• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
11
0
0

Teljes szövegt

(1)

volume 5, issue 4, article 103, 2004.

Received 27 March, 2004;

accepted 26 September, 2004.

Communicated by:A. Lupa¸s

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

LUPA ¸S-DURRMEYER OPERATORS

NAOKANT DEO

Department of Applied Mathematics Delhi College of Engineering Bawana Road, Delhi - 110042, India.

EMail:dr_naokant_deo@yahoo.com

c

2000Victoria University ISSN (electronic): 1443-5756 066-04

(2)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

Abstract

In the present paper, we obtain Stechkin-Marchaud-type inequalities for some approximation operators, more precisely for Lupa¸s-Durrmeyer operators de- fined as in (1.1).

2000 Mathematics Subject Classification:26D15.

Key words: Stechkin-Marchaud-type inequalities, Lupa¸s Operators, Durrmeyer Op- erators.

The author is grateful to Prof. Dr. Alexandru Lupa¸s, University of Sibiu, Romania for valuable suggestions that greatly improved this paper.

Contents

1 Introduction. . . 3 2 Auxiliary Results. . . 5 3 Main Results . . . 7

References

(3)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

1. Introduction

Lupa¸s proposed a family of linear positive operators mapping C[0,∞) into C[0,∞), the class of all bounded and continuous functions on[0,∞), namely,

Vn(f, x) =

X

k=0

pn,k(x)f k

n

, x∈[0,∞),

wherepn,k(x) = n+k−1k

xk(1 +x)−n−k.

Motivated by Derriennic [1], Sahai and Prasad [5] proposed modified Lupa¸s operators defined, for functions integrable on[0,∞), by

(1.1) Bn(f, x) = (n−1)

X

k=0

pn,k(x) Z

0

pn,k(t)f(t)dt.

Wicken discussed Stechkin-Marchaud-type inequalities in [2] for Bernstein poly- nomials and obtained the following results:

w2φ

f, 1

√n

≤Cn−1

n

X

k=1

φ−α(Bkf −f) .

The main object of this paper is to give Stechkin-Marchaud-type inequalities for Lupa¸s-Durrmeyer operators. In the end of this section we introduce some definitions and notations.

Definition 1.1. For0≤λ≤1, 0< α <2r,0≤β≤2r, 0≤α(1−λ) +β≤2r (1.2) kfk0 =kfk0,α,β,λ= sup

x∈I

φα(λ−1)−β(x)f(x) ,

(4)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

(1.3) Cα,β,λ0 ={f ∈CB(I),kfk0 <∞},

(1.4) kfkr =kfkr,α,β,λ = sup

x∈I

φ2r+α(λ−1)−β

(x)f(2r)(x)

and

(1.5) Cα,β,λr =

f ∈CB(I), f(2r−1) ∈ACloc,kfkr <∞ , whereφ(x) = p

x(1 +x)andr= 0,1,2, . . .. Definition 1.2. Peetre’sK-functional is defined as (1.6) w2rφλ(f, t)α,β = sup

0<h≤t

sup

x±rhφλ(x)∈I

φα(λ−1)−β(x)∆2rλf(x)

and

(1.7) Kφλ(f, t2r)α,β = inf

g(2r−1)∈ACloc

kf −gk0+t2rkgkr ,

where ACloc is the space of real valued absolute continuous and integrable functions on[0,1].

In second section of the paper, we will give some basic results, which will be useful in proving the main theorems; while in Section3the main results are given.

(5)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

2. Auxiliary Results

Some basic results are given here.

Lemma 2.1. Suppose that for nonnegative sequencesn},{τn}withσ1 = 0 the inequalityσ ≤ knp

σkk, (1 ≤ k ≤ n),is satisfied forn ∈ N, p >0.

Then one has

(2.1) σn ≤Bpn−p

n

X

k=1

kp−1τk.

Lemma 2.2. Forf(2s) ∈Cα,β,λ0 , s∈N0, the following inequalities hold

(2.2)

Bn(2s)f

r ≤C1nr f(2s)

0, and

(2.3)

Bn(2s)f

r ≤C2nr+α(1−λ)2 +β2 f(2s)

.

Lemma 2.3. Forf(2s) ∈Cα,β,λr , s∈N0, the following inequality holds

(2.4)

Bn(2s)f r

f(2s) r.

Lemma 2.4. Let us suppose thatf(2s) ∈Cα,β,λ0 , s∈N0,0≤α(1−λ) +β ≤2, then

(2.5)

Bn(2s)f r≤C

n

X

k=1

kr−1

(Bkf−f)(2s) 0+

f(2s)

! .

(6)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

Lemma 2.5. Suppose thatr∈N, x±rt∈I, 0≤β ≤2r, 0≤t≤ 16r1 , then

(2.6)

Z 2rt

t

2r

· · · Z 2rt

t

2r

φ−β x+

2r

X

j=1

uj

!

du1· · ·du2r ≤C(β)t2rφ−β(x).

(7)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

3. Main Results

We are now ready to prove the main results of this paper.

Theorem 3.1. For the modulus of smoothness andK-functional

(3.1) Kφλ

f(2s), 1 nr

α,β

≤Cn−r

n

X

k=1

kr−1

(Bkf −f)(2s) 0+

f(2s)

! ,

(3.2) wφ2rλ

f(2s), 1

√n

α,β

≤Cn2−λr

n2−λ1

X

k=1

kr−12−λ

(Bkf−f)(2s) 0 +

f(2s)

 ,

wherek·kdenotes the supremum norm.

Proof of (3.1). Takingn2≤m≤nsuch that

(Bmf−f)(2s) 0

(Bkf−f)(2s) 0,

(8)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

(n2 < k≤n),we have Kφλ

f(2s), 1 nr

α,β

(Bmf−f)(2s)

0 +n−r fm(2s)

r

≤ 2r nr

n

X

k=n2

kr−1

(Bkf −f)(2s) 0

+Cn−r

m

X

k=1

kr−1

(Bkf −f)(2s) 0+

f(2s)

!

≤Cn−r

n

X

k=1

kr−1

(Bkf −f)(2s) 0+

f(2s)

! .

Proof of (3.2). By definition ofK-functional there existsg ∈Cr

α,β,λ such that

(3.3)

f(2s)−g

0+n2−λr kgkr ≤Kφλ

f, n2−λr

α,β

and (3.4)

2rλ(x)f(2s)(x)

≤Cφα(1−λ)+β(x) f(2s)

0

by Lemma2.5for aboveg, 0< hφλ(x)< 16r1 , x±rhφλ(x)∈I, (3.5)

2rλ(x)g(x)

≤Ch2rφ(−2r+α)(1−λ)+β

(x)kgkr.

(9)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

Using (3.4) and (3.5), again for0< hφλ(x)< 16r1 , x±rhφλ(x)∈I, we get (3.6)

2rλ(x)f(2s)(x)

≤Cφα(1−λ)+β(x)

f(2s)−g

0+h2rφ2r(λ−1)(x)kgkr . Forx±rhφλ(x)∈I , we obtain

(3.7) h2φ2(λ−1)(x)≤

1 2n2−λ1

−1

. From (3.6) and (3.7) we have

2rλ(x)f(2s)(x) (3.8)

≤Cφα(1−λ)+β(x)Kφλ f(2s), 1

2n2−λ1 −1!

α,β

≤Cφα(1−λ)+β(x)n2−λr

×

h n2−λr i

X

k=1

k2−λr−1

(Bkf −f)(2s) 0+

f(2s)

.

Corollary 3.2. If0< α <2, f ∈CB(I),then

|(Bnf)(x)−f(x)|=O (n−1/2φ1−λ(x))α

⇒w2φλ(f, t) = O(tα),

(10)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

where

w2φλ(f, t) = sup

0<h≤t

sup

x±hφλ(x)∈I

2λf(x) .

This is the inverse part in [3].

In (1.4) and (1.5), forδn(x) =φ(x) +1n,φ(x)replaced byδn(x), (3.1) also holds.

Corollary 3.3. If0< α <2r, f ∈CB(I),then

|(Mnf)(x)−f(x)|=O (n−1/2φ1−λ(x))α

⇒w2rφλ(f, t) =O(tα),

where(Mnf)(x)is linear combination of(Bnf)(x).

This is the inverse parts in [4].

Remark 3.1. We also propose some other modifications of Lupa¸s operators as

Mn(f, x) = n

X

k=0

pn,k(x) Z

0

sn,k(t)f(t)dt

wheresn,k(t) = e−nt(nt)k!k andpn,k(x)is defined in (1.1) for these operatorsMn.

(11)

Lupa ¸s-Durrmeyer Operators Naokant Deo

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of11

J. Ineq. Pure and Appl. Math. 5(4) Art. 103, 2004

http://jipam.vu.edu.au

References

[1] M.M. DERRIENNIC, Sur l’approximation de fonctions integrables sur [0,1] par des polynomes de Bernstein modifies, J. Approx, Theory, 31 (1981), 325–343.

[2] E. VAN WICKEN, Stechkin-Marchaud type inequalities in connection with Bernstein polynomials, Constructive Approximation, 2 (1986), 331–337.

[3] M. FELTEN, Local and global approximation theorems for positive linear operators, J. Approx. Theory, 94 (1998), 396–419.

[4] S. GUO, C. LIANDY. SUN, Pointwise estimate for Szasz-type, J. Approx.

Theory, 94 (1998), 160–171.

[5] A. SAHAIANDG. PRASAD, On simultaneous approximation by modified Lupa¸s operators, J. Approx., Theory, 45 (1985), 122–128.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In this paper, by the Chebyshev-type inequalities we define three mappings, in- vestigate their main properties, give some refinements for Chebyshev-type in-

In this paper, by the Chebyshev-type inequalities we define three mappings, inves- tigate their main properties, give some refinements for Chebyshev-type inequalities, obtain

In this paper by us- ing the concept of spectral dominance in type III factors, we prove a version of Young’s inequality for positive operators in a type III factor N..

In this paper we consider some integral operators and we determine conditions for the univalence of these integral operators.. 2000 Mathematics Subject Classification:

As applications we give direct theorems for Baskakov type operators, Szász-Mirakjan type operators and Lupa¸s operator.. 2000 Mathematics Subject Classification:

BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl.. DITZIAN, Direct estimate for Bernstein

It is observed that the analysis for our Bezier variant of new Bernstein Durrmeyer operators is different from the usual Bernstein Durrmeyer operators studied by Zeng and Chen

In this paper, we discuss the case of equality of this Young’s inequality, and obtain a characterization for compact normal operators.. 2000 Mathematics Subject Classification: