedRBCs,itmay alsobe assumed,that the higher DC values are attributed

totheTEGDMA monomer,whichisacomponentofall the testedlow-viscosityRBCsandthehigh-viscositySFRC.Besides decreasingviscosity,thelowmolecularweightofTEGDMAas wellastheether(C O C)linkage,providingaslightrotation aroundthebond,allowsformorecovalentbondstobecreated duringthepolymerization[73].

Incontrasttotheresultsmentionedabove,significantdif- ferenceswerefoundbetweenthetopandbottomDCsincases ofthe2mmthick highviscosityconventional andbulk-fill RBCsandinallthe4mmthicksamplesofhigh-andlowvis- cositybulk-fillandSFRCmaterials.While,theDCvaluesat thebottomsurfacesofthe4mmthicksamplesfailedtoreach the valuesmeasuredonthe top,theSFRCRBCsreachedor exceededtheresultsfoundatthebottomofthe2mmthick conventionalhighlyviscousRBCscuredfor20sandeven40 s.Theconsequenceofthelowerrateoflightattenuationin SFRCswasseeninthehigherDCvalues,whilethehighgrade ofphoton-attenuatingcapacityofthehighviscosityconven- tional and bulk-fillRBCs isalsoclearly reflected inthe DC results.Thehigheramountofparticulatefillercontentofthe highlyviscousconventional(FiltekZ250)andbulk-fill(Filtek OneBulkFill)RBCsexplainsthereducedlighttransmittance and theconsequentiallowerDC atthe bottomofthesam- ples[65,69].Inaddition, theincorporationofthefillerscan restrictthemobilityofthemonomersand radicals,leading toadecreasedconversion[73].Lowerconversion,maycom- promisethemechanicalpropertiesandthebiocompatibility oftheRBC,leadingtolowervaluesofhardness,earlydegra- dation of the RBC and release offree monomers, which – togetherwiththethermalload-canfurtherincreasethehaz- ardofpulpaldamage[32,34,74].Although,theminimumDC foraclinicallysatisfactoryrestorationhasnotyetbeenestab- lished,negativecorrelationwithinvivoabrasiveweardepth wasfoundforDCvaluesintherangeof55–65%[75,76].Asa flowablebulk-fillRBC,universal-shadeofSurefilSDRFlow+

wasinvestigatedinthepresentstudy,whichisanimproved versionofthewell-knownSurefilSDRFlow.Itwasdeveloped toincrease themechanicalproperties, wearresistanceand radiopacity[77].Severalresearchesprovedthehighconver- siondegreeoftheuniversal-shadeSurefilSDRFlow,evenin aneight-mmdeepcavity,wheretheDCreached63%afteran exposuretimeof20swithoutasignificantdifferencebetween thetopandbottomsurfaces[58].However,ourresultsdemon- stratedalowerDC%atthebottominthenewlydevelopedSDR Flow+,eventhoughthesamplewasirradiatedfromadistance ofzerobetweenthetopandlightguidetip.SDRFlow+contains 2.5%morefillercontentwithradiopacifiers,aswellasamod- ifiedmonomercomposition,whencomparedtotheinitially developedSurefilSDRFlow.Thismaycontributetothelower degreeofconversion.

Thelowestdegreeofconversion(52%)wasmeasuredinthe high-viscositybulk-fillRBC(FiltekOneBulkFill).Theexplana- tionforthiscannotjustbefoundinthehigherparticulatefiller loadand thepresenceofZr-silicaclusters,butmay alsobe explainedbythecontentofadditionfragmentationmonomers (AFM),incorporatedintotheresinmatrixasastressreliever.

Shahetal.demonstrated,thattheincorporationofAFM may leadtoagradual reductioninpolymerization kinetics alongwithasteadydecreaseofthereactionrateresultingin alowerconversionoftheRBC[78].TheDC-reducingpowerof

(12)

thismonomerissignificantabove5wt.%,howevertheexact contentofAFMisatradesecret.

Thisstudyhassomelimitationssuchastheremovalofthe enamelanddentinwalls,lackofapplicationofanadhesive layer,andmeasurementoftheintrapulpaltemperaturefroma singlepointwithoutsimulationofthebloodmicrocirculation.

Inthepresenceofaxialenamelanddentinwalls,theintrapul- paltemperatureincreasemaybemorerestrainedduetoheat dissipation.Alternatively,duetotheheat-storingcapacityof thedentinontopofthepulpchamber,theremaybeagrad- ualdissipationofthermalenergytowardthepulp,leadingto asustainedhighertemperatureinthepulpchamber[64],as observedinourstudy.Thus,theimportanceoftheremaining dentinthicknessabovethepulpchamberistwofold:whenitis decreased,boththeinsulatingeffectandheat-storingcapacity aredecreased.

Inaddition,thepolymerizedadhesivelayermayserveas abarriertoheattransferunderclinicalconditions.However, onemust considerthatduringpolymerizationofthe adhe- sivelayer,itwasfoundthatthepulptemperatureincreased fasterthanduringthephotocuringoftheRBC,especiallywith anirradiancehigherthan1000mW/cm2[79].Basedonthis observation,animportantproblemmayarisefromtheimme- diateapplicationoftheRBCwithoutfirstallowingforheatto dissipate.HeatgeneratedbytheirradiationoftheRBCcould potentiallycompoundintrapulpalthermaldamageasthepul- palanddentinetemperaturesarealreadyhigherduetothe adhesivepolymerization.

Moreover,thesimulationofbloodcirculationcandecrease theintrapulpaltemperatureinvitroasitmayhappeninvivo.

Although, heat dissipation is strongly influenced by blood circulation,Runnaclesetal.concluded,thatthepulpaltem- peratureincreasevaluesmeasuredinvitrowerecomparable totheinvivovalueswhenclinicallyrelevantlightexposure modes were compared [17]. Bone simulation experiments investigatingdrilling-inducedheatgenerationhavealsofound bloodcirculationtohavealowerimpactontemperatureaccu- mulation[80,81].

Regardingthelayerthickness,asalimitationofthisstudy, conventionalRBCswere nottestedinathicknessof4mm.

Although,itwouldhaveprovidedmoredatatoestimatethe effectsize ofthe investigatedvariables,conventional RBCs arerecommendedtobeappliedinamaximumthicknessof 2mm-aspermanufacturer’sinstructions-thustheauthors consideredtesting themin4mmthickness nottoberele- vant.

Although, bulk-fill RBCs can achieve a higher depth of curethanconventionalRBCs,thedepthofcureisnotalways clinicallyacceptableatathicknessof4mmwhenexposed as per manufacturer’s instructions (i.e. 10–20 s) [82]. As a limitationitshouldbementionedthatthepresentstudyinves- tigatedtheDCsandPTschangesofconventionalRBCswithan extendedexposuretime,whilebulk-fillandSFRCRBCswere testedonlywithanexposuredurationof20s.Severalinves- tigationsdemonstrated ahigherDC ofbulk-fillsand SFRCs withanextendedirradiationtime[82,83].Itseffectpertaining tobulk-fillshoweverisstronglymaterialdependent[10,58].

Eventhoughincreasedirradiationtimeisproventobebene- ficialformechanicalproperties[10],itmayalsoincreasethe pulpaltemperaturetherebycompromisingthehealthofthe

pulptissue.Furtherinvestigationsarerequiredtoclarifythis assumption.

Lastly,thepresentstudydidnotevaluatetheeffectsofthe different,clinicallymorerelevantcavitydesigns(depth,ori- fice diameter, remainingdentinthickness)whichmay also significantlyimpactdeliveredenergydensity,DCandpulpal temperature.

5. Conclusion

Withinthelimitationsofthisinvitrostudy,thefollowingcon- clusionscanbestated:

1) ThetemperatureandDCvalueswerepredominantlyinflu- encedbythecompositionofthematerialfollowedbythe thickness.

2) Thelow-viscosityRBCsand thematerialsusedin4mm thickness increased the pulpal temperature by a sig- nificantly higher extent. Amongthe different groupsof materials,themoretranslucentSFRCRBCsshowedsignif- icantlyhighertemperaturechange.

3) SignificantlyhigherDC levelswere measuredatthe top ofthesamplesascomparedtothebottominthe 2mm thickhigh-viscosityconventionalandbulk-fillRBCsandin each4mmthickhigh-andlow-viscositymaterials.Among thedifferentgroupsofmaterials,theconventionalflowable andtheSFRCRBCsachievedhigherDClevels.

4) Doublingthe exposuretimeincreasedsignificantlyboth theintrapulpal temperatureaswell asDCvaluesofthe investigatedconventionalRBCs.

5) HigherDCvaluesareassociatedwithsignificantincrease inpulpaltemperature,whichshouldbeconsideredbythe clinicianswhentheywanttoachievehigherDC%forbetter clinicalperformanceoftherestoration.

Acknowledgments

ThisworkwassupportedbytheBolyaiJánosResearchSchol- arship(BO/713/20/5);theÚNKP-20-5NewNationalExcellence ProgramoftheMinistryforInnovationandTechnologyfrom theSourceoftheNationalResearch,DevelopmentandInno- vationFund(ÚNKP-20-5-PTE-615),PTE-ÁOK-KA-2020/24and GINOP-2.3.2-15-2016-00049ResearchGrant.

references

[1] HalvorsonRH,EricksonRL,DavidsonCL.Energydependent polymerizationofresin-basedcomposite.DentMater 2002;18:463–9.

[2] LempelE,CzibulyaZ,Kunsági-MátéS,SzalmaJ,SümegiB, BöddiK.Quantificationofconversiondegreeandmonomer elutionfromdentalcompositeusingHPLCand

micro-Ramanspectroscopy.Chromatographia 2014;77:1137–44.

[3] AlShaafiMM.Factorsaffectingpolymerizationof resin-basedcomposites:aliteraturereview.SaudiDentJ 2017;29:48–58.

(13)

[4] RueggebergFA,CaughmanWF,CurtisJrJW.Effectoflight intensityandexposuredurationoncureofresincomposite.

OperDent1994;19:26–32.

[5] EmamiN,SöderholmKJ.Howlightirradianceandcuring timeaffectmonomerconversioninlight-curedresin composites.EurJOralSci2003;111:536–42.

[6] NeumannMG,MirandaWG,SchmittCC,RueggebergFA, CorreaIC.Molarextinctioncoefficientsandthephoton absorptionefficiencyofdentalphotoinitiatorsandlight curingunits.JDent2005;33:325–32.

[7] FengL,CarvalhoR,SuhBI.Insufficientcureunderthe conditionofhighirradianceandshortirradiationtime.Dent Mater2009;25:283–9.

[8] AlshaliRZ,SalimNA,SungR,SatterthwaiteJD,SilikasN.

Analysisoflong-termmonomerelutionfrombulk-filland conventionalresin-compositesusinghighperformance liquidchromatography.DentMater2015;31:1587–98.

[9] MoldovanM,BalazsiR,SoancaA,RomanA,SarosiC,Prodan D,etal.Evaluationofthedegreeofconversion,residual monomersandmechanicalpropertiesofsomelight-cured dentalresincomposites.Materials2019;12:2109.

[10] IlieN,KeßlerA,DurnerJ.Influenceofvariousirradiation processesonthemechanicalpropertiesandpolymerisation kineticsofbulk-fillresinbasedcomposites.JDent

2013;41:695–702.

[11] BucutaS,IlieN.Lighttransmittanceandmicro-mechanical propertiesofbulkfillvs.conventionalresinbased

composites.ClinOralInvestig2014;18:1991–2000.

[12] KrämerN,LohbauerU,Garcia-GodoyF,FrankenbergerR.

Lightcuringofresin-basedcompositesintheLEDera.AmJ Dent2008;21:135–42.

[13] SeligD,HaenelT,HausnerovaB,MoegingerB,LabrieD, SullivanB,etal.Examiningexposurereciprocityinaresin basedcompositeusinghighirradiancelevelsandreal-time degreeofconversionvalues.DentMater2015;31:583–93.

[14] ZachL,CohenG.Pulpresponsetoexternallyappliedheat.

OralSurgOralMedOralPathol1965;19:515–30.

[15] LeprinceJ,DevauxJ,MullierT,VrevenJ,LeloupG.

Pulpal-temperatureriseandpolymerizationefficiencyof LEDcuringlights.OperDent2010;35:220–30.

[16] HannigM,BottB.In-vitropulpchambertemperaturerise duringcompositeresinpolymerizationwithvarious light-curingsources.DentMater1999;15:275–81.

[17] RunnaclesP,ArraisCAG,MaucoskiC,CoelhoU,DeGoesMS, RueggebergFA.Comparisonofinvivoandinvitromodelsto evaluatepulptemperatureriseduringexposuretoa Polywave®LEDlightcuringunit.JApplOralSci 2019;27:e20180480.

[18] BaldissaraP,CatapanoS,ScottiR.Clinicalandhistological evaluationofthermalinjurythresholdsinhumanteeth:a preliminarystudy.JOralRehabil1997;24:791–801.

[19] UhlA,VolpelA,SiguschBW.Influenceofheatfromlight curingunitsanddentalcompositepolymerizationoncells invitro.JDent2006;34:298–306.

[20] JakubinekMB,O’NeillC,FelixC,PriceRB,WhiteMA.

Temperatureexcursionsatthepulp-dentinjunctionduring thecuringoflight-activateddentalrestorations.DentMater 2008;24:1468–76.

[21] KwonSJ,ParkYJ,JunSH,AhnJS,LeeIB,ChoBH,etal.

Thermalirritationofteethduringdentaltreatment procedures.RestorDentEndod2013;38:105–12.

[22] LloydCH,JoshiA,McGlynnE.Temperatureriseproducedby lightsourcesandcompositesduringcuring.DentMater 1986;2:170–4.

[23] BaroudiK,SilikasN,WattsDC.Invitropulpchamber temperaturerisefromirradiationandexothermofflowable composites.IntJPaediatrDent2009;19:48–54.

[24] GoodisHE,WhiteJM,GammB,WatanabeL.Pulpchamber temperaturechangeswithvisible-light-curedcompositesin vitro.DentMater1990;6:99–102.

[25] ShortallA,El-MahyW,StewardsonD,AddisonO,PalinW.

Initialfractureresistanceandcuringtemperatureriseoften contemporaryresin-basedcompositeswithincreasing radiantexposure.JDent2013;41:455–63.

[26] YaziciAR,MuftuA,KugelG,PerryRD.Comparisonof temperaturechangesinthepulpchamberinducedby variouslightcuringunits,invitro.OperDent2006;31:261–5.

[27] OzturkB,OzturkAN,UsumezA,UsumezS,OzerF.

Temperatureriseduringadhesiveandresincomposite polymerizationwithvariouslightcuringsources.OperDent 2004;29:325–32.

[28] KimMJ,KimRJY,FerracaneJ,LeeIB.Thermographicanalysis oftheeffectofcompositetype,layeringmethod,andcuring lightonthetemperatureriseofphoto-curedcompositesin toothcavities.DentMater2017;33:e373–83.

[29] Al-QudahA,MitchellC,BiagioniPA,HusseyDL.Effectof compositeshade,incrementthicknessandcuringlighton temperatureriseduringphotocuring.JDent2007;35:238–45.

[30] AtaiM,AhmadiM,BabanzadehS,WattsDC.Synthesis, characterization,shrinkageandcuringkineticsofanew low-shrinkageurethanedimethacrylatemonomerfor dentalapplication.DentMater2007;23:1030–41.

[31] WattsDC,McAndrewR,LloydCH.Thermaldiffusivityof compositerestorativematerials.JDentRes1987;66:1576–8.

[32] FronzaBM,RueggebergFA,BragaRR,MogilevychB,Soares LES,MartinAA,etal.Monomerconversion,microhardness, internalmarginaladaptation,andshrinkagestressof bulk-fillresincomposites.DentMater2015;31:1542–51.

[33] IlieN,StarkK.Curingbehaviourofhigh-viscositybulk-fill composites.JDent2014;42:977–85.

[34] LempelE,CzibulyaZ,KovácsB,SzalmaJ,TóthÁ, Kunsági-MátéS,etal.DegreeofconversionandBisGMA, TEGDMA,UDMAelutionfromflowablebulk-fillcomposites.

IntJMolSci2016;17:732.

[35] GaroushiS,VallittuP,ShinyaA,LassilaL.Influenceof incrementthicknessonlighttransmission,degreeof conversionandmicrohardnessofbulkfillcomposites.

Odontology2016;104:291–7.

[36] KimRJY,SonSA,HwangJY,LeeIB,SeoDG.Comparisonof photopolymerizationtemperatureincreasesininternaland externalpositionsofcompositeandtoothcavitiesinreal time:incrementalfillingsofmicrohybridcompositevs.bulk fillingofbulkfillcomposite.JDent2015;43:1093–8.

[37] YasaE,AtalayinC,KaracolakG,SariT,TürkünLS.

Intrapulpaltemperaturechangesduringcuringofdifferent bulk-fillrestorativematerials.DentMaterJ2017;36:566–72.

[38] AkarsuS,KarademirSA.Influenceofbulk-fillcomposites, polimerizationmodes,andremainingdentinthicknesson intrapulpaltemperaturerise.BiomedResInt2019:4250284.

[39] LempelE,TóthÁ,FábiánT,KrajczárK,SzalmaJ.

Retrospectiveevaluationofposteriordirectcomposite restorations:10-yearfindings.DentMater2015;31:115–22.

[40] GaroushiS,SäilynojaE,VallittuPK,LassilaL.Physical propertiesanddepthofcureofanewshortfiberreinforced composite.DentMater2013;29:835–41.

[41] FráterM,ForsterA,KeresztúriM,BraunitzerG,NagyK.

Invitrofractureresistanceofmolarteethrestoredwitha shortfibre-reinforcedcompositematerial.JDent 2014;42:1143–50.

[42] LinM,XuF,LuTJ,BaiBF.Areviewofheattransferinhuman tooth–experimentalcharacterizationandmathematical modeling.DentMater2010;26:501–13.

[43] NakajimaM,ArimotoA,PrasansuttipornT,Thanatvarakorn O,FoxtonRM,TagamiJ.Lighttransmissioncharacteristicsof

(14)

dentineandresincompositeswithdifferentthickness.J Dent2012;40:e77–82.

[44] PriceRB,MurphyDG,DerandT.Lightenergytransmission throughcuredresincompositeandhumandentin.

QuintessenceInt2000;31:659–67.

[45] RaabWH.Temperaturerelatedchangesinpulpal microcirculation.ProcFinnDentSoc1992;88:469–79.

[46] KodonasK,GogosC,TziafasD.Effectofsimulatedpulpal microcirculationonintrapulpaltemperaturechanges followingapplicationofheatontoothsurfaces.IntEndodJ 2009;42:247–52.

[47] ShortallAC,FelixCJ,WattsDC.Robustspectrometer-based methodsforcharacterizingradiantexitanceofdentalLED curingunits.DentMater2015;31:339–50.

[48] ShimokawaCAK,TurbinoML,HarlowJE,PriceHL,PriceRB.

Lightoutputfromsixbatteryoperateddentalcuringlights.

MaterSciEngCMaterBiolAppl2016;69:1036–42.

[49] AlShaafyMM,HarlowJE,PriceHL,RueggebergFA,LabrieD, AlQahtaniMQ,etal.Emissioncharacteristicsandeffectof batterydrainin“budget”curinglights.OperDent 2016;41:397–408.

[50] PohtoM,ScheininA.Microscopicobservationsonliving dentalpulpII.Theeffectofthermalirritantsonthe circulationofthepulpinthelowerratincisor.ActaOdontol Scand1958;16:315–27.

[51] RueggeberFA,GianniniM,ArraisCAG,PriceRBT.Light curingindentistryandclinicalimplications:aliterature review.BrazOralRes2017;31:e61.

[52] AsmussenE,PeutzfeldtA.Temperatureriseinducedby somelightemittingdiodeandquartz-tungsten-halogen curingunits.EurJOralSci2005;113:96–8.

[53] DaronchM,RueggebergFA,HallG,DeGoesMF.Effectof compositetemperatureoninvitrointrapulpaltemperature rise.DentMater2007;23:1283–8.

[54] ShortallAC,HarringtonE.Temperatureriseduring polymerizationoflight-activatedresincomposites.JOral Rehabil1998;25:908–13.

[55] Al-QudahAA,MitchellCA,BiagioniPA,HusseyDL.

Thermographicinvestigationofcontemporary resin-containingmaterials.JDent2005;33:593–602.

[56] EmamiM,SöderholmKJ,BerglundLA.Effectoflightpower densityvariationsonbulkcuringpropertiesofdental composites.JDent2003;31:189–96.

[57] AtaiM,MotevasselianF.Temperatureriseanddegreeof photopolymerizationconversionofnanocompositesand conventionaldentalcomposites.ClinOralInvestig 2009;13:309–16.

[58] LempelE, ˝OriZ,SzalmaJ,LovászVB,KissA,TóthÁ,etal.

Effectofexposuretimeandpre-heatingontheconversion degreeofconventional,bulk-fill,fiberreinforcedand polyacid-modifiedresincomposites.DentMater 2019;35:217–28.

[59] CioffiM,HoffmannAC,JanssenLPBM.Reducingthegel effectinfreeradicalpolymerization.ChemEngSci 2001;56:911–5.

[60] IldayNO,SagsozO,KaratasO,BayindirYZ,CelikN.

Temperaturechangecausedbylightcuringof fiber-reinforcedcompositeresins.JConservDent 2015;18:223–6.

[61] ParM,RepusicI,SkenderovicH,MilatO,SpajicJ,TarleZ.The effectsofextendedcuringtimeandradiantenergyon microhardnessandtemperatureriseofconventionaland bulk-fillresincomposites.ClinOralInvestig2019;23:3777–88.

[62] VallittuPK.Peaktemperaturesofsomeprostheticacrylates onpolymerization.JOralRehabil1996;23:776–81.

[63] RunnaclesP,ArraisCAG,PochapskiMT,dosSantosFA, CoelhoU,GomesJC,etal.Invivotemperaturerisein

anesthetizedhumanpulpduringexposuretoapolywave LEDlightcuringunit.DentMater2015;31:505–13.

[64] ChiangYC,LeeBS,WangYL,ChengYA,ChenYL,ShiauJS, etal.Microstructuralchangesofenamel,dentin-enamel junction,anddentininducedbyirradiatingouterenamel surfaceswithCO2laser.LasersMedSci2008;23:41–8.

[65] dosSantosGB,AltoRV,FilhoHR,daSilvaEM,FellowsCE.

Lighttransmissionondentalresincomposites.DentMater 2008;24:571–6.

[66] EmamiN,SjödahlM,SoderhölmK-JM.Howfillerproperties, fillerfraction,samplethicknessandlightsourceaffectlight attenuationinparticulatefilledresincomposites.Dent Mater2005;21:721–30.

[67] DoughertyMM,LienW,MansellMR,RiskDL,SavettDA, WandewalleKS.Effectofhigh-intensitycuringlightsonthe polymerizationofbulk-fillcomposites.DentMater

2018;34:1531–41.

[68] FerracaneJL.Correlationbetweenhardnessanddegreeof conversionduringthesettingreactionofunfilleddental restorativeresins.DentMater1985;1:11–4.

[69] AlshaliRZ,SilikasN,SatterthwaiteJD.Degreeofconversion ofbulk-fillcomparedtoconventionalresin-compositesat twotimeintervals.DentMater2013;29:e213–7.

[70] HalvorsonRH,EricksonRL,DavidsonCL.Theeffectoffiller andsilanecontentonconversionofresin-basedcomposite.

DentMater2003;19:327–33.

[71] GoracciC,CadenaroM,FontaniveL,GiangrossoG,JuloskiJ, VichiA,etal.Polymerizationefficiencyandflexuralstrength oflow-stressrestorativecomposites.DentMater

2014;30:688–94.

[72] GCAustralia,EverXFlow2019

http://www.gcaustralasia.com/Upload/product/pdf/112/

F575EverX-Flow-brochureFinalWS17052019.pdf.[Accessed 23October2020].

[73] Amirouche-KorichiA,MouzaliM,WattsDC.Effectsof monomerratiosandhighlyradiopaquefillersondegreeof conversionandshrinkage-strainofdentalresincomposites.

DentMater2009;25:1411–8.

[74] LovászBV,LempelE,SzalmaJ,SétálóJrG,VecsernyésM, BertaG.InfluenceofTEGDMAmonomeronMMP-2,MMP-8, andMMP-9productionandcollagenaseactivityinpulp cells.ClinOralInvestig2020,

http://dx.doi.org/10.1007/s00784-020-03545-5.Epubaheadof print.

[75] FerracaneJL,MitchemJC,CondonJR,ToddR.Wearand marginalbreakdownofcompositeswithvariousdegreesof cure.JDentRes1997;76:1508–16.

[76] SilikasN,EliadesG,WattsDC.Lightintensityeffecton resin-compositedegreeofconversionandshrinkagestrain.

DentMater2000;16:292–6.

[77] DentsplySirona,SDRFlow+BulkFillFlowable2017 https://assets.dentsplysirona.com/flagship/en/explore/

restorative/sdrflowpluseuversion/SM%20SDR%20Flow Plus%20V01%202017-12-08.pdf.[Accessed23October2020].

[78] ShahPK,StansburyJW,BowmanCN.Applicationofan addition-fragmentation-chaintransfermonomerin di(meth)acrylatenetworkformationtoreduce polymerizationshrinkagestress.PolymChem 2017;8:4339–51.

[79] MillenC,OrmonM,RichardsonG,SantiniA,MileticV,KewP.

Astudyoftemperatureriseinthepulpchamberduring compositepolymerizationwithdifferentlightcuringunits.J ContempDentPract2007;8:29–37.

[80] PandeyRK,PandaSS.Drillingofbone:acomprehensive review.JClinOrthopTrauma2013;4:15–30.

[81] SzalmaJ,LovászBV,VajtaL,SoósB,LempelE,Möhlhenrich C.Theinfluenceofthechoseninvitrobonesimulation

(15)

modelonintraosseoustemperaturesanddrillingtimes.Sci Rep2019;9:11817.

[82] RodriguezA,YamanP,DennisonJ,GarciaD.Effectof light-curingexposuretime,shade,andthicknessonthe depthofcureofbulkfillcomposites.OperDent 2017;42:505–13.

[83] JangJH,ParkSH,HwangIN.Polymerizationshrinkageand depthofcureofbulk-fillresincompositesandhighlyfilled flowableresin.OperDent2015;40:172–80.

Ábra

Table 2 – Mean temperature change (T), time to reach the maximum temperature (Tmax), returning time to the initial temperature of investigated resin-based composites (RBC) with standard deviations (S.D.).
Fig. 1 – (OPTIONAL) Schematic figure of the experimental set-up for pulpal temperature measurements.
Fig. 2 – (A) Thermal change of high and low viscosity conventional, bulk-fill and short-fibre reinforced resin-based composites polymerized for 20 s
Fig. 3 – (A) Thermal change of high and low viscosity conventional resin-based composites polymerized for 20 s vs
+3

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

But this is the chronology of Oedipus’s life, which has only indirectly to do with the actual way in which the plot unfolds; only the most important events within babyhood will

I examine the structure of the narratives in order to discover patterns of memory and remembering, how certain parts and characters in the narrators’ story are told and

Keywords: folk music recordings, instrumental folk music, folklore collection, phonograph, Béla Bartók, Zoltán Kodály, László Lajtha, Gyula Ortutay, the Budapest School of

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Wild-type Euglena cells contain, therefore, three types of DNA; main band DNA (1.707) which is associated with the nucleus, and two satellites: S c (1.686) associated with

In all of the runs made during these experiments, the viscosity of the corn syrup was different, owing to differences in temperature and (prob- ably) the water content of the