• Nem Talált Eredményt

diameter ratio and their non-dimensional interparticledistance/particle (SERS) of gold/silver scattering efficiency nanoislandarrangements A generalized relationship exponential between the surface-enhancedRaman Sensors and Actuators A: Physical

N/A
N/A
Protected

Academic year: 2022

Ossza meg "diameter ratio and their non-dimensional interparticledistance/particle (SERS) of gold/silver scattering efficiency nanoislandarrangements A generalized relationship exponential between the surface-enhancedRaman Sensors and Actuators A: Physical"

Copied!
10
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Sensors and Actuators A: Physical

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland

arrangements and their non-dimensional interparticle distance/particle diameter ratio

P. Pal

a

, A. Bonyár

b

, M. Veres

c

, L. Himics

c

, L. Balázs

a

, L. Juhász

d

, I. Csarnovics

a,∗

aDepartmentofExperimentalPhysics,UniversityofDebrecen,Debrecen,Hungary

bDepartmentofElectronicsTechnology,BudapestUniversityofTechnologyandEconomics,Budapest,Hungary

cInstituteforSolidStatePhysicsandOptics,WignerResearchCentreforPhysics,Budapest,Hungary

dDepartmentofSolidStatePhysics,UniversityofDebrecen,Debrecen,Hungary

a r t i c l e i n f o

Articlehistory:

Received19April2020

Receivedinrevisedform27May2020 Accepted23July2020

Availableonline25July2020

Keywords:

Goldandsilvernanoislands Surface-enhancedRamanscattering Plasmonics

Photonicdevices Sensors

a b s t r a c t

Theoptimizationofthegeometricalpropertiesofgold/silvernanoparticlearrangementstomaximize theirsurface-enhancedRamanscattering(SERS)efficiencyisstudiedinthiswork.Forthispurpose,the metallicnanostructureswerecreatedbythermallyannealinggoldandsilverthinfilmlayersdeposited ontoglasssubstrates.TheSERScapabilitiesofthesampleswereevaluatedbymeasuringananalytesolu- tionofbenzophenonewiththreedifferentexcitationlaserwavelengths.Systematicinvestigationswere carriedoutondifferentgoldandsilvernanoislandsamplestodeterminehowtheSERSenhancement dependsonthegeometrical(particlediameter,interparticledistance)andopticalparameters(plasmon wavelength)ofthenanostructures,aswellasonthewavelengthoflaserexcitation.Theimportance ofmatchingtheexcitationwavelengthwiththeresonantplasmonabsorbancepropertiesofthesur- facewasproved.However,itwasalsoshownthattheoptimizationofthegeometricalpropertiesof thenanoislandarrangementsdominatesovertheselectionoftheexcitationwavelength.Ageneralized exponentialrelationshipbetweentheSERSenhancementandthenon-dimensionalinterparticledis- tance/particlediameterratiowasestablished.Optimaltechnologicalparametersforthefabricationof gold/silvernanoislandSERSsubstrateswereproposed.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ramanspectroscopy is an efficientvibrational spectroscopic techniquethatallowstheanalysisofthestructureandcomposition ofmaterialsinsolid,liquid,orgasstate[1].Thedisadvantageisthat Ramanscatteringhaslowscatteringefficiency.Surface-enhanced Ramanspectroscopy(SERS)isusedfordecadestoimprovethepro- cesssensitivity[2] TheSERSphenomenonwasfirstobservedin 1974byFleischmannetal.[3],whoobservedunexpectedlylarge Ramansignalswhenstudyingpyridineadsorbedonaroughened silverelectrode[4]

Correspondingauthorat:Department ofExperimentalPhysics,Insituteof Physics,FacultyofScienceandTechnology,UniversityofDebrecen,4026Debrecen Bemsq18/a,Hungary.

E-mailaddress:csarnovics.istvan@science.unideb.hu(I.Csarnovics).

ThemagnificationofRamansignalsbyseveralordersofmagni- tudeismadepossiblebythenanostructuredorroughenedmetal surface[5].SeveralstudieshaveaddressedtheSERSenhancement mechanism.Nowadays,itisacceptedthattwomajorfactorscon- tributetotheenhancementofRamansignals:electromagnetic[6]

andchemical[7,8],fromwhichtheelectromagneticmechanismis consideredtobethekeyone[6,9].SERSincorporatestheessential benefitsofRamanspectroscopysuchasfingerprintidentificationof molecules,non-destructiveanalysis,minimalsamplepreparation;

analysisofbiologicalsamples;thepossibilityofcarryingoutfield analysisusingportabledevices[8],allwithhighsensitivity,which insomecasesevenallowsthedetectionofasinglemolecule[4,10].

Silverandgoldnanostructuresarethemostwidelyusedmate- rialsinSERSsubstratesduetotheirsurfaceplasmonresonance (LSPR)properties,which cover awide wavelengthrange in the visible and near-infrared regions where most Ramanmeasure- mentsaremade[1,11].Severalmethodshavebeendevelopedfor thefabricationofthesesubstrates,whichfollowoneoftwogen-

https://doi.org/10.1016/j.sna.2020.112225

0924-4247/©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(2)

SERSsubstrates[26,27] andthedevelopmentand fabricationof substrateswith optimal enhancement properties [4]. The SERS enhancementfactor(SERSEF)ofasubstratedependsonseveral factors,suchasthegeometrical propertiesof thenanoparticles (size,shape,interparticledistance,andgeneralarrangement)orthe wavelengthoftheexcitationsource[28].Thesefactorsareinter- twinedinanontrivialway,formingacomplexsystem,whichis essentialtobeoptimizedforthebestSERSperformance.

TheeffectofnanoparticlesizeontheSERSperformancewas previouslystudied[29–32]withmixedconclusions.Itwasshown thatthehighestSERSEFcouldbereachedwithsphericalgoldand silvernanoparticleswithadiameterof50nm[29,31],whileoth- ersreported a broaderrange of optimalparticlesizesbetween 30–100nmfortheimprovementofSERS[30,32].Generally,when theparticlesaretoosmall,boththeactualconductivityandthe scatteringpropertiesarereduced,whichexpectedlyreducesthe SERSefficiency[30].Astheparticlesizeincreases,theSERSeffect increasessincetheyactaslargerscatteringcenters.However,in thesepapers,therewasnostudyconcerningtheinterparticledis- tance.

Besides,otherworks studiedthisparameter, asinterparticle distancealsoaffects theSERSenhancement.In previousworks, a relationship betweenthe interparticle distanceand theSERS enhancementwasdemonstrated[33,34].Theclosertheparticles aretoeachother,thehigherthespecificsurfacecoverageoftheir activesurfacesis, andthesurfacedensityofhot-spots(number ofareaswithincreasednearfieldintensitiesduetocoupledplas- monsbetweentheparticles)isalsohigher,whichaltogetherresults inanimprovedSERSefficiencyasit wasshowninourprevious work[35].Atveryshortdistances(e.g.,lessthan1nm),quantum mechanicalphenomenaplayarolethatlimitsthepossibleachiev- ablefieldstrengths[36].Mostpapersonlystudytheinfluenceof interparticledistanceand donottakeintoaccounttheeffectof thenanostructures’size,exceptforafew[35,37–39].Itcouldbe concludedthatseveralpastworksinvestigatedtheeffectofthese parametersindependently;theircomplexrelationshipisnotyet fullydescribed.

Theshape ofthenanoparticlescanalsobeafactor,itseffect onthe SERSenhancement was investigated by others [40–42].

Accordingtothese,anisotropicmetallicnanoparticleswithcom- plexshapes(e.g.,hexagonal,triangular,cubical,starshape),could bebeneficialduetothemoreintensenear-fieldsatthesharpedges.

However,thecomplicatedsynthesisofsomeoftheseparticlesand theirsubsequentsurfacechemistryarethemaindrawbackoftheir currentapplication.

Anothergeneralconsiderationis that thewavelength ofthe excitationsource shouldmatchthe plasmonicproperties (LSPR excitationrange)ofthesubstrateascloseaspossible.TheLSPR absorbance wavelength shifts to red with larger nanoparticle size and smaller interparticle distance (due to the plasmonic coupling) [43,44]. If the excitation wavelength is far from the plasmonexcitationofthesubstrate,theSERSenhancementcan

applicationofSERSforthedetectionofothermaterialssystems, somerecentreviewscanberecommended[46,47].

2. Materialsandmethods 2.1. PreparationofSERSsubstrates

ThesubstratesfortheSERSactivenanoparticleswerecutfrom microscopeslideswithahandheldglasscuttertoformglassplates.

TheywerecleanedinanEMMI-20HCultrasonicbathin96%ethanol andthenwipeddrywithasterilepaper.Theamountofmaterialto beevaporatedwasmeasuredonaSartoriusMicroM3psemi-micro analyticalbalance.Thethinmetallicfilmswithcontrolledthick- nesseswerepreparedbythermalevaporation.Thelayerthickness wasmeasuredbyusinganAmbiosXP-1profilometer.Thethick- nessesofthecreatedgoldlayerswere9and12nm,whileforthe silverlayer15 and25nm. Sampleswerethen heat-treatedin a quartzglasstubeplacedinanovenfilledwithAr:Hprecursorgas.

Theheattreatment(solid-statedewetting)tookplaceatdifferent temperatures(350C,450C,and550C)fordifferentperiods(15, 30,60and120min),resultinginavarietyofgeometricalparam- eters (e.g.,particlediameter, interparticledistance). During the treatment,thehightemperatureinducesdiffusiononthesurface ofthesubstrate,causingthethinfilmfirsttoburst,thentoform nanoscaleislands.

2.2. CharacterizationofSERSsubstrates

Thefreshly preparedmetallicnanoislandswereexaminedby using a scanning electron microscope(SEM) and then an opti- calspectrophotometer.SEMimageswererecordedwithaHitachi S4300-CFEinstrument.Multiplelocationsandmagnificationswere takenoneachsample.Theimageswereevaluatedbyusingthe National Instruments VisionAssistant software package, which determinedthemeannanoislanddiameter(definedastheequiv- alentdiameterofacirclehavingthesameprojectedareaasthe nanoisland),measurementuncertainty,anddiameterdistribution.

Tofurtherevaluatethediameterdistribution,weusedtheOrig- inPro9softwareandacustom-writtenMatlabscripttodetermine theaverageinterparticledistanceanditsstandarddeviation.The measurementuncertaintyofthediameteroftheproducednanos- tructuresandtheinterparticledistancewas10–15%,depending on the sample. The next step was to investigate the plasmon wavelengthofthecreatedmetallicnanostructures.Measurements weremadewithan OceanOpticsRedTideUSB650optical fiber spectrophotometer.Theopticaltransmittanceofthesampleswas measuredinair.

Figs.1and2illustratesSEMimages(withanaccelerationvoltage of5kVandmagnificationof×20000or×30000)ofgoldandsilver nanoislandsandtheirtransmittancespectra.Thediameter,inter- particledistance,andplasmonwavelengthscouldbecontrolledby

(3)

Fig.1. Illustrationofthepreparedgoldnanoislands:a)SEMimageofgoldsample1;b)SEMimageofgoldsample2;c)Thecorrespondingopticaltransmittancespectraof thesamples.ThetechnologicalparametersaregiveninTable1.ThemagnificationofSEMimageswas×20000.

Table1

Parametersofthetwodifferentgoldsamples.

AuSample1 AuSample2

Initiallayerthickness 9nm 12nm

Annealingtemperature 550C 550C

Annealingtime 15min 15min

Table2

Parametersofthetwodifferentsilversamples.

AgSample1 AgSample2

Initiallayerthickness 15nm 25nm

Annealingtemperature 350C 350C

Annealingtime 60min 60min

theinitialthicknesswhilekeepingtheannealingtemperatureand timefixed.Fig.1and2illustratetwodifferentgold/silversamples withthefabricationparametersgiveninTables1and2,respec- tively.Thesefiguresshowhowtheinitiallayerthicknessaffects

thediameteroftheformednanoislandsandtheinterparticledis- tanceatthesameannealingtemperatureandtime.Bystartingfrom athickerlayer,largernanoislandsareformedfartherapart,whilea thinnerfilmproducessmallernanoislandsthatareclosertogether.

Also,thedifferentgoldandsilverpatternsclearlyshowhowthe transmittanceofthesamplevarieswithdiameter,affectedbythe initiallayerthickness.

2.3. SamplepreparationforSERSmeasurements

TheanalytesolutionusedfortheRamanmeasurementswas 50mMbenzophenone,dissolvedinisopropylalcohol,andallSERS measurements wereperformedwitha solution takenfrom the same batch. During thepreparation, special care wasgiven to dissolveallthebenzophenonecrystalsandtohomogenizethesolu- tion.

Spincoaterwasusedtoplacethebenzophenonesolutionon theSERSsubstrates,which allowscreatinga uniformthin layer of theanalyte.The substrateswereplaced in thecenter of the

(4)

Fig.2.Illustrationofthepreparedsilvernanoislands:a)SEMimageofsilversample1;b)SEMimageofsilversample2;c)Thecorrespondingopticaltransmittancespectra ofthesamples.ThetechnologicalparametersaregiveninTable2.ThemagnificationofSEMimageswas×30000.

device,whichwasfixedwithdouble-sidedadhesive.Then,using amicropipette,20␮Lofthesamplesolutionwasdroppedintothe centeroftheactivesurface,andthespincoaterwasstartedand rotatedat1000rpmfor1min.Thecentrifugalforceoccurringdur- inghigh-speedrotationuniformlydistributesthesolutiononthe substratesurface.

2.4. SERSmeasurements

ARenishawinVia, a Renishaw1000B,and a HoribaLabRam RamanspectrometerwereusedforRamanmeasurementsonthe samples.Duringthework,488,532,and633nmlaserswereusedas excitationsources,andthemeasurementtimeforeachsamplewas 10s.Theexcitationbeamwasfocusedontothesamplesurfacewith a50xlens.Ramanmeasurementswereperformedinseveralpoints onthesubstratesurface(5–7points),andthemeasurementhas beenrepeatedinthepointwheretheSERSenhancementproved tobethebest.ForthereferenceRamanspectrum,theanalytewas

placedonabareglassslideunderthesameconditionsandinthe sameamount.

Thecharacteristicspectraofbenzophenonewereobtainedin ourmeasurementsonapureglasssubstrateandmetallicnanopar- ticlesaswell.Themainbandsofbenzophenonecanbeobservedon bothwithdifferentintensities(seeFig.3).Basedonthese,theSERS enhancementwascalculatedfromtheintensityofthe1596cm−1 peak,whichcorrespondstothevibrationoftheC Cbondsofthe phenylring[48].

Inthiswork,wecalculatedtheSERSenhancementbasedonthe enhancementfactor(EF)[9],whichcanbedefinedasEq.(1):

EF=ISERS

NSERS IRS

NRS

(1)

Inthisapproach,IRSistheRamansignalundernon-SERScon- ditions(e.g.,onthesurface ofthereferencesample).Underthe sameexperimentalconditionsand thesamepreparationcondi- tions,theSERSsignalmeasuredontheSERSsubstratewillhave theintensityofISERS[9,30].Atthesametime,theNRS–istheaver-

(5)

Fig.3. ThemeasuredRamanandSERSspectraofthebenzophenone.

agenumberofmoleculesinthescatteringvolumefortheRaman (non-SERS)measurement,andNSERS–istheaveragenumberof adsorbedmoleculesinthescatteringvolumefortheSERSexper- iments.ThisEFcalculationapproachignoresthefactthatSERSis asurface-sensitivephenomenon:onlysurface-adsorbedmolecules contributetothehighestEMenhancement,andthesignalcontribu- tiondecaysexponentiallywithincreasingdistancetothesurface.

Sinceinourexperiments,thesamplewaspresentonlyintheform ofathinspin-coatedlayer(forbothSERSandreferencemeasure- ments)weassumedthatNSERS∼=NRS,thusEFcanbesimplifiedas theratioofthemeasuredintensities.

3. Resultsanddiscussion 3.1. Goldsubstrates

Forbothgoldandsilvernanoislands,measurementsweremade withthreelasersofdifferentwavelengths.Beforethat,theiroptical parameters,diameter,andinterparticledistanceweremeasured, andtheEFwasevaluatedforeachexcitationwavelength.

Asmentionedintheintroduction,therelationshipbetweenthe plasmon wavelength ofthe substrateand the excitation wave- lengthaffectstheSERSenhancement.Thethreedifferentexcitation wavelengthsinourstudyaremeanttoprobethisrelationship.The plasmonresonanceofnanoislandscanbeeffectivelytunedwiththe particlediameter,structure,andinterparticledistance[33,38,39].

Fig.5.Surface-enhancedRamanspectraofbenzophenonemeasuredonagold nanoislandsubstratewiththreedifferentexcitationwavelengths.

Fig.4aillustratestheeffectofthenanoislanddiameterontheplas- monwavelength.Themeasureddiameter,interparticledistance and plasmonwavelength ofthethree nanoislandarrangements shownin thefigurearethefollowing:sample1:50nm,45nm, 514nm,sample2:54nm,46nm,527nm,sample3:59nm,37nm, 561nm,respectively.Itcanbeseenthatbyincreasingthediam- eterofthegoldnanoislands,thepositionoftheplasmonpeakis shiftingtohigherwavelengths.Therelationshipbetweentheplas- monabsorbancepropertiesandtheexcitationwavelengthscanbe studiedbasedonFig.4b.Sincetheplasmonresonanceofthegold nanoislandsisinthe500−600nmrange,itcanbeexpectedthatthe laserwith532nmexcitationwavelengthwillyieldthehighestSERS enhancement.Fig.4bpartiallyconfirmthis,since,ingeneral,the 532nmexcitationresultedinthehighestaverageEF.Fig.5presents sampleSurface-enhancedRamanspectrameasuredwiththethree differentexcitationsources,whichalsoillustratethatthehighest enhancementwasobtainedbyusing532nmexcitation.Itshouldbe notedthattheRamanscatteringwillbenon-resonantforallthese excitationwavelengths.Theanalysisoftheabsorptionspectrumof benzophenone[49]showsthattheabsorptionbandsofthecom- poundareintheUVregion,wellbelowourlowestlaserwavelength of488nm.

However,there are somepeculiaritiesworth mentioning. In Fig.4b,thepresenteddataaregivenasafunctionofthenormalized absorbancemeasuredatthegivenexcitationwavelength.Ahigher

Fig.4.a)Normalizedabsorbancespectraillustratingtheeffectofdifferentgoldnanoislanddiametersontheplasmonicabsorbanceofthesubstrates(averagediameters:

#1:50nm,#2:54nm,#3:75nm);b)Dependenceoftheenhancementfactorontheexcitationwavelengthinthefunctionofthenormalizedabsorbanceatthatwavelength.

Forthis,thenormalizedabsorbanceofthesamples(asinFig.4a)wereevaluatedattheexcitationlaser’swavelength.

(6)

Fig.6. Enhancementfactorsobtainedfor532nmexcitation,inthefunctionofa)theaveragegoldnanoislanddiameter(D);b)theaverageinterparticledistance(r);andc) theinterparticledistance/nanoislanddiameterratio(r/D).

normalizedabsorbancemeansthatthenanoparticlearrangement hasastrongerplasmonicresonanceatthegivenwavelength.The factthattheEFdoesnot correlatedirectlywiththenormalized absorbance indicates that the excitation wavelength is impor- tantnotonlybecauseofitsrelationtoplasmonexcitation.E.g., insomeofthecases,a633nmexcitationwithsmallnormalized absorbance(around0.1,inotherwordsfarfromtheplasmonres- onancepeak) resulted in betterenhancement than the532nm excitationwithhighnormalizedabsorbance(around1,e.g.,inthe plasmonresonancepeak).Also,the488nmexcitationresultedin thesmallestaverageEFregardlessofthenormalizedabsorbance atthiswavelength.Theseobservationsindicatethatotherfactors determineorinfluencetheeffectofexcitationwavelengthonthe SERSEFbesidesitsrelationtotheplasmonicpropertiesofthesub- strate.

Toevaluatetheeffect of thegeometricalparameters onthe measuredSERS enhancementfactorsin moredetail, theresult- ingEFsobtainedwiththe532nmlaser excitationwere plotted asa functionofboth theaveragenanoislanddiameter(Fig.6a) and the average interparticle distance (Fig. 6b). As expected – accordingtothediscussionsintheintroduction–themeasured EFshowsastrongpositivelinearcorrelationwiththeparticlesize andalso decaysexponentiallywithincreasing interparticledis- tance.Thevariationofthedatadecreasessignificantlywhenthe obtainedEFs are plotted as a function of theinterparticle dis- tance/nanoisland diameter ratio (r/D). The enhancement factor showsaclearexponentialrelationshipwiththisnon-dimensional parameter(equationgiveninFig.6c,inwhichtheIDistheinterpar-

ticledistance/nanoislanddiameterratio),whichmakesthedesign andoptimizationoftheSERSsubstratessimpler.

Based on the results, the highest SERS enhancement (∼6.5) wasachieved withgoldnanoislands preparedwiththe follow- ingfabricationparameters:initiallayerthickness:9nm,annealing temperature:500C,annealingtime:15min.TheSERSsubstrate fabricatedwiththese conditions hasthefollowing parameters:

plasmonwavelengthpeak:528nm,particlediameter:58nm,inter- particledistance:30nm.

3.2. Silversubstrates

Thesilver-basednanoislandSERSsubstrateswereinvestigated withthesamemethodology.Fig.7ashowsthethreetypicalspectra withthefollowinggeometricalandplasmonicproperties(diam- eter,interparticledistance,andplasmonwavelength):sample1:

34nm, 41nm, 422nm, sample 2: 37nm, 36nm, 436nm, sam- ple3:39nm,31nm,445nm.For thesilver nanoislandsamples, theplasmonabsorbancepeaksarebetween400−460nm,thus,as expected,thehighestaverageenhancementfactorswereachieved withthe488nm laserexcitation (seeFig. 7b).Thisisalso con- firmedbythesampleSurface-enhancedRamanspectrapresented inFig.8.However,similarlytowhatwesawinthecaseofthegold nanoislands,themeasuredEFdoesnotcorrelateclearlywiththe normalizedabsorbance,regardlessof theexcitationwavelength (Fig.7b).

Asinthecaseofgoldnanoislands,theeffectofthegeomet- ricalparameterswasstudiedindetail.ThechartsofFig.9show

(7)

Fig.7. a)Normalizedabsorbancespectraillustratingtheeffectofdifferentsilvernanoislanddiametersontheplasmonicabsorbanceofthesubstrates(averagediameters:

#1:34nm,#2:37nm,#3:39nm);b)Dependenceoftheenhancementfactorontheexcitationwavelengthinthefunctionofthenormalizedabsorbanceatthatwavelength.

Forthis,thenormalizedabsorbanceofthesamples(asinFig.7a)wereevaluatedattheexcitationlaser’swavelength.

Fig.8.Surface-enhancedRamanspectraofbenzophenonemeasuredonasilver nanoislandsubstratewiththreedifferentexcitationwavelengths.

thesamelinearandexponentialtendenciesbetweenthemeasured EFandthenanoislanddiameterandinterparticledistance,respec- tively(forthedataobtainedwiththe488nmexcitation).TheEFalso showsaclearexponentialrelationshipwiththenon-dimensional (r/D)parameter(equationinFig.9c,whereIDistheinterparticle distance/nanoislanddiameterratio).Ithastobenotedthatsilver nanoislandsshowahigher respectiveSERSenhancementinthe functionofr/D(bycomparingtheequationsinFigs.6cand9c).

ThehighestSERSenhancement(∼27)wasachievedwithsilver nanoislands prepared with the following fabrication parame- ters:initiallayerthickness:25nm,annealingtemperature:350C, annealingtime:60min.TheSERSsubstratefabricatedwiththese conditions has the following parameters: plasmon wavelength peak: 438nm, particle diameter: 61nm, interparticle distance:

22nm.

4. Conclusions

Bycomparingtheresultsobtainedonthegoldandsilvernanois- landarrangements,wecandrawthefollowingconclusions:

1)ThehighestaverageandmaximumobtainedSERSanalytical enhancementfactorswereachievedwiththe532nmlaserirradia- tionforgoldnanoislandsandwiththe488nmexcitationforsilver nanoislands.Thisprovesthattherelationshipbetweentheexci- tationwavelengthandtheplasmonabsorbancepropertiesofthe

surfaceisimportantandshouldbeconsideredwhenselectinga SERSsubstrate.

2)Ourfindingspartiallycontradictthefactthatforbothofthe cases,theobtainedEFsdidnotshowaclearcorrelationwiththe normalizedabsorbancepeaksconsideringallinvestigatedexcita- tionwavelengths.Thissuggeststhatotherfactors–suchasthe geometricalpropertiesofthenanoislandarrangements–dominate overtheexcitationwavelengthtoareasonableextent.

3)TheSERSEF showeda positivelinear correlationwiththe nanoparticle size and a negative exponential relation with the interparticledistanceforbothtypesofnanomaterials.Thiscanbe attributedtothehigherscatteringefficiency(biggerparticlesize) andthehigherdensityofnear-fieldhotspotsonthesurfaceinthe caseoftightlypackedparticles.

4)A precise exponential relationship could be established betweenthemeasuredEFandthenon-dimensionalr/Dparame- ter,whichistheratiooftheinterparticledistanceandtheparticle diameter,forbothmaterialtypes.

5)Silvernanoislands(measuredat488nm)showedasteeper exponentialincreaseintheEFwithdecreasingr/Dcomparedtothe goldnanoislands(measuredat532nmexcitation).

6)Theseresultssuggestthatlargerandcloserpackedmetallic nanostructureswillresultinbetterSERSenhancement.Inthecase ofgold,thiscanbeachievedwithathinnerstartinglayer(6nm), lowerannealingtemperature(450C)andlongerannealingtime (30−60min),orathickerlayer(9nm),highertemperature(500C), andshortertime(15min).Inthecaseofsilver,largeranddenser nanoislandswereachievedwithathickerstartinglayer(25nm), lowannealingtemperature(350C),andlongertime(60−120min).

7)Thesesetsoftechnologicalparametersresultinsmalleraver- ager/DparametersforthesilvernanoislandsandthushigherSERS enhancementfactors,comparedtothegoldnanoislands.

DeclarationofCompetingInterest

Pleasecheckthefollowingasappropriate:

•Allauthorshaveparticipated in(a)conceptionand design,or analysisand interpretationofthedata;(b)draftingthearticle orrevisingitcriticallyforimportantintellectualcontent;and(c) approvalofthefinalversion.

•Thismanuscripthasnotbeensubmittedto,norisunderreview at,anotherjournalorotherpublishingvenue.

(8)

Fig.9.Enhancementfactorsobtainedfor488nmexcitation,inthefunctionofa)theaveragesilvernanoislanddiameter(D);b)theaverageinterparticledistance(r);andc) theinterparticledistance/nanoislanddiameterratio(r/D).

•Theauthorshavenoaffiliationwithanyorganizationwithadirect orindirectfinancialinterestinthesubjectmatterdiscussedinthe manuscript

•Thefollowingauthorshaveaffiliationswithorganizationswith directorindirectfinancialinterestinthesubjectmatterdiscussed inthemanuscript:

DeclarationofCompetingInterest

Theauthorsreportnodeclarationsofinterest.

Acknowledgments

ThisworkwasfinanciallysupportedbythegrantGINOP-2.3.2- 15-2016-00041.Theprojectisco-financedbytheEuropeanUnion and the EuropeanRegional Development Fund. This workwas supportedbytheVEKOP-2.3.2-16-2016-00011grant,whichisco- financedbytheEuropeanUnionand EuropeanSocialFund.The researchreported inthis paperwas partiallysupported bythe HigherEducationExcellenceProgramoftheMinistryofHuman CapacitiesintheframeofNanotechnologyandMaterialsScience (BMEFIKP-NAT)andalsoBiotechnology(BME-FIKP-BIO)research areasofBudapestUniversityofTechnologyandEconomics.Istvan CsarnovicsisgratefulforthesupportoftheJánosBólyaiResearch ScholarshipoftheHungarianAcademyofSciences.Thesupport

throughtheNewNationalExcellenceProgramoftheMinistryof HumanCapacitiesisacknowledgedaswell.

AppendixA. Supplementarydata

Supplementarymaterial relatedto this articlecanbe found, in the online version, at doi:https://doi.org/10.1016/j.sna.2020.

112225.

References

[1]L.T.Hoang,H.V.Pham,M.T.T.Nguyen,Investigationofthefactorsinfluencing thesurface-enhancedramanscatteringactivityofsilvernanoparticles,J.

Electron.Mater.(2019)1–8,http://dx.doi.org/10.1007/s11664-019-07870-8.

[2]C.L.Haynes,C.R.Yonzom,X.Zang,R.P.VanDuyne,Surface-enhancedRaman sensors:earlyhistoryandthedevelopmentofsensorsforquantitative biowarfareagentandglucosedetection,J.RamanSpectrosc.36(2005) 471–484,http://dx.doi.org/10.1002/jrs.1376.

[3]M.Fleischmann,P.J.Hendra,A.J.McQuillan,Ramanspectraofpyridine adsorbedatasilverelectrode,ChemR.Phys.Lett.26(1974)163–166,http://

dx.doi.org/10.1016/0009-2614(74)85388-1.

[4]R.Pilot,R.Signorini,C.Durante,L.Orian,M.Bhamidipati,L.Fabris,Areview onsurface-enhancedramanscattering,Biosensors.9(2019)1–100,http://dx.

doi.org/10.3390/bios9020057.

[5]J.Choi,J.-H.Kim,J.-W.Oh,J.-M.Nam,Surface-enhancedraman scattering-baseddetectionofhazardouschemicalsinvariousphasesand matriceswithplasmonicnanostructures,Nanoscale.11(2019)20379–20391, http://dx.doi.org/10.1039/c9nr07439b.

[6]S.-Y.Ding,E.-M.You,Z.-Q.Tian,M.Moskovits,Electromagnetictheoriesof surface-enhancedRamanspectroscopy,Chem.Soc.Rev.46(2017) 4042–4076,http://dx.doi.org/10.1039/c7cs00238f.

(9)

[7]A.Otto,The“chemical”(electronic)contributiontosurface-enhancedRaman scattering,J.RamanSpectrosc.36(2005)497–509,http://dx.doi.org/10.1002/

jrs.1355.

[8]A.Otto,ChargetransferinfirstlayerenhancedRamanscatteringandsurface resistance,Q.Phys.Rev.3(2017)1–14.

[9]H.K.Lee,Y.H.Lee,C.S.L.Koh,G.C.Phan-Quang,X.Han,C.L.Lay,X.Y.Ling,H.Y.F.

Sim,Y.-C.Kao,Q.An,Designingsurface-enhancedRamanscattering(SERS) platformsbeyondhot-spotengineering:emergingopportunitiesinanalyte manipulationsandhybridmaterials,Chem.Soc.Rev.48(2019)731–756, http://dx.doi.org/10.1039/c7cs00786h.

[10]H.Chu,S.Song,C.Li,D.Gibson,Surfaceenhancedramanscatteringsubstrates madebyobliqueangledeposition:methodsandapplications,Coatings7 (2017)1–23,http://dx.doi.org/10.3390/coatings7020026.

[11]P.A.Mosier-Boss,ReviewofSERSsubstratesforchemicalsensing, Nanomaterials.7(2017)142.

[12]S.-Y.Ding,X.-M.Zhang,B.Ren,Z.-Q.Tian,Surface-enhancedraman spectroscopy(SERS):generalintroduction,EncyclopediaofAnalytical Chemistry(2014)1–34,http://dx.doi.org/10.1002/9780470027318.a9276.

[13]Z.-Q.Tian,B.Ren,Infraredandramanspectroscopyinanalysisofsurfaces, EncyclopediaofAnalyticalChemistry(2006)1–40,http://dx.doi.org/10.1002/

9780470027318.a2516.

[14]J.Theiss,P.Pavaskar,P.M.Echternach,R.E.Muller,S.B.Cronin,Plasmonic nanoparticlearrayswithnanometerseparationforhigh-performanceSERS substrates,NanoLett.10(2010)2749–2754,http://dx.doi.org/10.1021/

nl904170g.

[15]X.Y.Zhang,J.Zhao,A.V.Whitney,J.W.Elam,R.P.VanDuyne,Ultrastable substratesforsurfaceenhancedRamanspectroscopy:Al2O3overlayers fabricatedbyatomiclayerdepositionyieldimprovedanthraxbiomarker detection,J.Am.Chem.Soc.128(2006)10304–10309,http://dx.doi.org/10.

1021/ja0638760.

[16]J.T.Bahns,A.Imre,V.K.Vlasko-Vlasov,J.Pearson,J.M.Hiller,L.H.Chen,U.

Welp,EnhancedRamanscatteringfromfocusedsurfaceplasmons,Appl.Phys.

Lett.91(2007),081104,http://dx.doi.org/10.1063/1.2759985.

[17]J.N.Anker,W.P.Hall,O.Lyandres,N.C.Shah,J.Zhao,R.P.VanDuyne, Biosensingwithplasmonicnanosensors,Nat.Mater.7(2008)442–453, http://dx.doi.org/10.1038/nmat2162.

[18]K.C.Grabar,R.G.Freeman,M.B.Hommer,M.J.Natan,Preparationand characterizationofAucolloidmonolayers,Anal.Chem.67(1995)735–743, http://dx.doi.org/10.1021/ac00100a008.

[19]A.Wei,B.Kim,B.Sadtler,S.L.Tripp,Tunablesurface-enhancedRaman scatteringfromlargegoldnanoparticlearrays,Chemphyschem.12(2001) 743–745,

doi:10.1002/1439-7641(20011217)2:12<743::aid-cphc743>3.0.co;2-1.

[20]P.Z.EI-Khoury,E.Khon,Y.Gong,A.G.Joly,P.Abellan,J.E.Evans,N.D.

Browning,D.HuM.Zamkov,Electricfieldenhancementinaself-assembled 2Darrayofsilvernanospheres,J.Chem.Phys.141(2014)214308,http://dx.

doi.org/10.1063/1.4902905.

[21]H.Chen,Z.H.Sun,W.H.Ni,K.C.Woo,H.Q.Lin,L.D.Sun,C.H.Yan,J.F.Wang, Plasmoncouplinginclusterscomposedoftwo-dimensionallyorderedgold nanocubes,Small.5(2009)2111–2119,http://dx.doi.org/10.1002/smll.

200900256.

[22]M.Rycenga,C.M.Cobley,J.Zeng,W.Y.Li,C.H.Moran,Q.Zhang,D.Qin,Y.N.

Xia,Controllingthesynthesisandassemblyofsilvernanostructuresfor plasmonicapplications,Chem.Rev.111(2011)3669–3712,http://dx.doi.org/

10.1021/cr100275d.

[23]J.Kumar,K.G.Thomas,Surface-enhancedRamanspectroscopy:investigations atthenanorodedgesanddimerjunctions,J.Phys.Chem.Lett.2(2011) 610–615,http://dx.doi.org/10.1021/jz2000613.

[24]L.Zhang,C.Guan,Y.Wang,J.Liao,HighlyeffectiveanduniformSERS substratesfabricatedbyetchingmulti-layeredgoldnanoparticlearrays, Nanoscale.8(2016)5928–5937,http://dx.doi.org/10.1039/c6nr00502k.

[25]N.D.Israelsen,C.Hanson,E.Vargis,Nanoparticlepropertiesandsynthesis effectsonsurface-enhancedramanscatteringenhancementfactor:an introduction,TheScientificWorldJournal.(2015)1–12,http://dx.doi.org/10.

1155/2015/124582.

[26]S.L.Kleinman,B.Sharma,M.G.Blaber,A.I.Henry,N.Valley,R.G.Freeman,M.J.

Natan,G.C.Schatz,R.P.VanDuyne,Structureenhancementfactor relationshipsinsinglegoldnanoantennasbysurface-enhancedraman excitationspectroscopy,J.Am.Chem.Soc.135(2013)301–308,http://dx.doi.

org/10.1021/ja309300d.

[27]E.C.LeRu,J.Grand,N.Félidj,J.Aubard,G.Lévi,A.Hohenau,J.R.Krenn,E.

Blackie,P.G.Etchegoin,ExperimentalverificationoftheSERSelectromagnetic modelbeyondtheE4approximation:polarizationeffects,J.Phys.Chem.C Lett.112(2008)8117–8121,http://dx.doi.org/10.1021/jp802219c.

[28]M.Fan,G.F.S.Andrade,A.G.Brolo,Areviewonthefabricationofsubstratesfor surfaceenhancedRamanspectroscopyandtheirapplicationsinanalytical chemistry,Anal.Chim.Acta693(2011)7–25,http://dx.doi.org/10.1016/j.aca.

2011.03.002.

[29]S.Hong,X.Li,Optimalsizeofgoldnanoparticlesforsurface-enhancedRaman spectroscopyunderdifferentconditions,J.Nanomater.(2013)1–9,http://dx.

doi.org/10.1155/2013/790323.

[30]M.Moskovits,Surface-enhancedRamanspectroscopy:abriefretrospective,J.

RamanSpectrosc.36(2005)485–496,http://dx.doi.org/10.1002/jrs.1362.

[31]K.G.Stamplecoskie,J.C.Scaiano,V.S.Tiwari,H.Anis,Optimalsizeofsilver nanoparticlesforsurface-enhancedramanspectroscopy,J.Phys.Chem.C115 (2011)1403–1409,http://dx.doi.org/10.1021/jp106666t.

[32]P.N.Njoki,I.-I.S.Lim,D.Mott,etal.,Sizecorrelationofopticaland spectroscopicpropertiesforgoldnanoparticles,J.Phys.Chem.C111(2007) 14664–14669,http://dx.doi.org/10.1021/jp074902z.

[33]S.S.Masango,R.A.Hackler,N.Large,A.I.Henry,M.O.McAnally,G.C.Schatz, P.C.Stair,R.P.VanDuyne,High-resolutiondistancedependencestudyof surface-enhancedramanscatteringenabledbyatomiclayerdeposition,Nano Lett.16(2016)4251–4259,http://dx.doi.org/10.1021/acs.nanolett.6b01276.

[34]V.T.N.Linh,J.Moon,C.W.Mun,V.Devaraj,J.-W.Oh,S.-Gy.Park,D.-H.Kim,J.

Choo,Y.-I.Lee,H.S.Jung,Afacilelow-costpaper-basedSERSsubstratefor label-freemoleculardetection,Sens.ActuatorsBChem.291(2019)369–377, http://dx.doi.org/10.1016/j.snb.2019.04.077.

[35]A.Bonyár,I.Csarnovics,M.Veres,L.Himics,A.Csik,J.Kámán,B.Balázs,S.

Kökényesi,Investigationoftheperformanceofthermallygeneratedgold nanoislandsforLSPRandSERSapplications,Sens.ActuatorsBChem.255 (2018)433–439,http://dx.doi.org/10.1016/j.snb.2017.08.063.

[36]Y.Huang,Q.Zhou,M.Hou,L.Ma,Z.Zhang,Nanogapeffectsonnear-and far-fieldplasmonicbehaviorsofmetallicnanoparticledimers,Phys.Chem.

Chem.Phys.17(2015)29293–29298,http://dx.doi.org/10.1039/c5cp04460j.

[37]Z.Skeete,H.-W.Cheng,Q.M.Ngo,Ch.Salazar,W.Sun,J.Luo,Ch-J.Zhong, Squeezed’interparticlepropertiesforplasmoniccouplingandSERS characteristicsofduplexDNAconjugated/linkedgoldnanoparticlesof homo/hetero-sizes,Nanotechnology27(2016)325706,http://dx.doi.org/10.

1088/0957-4484/27/32/325706.

[38]H.Xu,E.J.Bjerneld,J.Aizpurua,P.Apell,L.Gunnarsson,S.Petronis,B.Kasemo, Ch.Larsson,F.Hook,M.Kall,Interparticlecouplingeffectsin

surface-enhancedramanscatteringProc.SPIE4258,Nanoparticlesand NanostructuredSurfaces:NovelReportersWithBiologicalApplications,4258, 2001,pp.35–42,http://dx.doi.org/10.1117/12.430771.

[39]Z.Zhu,T.Zhu,Zh.Liu,Ramanscatteringenhancementcontributedfrom individualgoldnanoparticlesandinterparticlecoupling,Nanotechnology15 (2004)357–364,http://dx.doi.org/10.1088/0957-4484/15/3/022.

[40]K.Nehra,S.K.Pandian,M.S.S.Bharati,V.R.Soma,EnhancedcatalyticandSERS performanceofshape/sizecontrolledanisotropicgoldnanostructures,NewJ.

Chem.43(2019)3835–3847,http://dx.doi.org/10.1039/C8NJ06206D.

[41]H.Yockell-Leliévre,F.Lussier,J.-F.Masson,Influenceoftheparticleshapeand densityofself-assembledgoldnanoparticlesensorsonLSPRandSERS,J.Phys.

Chem.C119(2015)28577–28585,http://dx.doi.org/10.1021/acs.jpcc.

5b09570.

[42]Ch.J.Orendorff,A.Gole,T.K.Sau,C.J.Murphy,Surface-enhancedraman spectroscopyofself-assembledmonolayers:sandwicharchitectureand nanoparticleshapedependence,Anal.Chem.77(2005)3261–3266,http://dx.

doi.org/10.1021/ac048176x.

[43]NanoComposix,Tools,NanoComposix,2014(accessed30Jan2020http://

nanocomposix.com/pages/tools.

[44]M.Quinten,OpticalPropertiesofNanoparticleSystems:MieandBeyond, Wiley-VCH,Weinheim,Germany,2011.

[45]Y.-H.Kwon,R.Ossig,F.Hubenthal,H.-D.Kronfeldt,Influenceofsurface plasmonresonancewavelengthonSERSactivityofnaturallygrownsilver nanoparticleensemble,J.RamanSpectrosc.43(2012)1385–1391,http://dx.

doi.org/10.1002/jrs.4093.

[46]B.Sharma,R.R.Frontiera,A.-I.Henry,E.Ringe,R.P.VanDuyne,SERS:

materials,applications,andthefuture,Mater.Today15(2012)16–25,http://

dx.doi.org/10.1016/S1369-7021(12)70017-2.

[47]R.Pilot,R.Signorini,C.Durante,L.Orian,M.Bhamidipati,L.Fabris,Areview onsurface-enhancedramanscattering,Biosensors9(2019)57,http://dx.doi.

org/10.3390/bios9020057.

[48]Y.Fleger,Y.Mastai,M.Rosenbluh,D.H.Dressler,SurfaceenhancedRaman spectroscopyofaromaticcompoundsonsilvernanoclusters,Surf.Sci.603 (2009)788–793,http://dx.doi.org/10.1016/j.susc.2009.01.020.

[49]BenzophenonedatasheetintheNISTChemistryWebBook,https://webbook.

nist.gov/cgi/cbook.cgi?ID=C119619&Mask=400#UV-Vis-Spec.

Biographies

PetraPálisa1styearPh.D.studentattheDepartmentofExperimentalPhysics, FacultyofScienceandTechnology,UniversityofDebrecen.ShehasanM.Sc.degreein materialscience.Shehas3yearsofexperienceinRamanspectroscopyandSurface- enhancedRamanScattering.Shedidhermasterthesisinthisfieldandnowcontinue theworkduringherPh.D.studies.

AttilaBonyárisanassociateprofessorattheDepartmentofElectronicsTechnology atBudapestUniversityofTechnologyandEconomics.HehastwoM.Sc.degreesin electricalengineeringandbiomedicalengineeringandaPh.D.inelectricalengineer- ing.Hehas14yearsofexperienceinthedevelopmentofopticalandelectrochemical, affinity-typebiosensors,utilizinglow-dimensionalnanomaterials,plasmonics,and nanometrology(AFM).

MiklósVeresistheheadoftheDepartmentofAppliedandNonlinearOpticsatthe InstituteforSolidStatePhysicsandOptics,WignerResearchCentreforPhysics.He hasanM.Sc.degreeinphysicsandaPh.D.inphysicsinthefieldofinvestigation ofcarbonmaterialswithRamanspectroscopy.Hehas20yearsofexperiencein RamanSpectroscopy,developingtheSRStechnique.Heisleadingaprojectbased onnanostructuresandappliedspectroscopy.

(10)

Ábra

Fig. 1. Illustration of the prepared gold nanoislands: a) SEM image of gold sample 1; b) SEM image of gold sample 2; c) The corresponding optical transmittance spectra of the samples
Fig. 2. Illustration of the prepared silver nanoislands: a) SEM image of silver sample 1; b) SEM image of silver sample 2; c) The corresponding optical transmittance spectra of the samples
Fig. 5. Surface-enhanced Raman spectra of benzophenone measured on a gold nanoisland substrate with three different excitation wavelengths.
Fig. 6. Enhancement factors obtained for 532 nm excitation, in the function of a) the average gold nanoisland diameter (D); b) the average interparticle distance (r); and c) the interparticle distance/nanoisland diameter ratio (r/D).
+3

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Originally based on common management information service element (CMISE), the object-oriented technology available at the time of inception in 1988, the model now demonstrates

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Respiration (The Pasteur-effect in plants). Phytopathological chemistry of black-rotten sweet potato. Activation of the respiratory enzyme systems of the rotten sweet

XII. Gastronomic Characteristics of the Sardine C.. T h e skin itself is thin and soft, easily torn; this is a good reason for keeping the scales on, and also for paying

An antimetabolite is a structural analogue of an essential metabolite, vitamin, hormone, or amino acid, etc., which is able to cause signs of deficiency of the essential metabolite

Perkins have reported experiments i n a magnetic mirror geometry in which it was possible to vary the symmetry of the electron velocity distribution and to demonstrate that