• Nem Talált Eredményt

delay Distributed of interconnected control Chemical Reaction Networkswith Journal of Process Control

N/A
N/A
Protected

Academic year: 2022

Ossza meg "delay Distributed of interconnected control Chemical Reaction Networkswith Journal of Process Control"

Copied!
11
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Process Control

jo u rn al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / j p r o c o n t

Distributed control of interconnected Chemical Reaction Networks with delay

L ˝orinc Márton

a,∗

, Gábor Szederkényi

b,c

, Katalin M. Hangos

b,d

aDepartmentofElectricalEngineering,SapientiaHungarianUniversityofTransylvania,TirguMures,Romania

bSystemsandControlLaboratory,InstituteforComputerScienceandControl,HungarianAcademyofSciences,Budapest,Hungary

cFacultyofInformationTechnologyandBionics,PázmanyPéterCatholicUniversity,Budapest,Hungary

dDepartmentofElectricalEngineeringandInformationSystems,UniversityofPannonia,Veszprém,Hungary

a r t i c l e i n f o

Articlehistory:

Received12March2018

Receivedinrevisedform25July2018 Accepted5September2018

Keywords:

Processsystems

ChemicalReactionNetworks Multi-agentsystems Passivity

Delaysystems Distributedcontrol Nonlinearsystems

a b s t r a c t

ThispaperintroducesacontrolapproachforaclassofChemicalReactionNetworks(CRNs)thatare interconnectedthroughadelayedconvectionnetwork.First,acontrol-orientedmodelisproposedfor interconnectedCRNs.Second,basedonthismodel,adistributedcontrolmethodisintroducedwhich assuresthateachCRNcanbedrivenintoadesiredfixedpoint(setpoint)independentlyofthedelayin theconvectionnetwork.Theproposedalgorithmisalsoaugmentedwithadisturbanceattenuationterm tocompensatetheeffectofunknowninputdisturbancesonsetpointtrackingperformance.Thecontrol designappliesthetheoryofpassivesystemsandmethodsdevelopedformulti-agentsystems.Simulation resultsareprovidedtoshowtheapplicabilityoftheproposedcontrolmethod.

©2018TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thecontrolofplant-wideindustrialprocessesisinthefocus of the researchers for decades [1,2]. The decentralized or dis- tributedcontrolapproachesareadvantageousinprocessnetwork applicationstoreducethecommunicationcostsandpossiblecom- municationhazards that couldarise in the case of centralized control[3].Becauseoftheirpracticalimportanceandchallenging nature,thedifferentnonlinearcontrolapproachesappliedinpro- cesscontrolhavedevelopedtheirownversionofdecentralized, distributedorhierarchicalcontrolarchitectures.

In thepaper [4] the authors proposeda distributed control approachforsuchinterconnectedprocessesthatcanbemodeledas lineartime-invariantsystemsbasedonpassivitytheory.Thiscon- trolmethodalsotakesintoconsiderationthetransportdelayinthe interconnectionsamongtheprocesses.

Apowerfulcontrolapproachofinterconnectedprocesssystems isbasedonthethermodynamiccharacterizationofsuchsystems.

Amodelingframeworkhasbeendevelopedin[5]fornetworksof chemicalprocessesconsideringalsothethermodynamiceffects.

Correspondingauthor.

E-mailaddress:martonl@ms.sapientia.ro(L.Márton).

Usingthetheoryofcascade-connectednonlinearsystemsandthe propertiesofMetzlerandHurwitzmatrices,astabilizingdecentral- izedcontrolapproachwasdesignedin[6]utilizingthehierarchical structureofconservationbasedprocessmodels.

Thepopularandpowerfulmodelpredictivecontrolapproach is alsoused in distributed and in hierarchicalframeworks (see thepaper[7]fora review).Thisapproachcanhandlenonlinear interconnectedprocess systems, aswell.A more recent review highlightingfutureresearchdirectionsinthisapproachisavailable in[8].Constrainedcontrolmethodscanbeappliedwheninputor stateboundsshouldalsobetakenintoconsideration,seee.g.[9]or [10].

ChemicalReactionNetworktheoryprovidesefficientmodels andtechniquestodescribeandanalyzenotonlythedynamicsof chemicalreactions[11],butamorewideclassofnonlinearprocess systems.Thestudy[12]dealswiththemodelingofinterconnected reactorsandshowsthatthetransportmechanismcanbedescribed byalinearCRNmodel.TheCRNmodelsdescribepositivesystems andcanefficientlycapturecomplexnonlineardynamicalphenom- ena. The paper[13] offersa modeling approach for CRNs with inflowsandoutflowsanddiscussestherelationofthesesystems withtheconsensusdynamics.Thestabilityofthesesystemsismost oftenanalyzedusingentropy-basedLyapunovfunctions[14].

Unfortunately,however, onlya fewof thenonlinearprocess controlapproachesthatweredevelopedforcontrollingintercon- https://doi.org/10.1016/j.jprocont.2018.09.004

0959-1524/©2018TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

nectedsubsystemsareabletoexplicitlyhandledelaysindynamic analysisandcontrollerdesign.Someexceptionsincludethepaper [15],where thesynchronization problemofaclass ofintercon- nectednonlinearbiochemicalprocesseswasconsideredbytaking aninput-outputmodelingapproach.Importantmodelingandsta- bilityandcontrolrelatedresultsondelayedkineticsystemscanbe foundin[16],[17],[18],[19]and[20].

Inthisstudyacontrol-orientedmodelingapproachisproposed forinterconnectedCRNs,relyingbothoncompartmentalsystems [21], and CRNtheory. Themodel takesinto consideration both thenonlinearnatureofthechemicalprocessesandtheunknown transportdelaysintheconvectionnetwork.Adistributedsetpoint controlalgorithmisintroducedwhichassuresthattheconcentra- tionlevelsofthechemicalsineachreactorreachprescribedfixed points.Theproposedcontrolmethodcanalsoattenuatetheeffect ofunknowninputdisturbancesonthecontrolperformance.The resultingcontrolalgorithmhasaneasilyimplementableform,itis independentoftheCRNskineticsandthedelayintheconvection network.Thestabilityandtrackingperformanceoftheintercon- nectedCRNwiththeproposedcontrolisanalyzedusingtechniques borrowedfromthetheoryofmulti-agentsystems.

2. Interconnectedpassivesystems

2.1. Passivesubsystems

ConsideraninterconnectedsystemconsistingofCsubsystems inwhichtheinputofeachsubsystemmaydependontheoutputs oftheothersubsystems.

EachsubsystemismodeledusingODEs(OrdinaryDifferential Equations)intheform

˙

c(j)=f(j)(c(j))+G(j)(c(j))u(j), c(j)(0)=c(j) , (1) y(j)=h(j)(c(j))

wherec(j) ∈Rn,y(j),u(j) ∈Rmarethestate-,output-andinputvec- tors,f(j)(·),h(j)(·),G(j)(·)aresmoothmappingswithappropriate dimensionssuchthatf(j)(0)=0,h(j)(0)=0,j=1...C.

Definition1. System(1)iscalledpassive,ifthereexistsacontin- uouslydifferentiablefunctionS(j):Rn→Rsuchthat

S(j)(c(j))≥0, ∀c(j), (2)

S(j)(0)=0, (3)

(j)y(j)Tu(j), ∀u(j),c(j). (4) Siscalledthestoragefunctionof(1)(see,e.g.[22]).

Theinput-affinesystem(1)ispassiveiffthefollowingconditions hold

∂S(j)

c(j)f(j)(c(j))≤0, (5)

∂S(j)

c(j)G(j)(c(j))=

h(j)(c(j))

T

, (6)

seee.g.[23].

Passivitytheoryplaysakeyrole inanalyzingthestabilityof nonlinearsystemsasitisshownthatpassivityof(1)involvesthe stabilityoftheautonomoussystem ˙c(j)=f(j)(c(j))undermildcon- ditions[22].

2.2. Interconnections

Theunderlyinggraphoftheinterconnectedsystemisadirected graphwithCverticesinwhicheachvertexcorrespondstoasub- system.Thereisadirectededgefromthevertexktothevertexjif

theinputofthejthsubsystemdependsexplicitlyontheoutputof thekthsubsystem.

Neighborsetofthejthvertex(Nj):thekthvertexbelongstoNj

ifthereisadirectededgefromthevertexktothevertexj.

Alikethemodelingconceptsdevelopedforlarge-scalesystems [3],considertheinputofeachsubsystem(u(j))asthesumofalocal controlinput(u(j)L )andantheinterconnectioninputtermwhich hastheform:

i(j)(t)=i(j)

y(k1)(t−Tk1j),...,y(kJ)(t−TkJj)

, (7)

wherey(kl)aretheoutputsofthesubsystemsoftheneighborsetNj

(dim(Nj)=J),and0≤Tkij<∞isaconstanttransportdelayfrom theagentkitotheagentj.

Theoutputsofthesubsystemsintheinterconnectedsystemare synchronizediflim

t→∞|y(j)(t)−y(k)(t−Tkj)|→0,j,k.

Assumetheinterconnectioninputsintheform(synchronization protocol)

i(j)(t)=

kNj

wkj(y(k)(t−Tkj)−y(j)(t)), wkj>0, (8)

andu(j)L =0element-wise.Fortheanalysisoftheinterconnected systemswithsuchsubsysteminputsthefollowingfunctionalcan beapplied:

S=

N i=1

S(j)+

N j=1

kNj

t tTkj

y(j)T()y(j)()d. (9)

Itisshownin[24,25]that,undercertainassumptionsontheunder- lying graph and the subsystems, the interconnection input (8) assuresthesynchronizationofthesubsystems.

3. Basicmodelingnotions

3.1. ChemicalReactionNetworksandtheirstability

ChemicalReactionNetworks(abbreviatedasCRNs) arecom- posedofelementaryirreversiblereactionsRk:Ci→Cj,k=1...,R, whereCj, j=1,...,marethesocalledcomplexes.AcomplexCj isformallyalinearcombinationofspeciesXi, i=1,...,K,such thatCj=

K

i=1ˇijXi,forj=1,...,m,whereˇijisthenonnegative stoichiometriccoefficientcorrespondingtospeciesXiincomplex Cj.

Theconcentrations ofthespecies arecollectedintoavector c ∈RK sothatci=[Xi] for i=1,...,K.Thedynamics ofa CRN describingthetimeevolutionoftheconcentrationsofthespecies induced by thereactionscan bewritten in thefollowing form assumingconstantvolumeandtemperature(see,e.g.[26]):

˙

c=Mϕ(c)=YAϕ(c), c(0)=c (10)

where c is strictlypositiveelement-wise,and Y ∈RK×m is the complexcompositionmatrixthejthcolumnofwhichcontainsthe stoichiometriccoefficientsofcomplexCj,i.e.Yijij, ∀i,j.More- over,ϕi(c)= Ki=1cYiik isthemassactionvectorandA ∈Rm×mis theKirchhoffmatrix:

A(i,j)=

⎧ ⎪

⎪ ⎩

ji, for j=/i

=/j

j, if j=i. (11)

wherejiistherateconstantofthereactionRk:Cj→Ci.

The reaction vector of Rk is formed by the corresponding stoichiometricvectors, suchthatek=Y·iY·j. Thespanof the reactionvectorsdefinesthestoichiometricsubspaceoftheCRN:

(3)

Sc=span

ek

.Thepositivestoichiometriccompatibilityclasses ofaCRNarerepresentedbySc=(c+Sc)∩RnS+.

The generalCRN model (10) may have multiple (even infi- nitenumberof)steadystatesinthewholestatespace.Therefore, thestructureandnumberofequilibriaaremostoftenstudiedby restrictingthedynamicstothestoichiometriccompatibilityclasses correspondingtodifferentinitialconditions.

Example1(AsimpleCRN). LetusconsideraChemicalReaction Networkconsistingofthefollowingreactions:

R1:2X3k122X1k232X2, R2:2X3[13]

312X2. (12)

Themodelcontainsthreespecies:X1,X2,X3,andthreecomplexes:

C1=2X3,C2=2X1,C3=2X2.Fromthese,thecomplexcomposition matrixcanbewrittenas

Y=

00 20 02 2 0 0

(13)

Wecanseefrom(12)thatthenetworkcontainsfourelementary reactions.Theratecoefficientsofthesereactionsarethenon-zero off-diagonalelementsoftheKirchhoffmatrixwhichisgivenby

A=

⎢ ⎣

−(12+13) 0 31

1223 0

13 2331

⎥ ⎦

(14)

Thepair(Y,A)iscalledarealizationofakineticsystemwitha givencoefficientmatrixMandreaction-monomialvectorϕ,where thecomplexcompositionmatrixYisdeterminedbyϕ.Itisimpor- tanttonotethatarealizationofakineticsystemmaynotbeunique, i.e.theremayexistmorethanoneKirchhoffmatrixAforakinetic dynamicsgivenbyMandϕ[27].

ThereareimportantstructuralpropertiesofaCRNrealization thatcanbeusedfor determiningthestability propertiesofthe dynamics,thatarethedeficiencyandthereversibilityproperties.

Thedeficiencyof aCRN realizationisdefined ası=dim(KerY∩ ImA).A CRN isweakly reversible iftheexistence of a directed path(i.e.reactionsequence)fromthecomplexCitothecomplexCj impliestheexistenceofadirectedpathfromCjtoCi.

Althoughweakreversibilityandzerodeficiencyisarealization propertyofaCRN,theyhaveimportantimplicationsonthestabil- ityoftheCRNsystem.IfaCRNisweaklyreversibleandhaszero deficiencythenthesystem(10)hasexactlyoneequilibriumpoint (c)ineachpositivestoichiometriccompatibilityclass[11]thatis atleastlocallystablewiththefollowingLyapunovfunction:

S(c)˜ =

K i=1

ci

lnci ci −1

+ci

(15)

AnequilibriumpointcoftheCRN(10)iscalledcomplexbal- ancedif

Aϕ(c)=0 (16)

Itisalsoknownthatifthereexistsa complexbalancedequilib- riuminaCRN,thenallotherequilibriaarecomplexbalanced,too [26].Therefore, complexbalanceis a systempropertyoncethe CRNstructureandparametersarefixed,andthusaCRNitselfcan becalledcomplexbalancedif(16)isfulfilled.However,akinetic differentialequationmayhaveseveralcomplexbalancedandnon- complex-balancedrealizations[27].Itisimportantthatcomplex balanceimpliesweakreversibility. Complexbalanceis strongly relatedtothestabilityofkineticsystems.Accordingtothewell- knownGlobalAttractorConjecture(GAC),complexbalancedCRNs aregloballystablewiththeLyapunovfunction(15).TheGACwas

provedforseveralspecialcases,mostremarkablyforCRNswith onereactiongraphcomponent[28],andaproofforthegeneral problemhasbeenreportedin[29].Asignificantresultinthethe- oryofCRNsisthatanydeficiencyzeroweaklyreversiblenetwork iscomplexbalancedindependentlyofthevaluesoftheratecon- stants[30].Thisensuresarobuststabilitypropertywhichcanbe importantinthegeneraltheoryofnonnegativesystems[31].

Inordertohavepassiveagentsfortheanalysis,weconsiderthe followingsub-classofCRNs.

Assumption1. TheCRN(10)iscomplexbalanced.

Assumption2. TheCRN(10)ispersistent.

Persistencemeansthatthetrajectoriesofthesystem(10)do notapproachtheboundary∂RK+arbitrarilyclose,i.e.∀i=1...Kit stands:ci(t)>0ifci◦>0andt≥0.Itisimportanttonotethat Assumptions1and2arestronglyrelated.InthecaseofCRNswith onegraphcomponent,complexbalanceimpliespersistence[28].

Werecalltheimportantspecialcasethatdeficiencyzeroweakly reversiblenetworksare complexbalanced for anypositiverate coefficients[30].Moreover,accordingto[29](whichisnotpub- lishedofficiallyatthetimeofwriting)thedynamicsofanycomplex balancedCRNispersistent.

3.2. NetworkofCRNsconnectedbyconvectionwithdelay

ItisconsideredthatthemassactionCRNsarelocatedincon- tinuouslystirredtankreactors(CSTRs)thatareconnectedthrough staticconnections.InordertohaveausualCRNmodelconsidered inSection3.1,weassumeconstantvolume,constanttemperatureand constantphysico-chemicalpropertiesineachCSTR.

Aswe shall seelater in Section4.1,the above assumptions togetherwithAssumptions1and2ensurethatthelocalCSTRsare passivewithacertaininput-outputpair.Inpracticetheconstant temperatureassumption–thatimpliesconstantphysico-chemical propertieswithconstantpressure–isapproximatelyvalidformost ofthebiochemicalapplications,wherealsothecomplexbalanced andpersistentnatureofthereactionnetworkisalsovalid.Thecon- stantvolumeassumption,however,putssevererestrictionsonthe convectionnetworkasitwillbedescribedlaterinSection3.2.2.

EachCSTRhasaninletandanoutletportwithvolumetricflow ratesvIiandvisuchthatvIi=vi, i=1...C,wherethenumberof CSTRsisdenotedbyC.

We also introduce a pseudo-CSTR (CSTR0) for describing the environment.Becauseoftheconstantvolumeassumptionofeach internalCSTR,thisassumptionalsoholdsfortheenvironment,such thatvI0=v0.

Assumption3. InCSTR0theconcentrationvector(c(0))isconstant andstrictlypositiveelement-wise.

Intheusualpracticallyimportantcasesthevariationoftheinlet feed–usuallyitscompositionbutsometimesevenitsflowrate ischanging–isthemajordisturbancetoaplant,therefore,the constantconcentrationsassumptioninCSTR0thatrepresentsthe environmentdoesnotalwaysholdinpractice.However,onecan relaxthis assumptionifadisturbancerejectiveextensionofthe controlschemeisdeveloped:thistechniqueisusedforourpro- posedcontrolmethodinSection4.3.

3.2.1. OpenCRNmodel

Anumber ofC mass-actionChemical ReactionNetworksare consideredinthesystemunderinvestigation.LetY(j)andA(j) be thestoichiometricandKirchhoffmatricesoftheODEmodelofthe CRNthattakesplaceinthejthCSTR:

˙

c(j)=Y(j)A(j)ϕ(j)(c(j)). (17)

(4)

Thenthecomponentmassbalancecontainingthein-andout- flowconvectivetermsofthejthCSTRreadsas

dc(j) dt = 1

Vj

C

=0

˛jvc()vjc(j)

+Y(j)A(j) ϕ(j)(c(j)) (18)

wherej=1...C.

3.2.2. Theconvectiveconnections

Connectionsaresetupbetweenthereactorssuchthattheoutlet oftheithreactorisdividedintofractionswiththefractioncoeffi- cients˛ijthatarefedintothejthreactor.Thismeansthat

C

=0

˛i=1, i=0,...,C, (19)

vIj=vj=

C =0

˛jv, j=0,...,C. (20)

Becauseconstantvolumeisassumedineveryregion,thesum ofconvectiveinflows

v0=

C

=0

˛0v (21)

isequaltothesumoftheconvectiveoutflowsoftheprocesssys- tem.Itisimportanttonotethatthecompositesystemconsistingof theoriginalprocesssystemanditsenvironmentisclosedwithC+1 regionseachofconstantvolume.

With thenotations above we can formulate theconvection matrixasfollows:

CC=

⎢ ⎢

⎢ ⎣

−(1−˛00)v0 ˛10v1 ˛20v2 ... ˛C0vC

˛01v0 −(1−˛11)v1 ˛21v2 ... ˛C1vC

···

˛0Cv0 ˛1Cv1 ˛2Cv2 ... −(1−˛CC)vC

⎥ ⎥

⎥ ⎦

(22) ThismatrixwillbetermedKirchhoffconvectionmatrix.

TheconstantvolumeassumptionimpliesthatCC1=0which is also a consequence of Eq. (19).Here 1=(11...1)T and 0= (00...0)T.Moreover,Eq.(20)impliesthat1TCC=0T.

TheabovetwoequationsandthesignpatternofCCshowsthat Kirchhoffconvectionmatricesarebothrowandcolumnconserva- tionmatrices.WhenthereisnoflowfromtheithCSTRtothejth CSTR,theparameter˛ij=0inCC.TheKirchhoffmatrixdescribes thestructureoftheunderlyingdirectedgraphGCoftheconvection network:theweightedLaplacianofGCis−CC.OnGCthefollowing assumptionismade:

Assumption4. GC contains adirectedspanningtreewithroot CSTR0.

Thisassumptionmeansthatthesupplyfromtheenvironment reacheseachindividualreactor,therearenoreactorswhichare unreachablefromtheCSTR0intheprocessnetwork.

Thisassumptioniseasytoverifyinpracticebasedontheflow sheetoftheplant,butitmaynotholdinallpracticalcasesforthe overallplant.Atthesametime,ifthesupplyisreallynecessaryfor theproduction,thentheplantcanbenaturallydecomposedinto sub-plantsthatobeyAssumption4individually,andthecontroller designcanbedoneforthemseparately.

3.2.3. Connectedmodelwithconvectiondelays

Considerthattransportdelaysarepresentintheinterconnec- tionsamongtheCSTRs.Denotethedelayvaluebetweenthethand

jthCSTRasTj.Thenthestateequationof(18)obtainsthemodified form:

Vjdc(j)i dt =

C

=0

˛jvc()i (t−Tj)−vjc(j)i +VjY(j)A(j)ϕ(c(j)), (23)

c()i ()=()i (), −Tj≤≤0.

Herej=1...Candi()()∈C+isaninitialconditionfunction.

4. Distributedcontrollerdesign

Thedesignofthedistributedcontrolschemeisbasedonthe passivityanalysisoftheinterconnectedCSTRsthatisgiveninthe nextsection. Thereafter the distributed setpoint control design willbeintroducedandfinally,itsdisturbancerejectiveversionis described.

4.1. StoragefunctionandpassivityanalysisofopenCRNs

LetusconsiderthattheinputofthejthopenCRN(23)isthe vectoru(j) ∈RKsothat:

dc(j)

dt =Y(j)A(j)ϕ(j)(c(j))+ 1

Vju(j). (24)

NotethattheabovegeneralformisderivedfromEq.(18)bycon- sideringthedifferencebetweentheconvectivecomponentmass in-andoutflowtermasaninput.However,becauseoftheconstant volumeassumptionineachCSTRonecanarbitrarilymanipulate onlythelocalinletconcentrationsfromtheenvironment,butnot theflowrates.

ChoosethestoragefunctionforthejthCRNastheweightedform oftheLyapunovfunction(15):

S(j)= Vj

Lnc(j)−Lnc(j)∗

T

c(j)1T

c(j)c(j)∗

. (25)

Here ∈R+isapositivefiniteconstant,Lnisthenaturallogarithm appliedelement-wisetoavector,andc(j) isa(generallyinitial conditiondependent)equilibriumpointofthejthCRN.

Forthepassivitytheoutputmappingofthesubsystemhasto satisfytherelation(6).Fromthemodel(24)itresultsthattheoutput ofthejthsubsystemhastohavetheform:

y(j)= 1 Vj

∂S(j)

c(j)

T

. (26)

ByEqs.(25)and(26)yieldsthepassiveoutputvectorofthejth CRN:

y(j)=

Lnc(j)−Lnc(j)

. (27)

Lemma1. TheopenCRNsystem(24)withAssumption1ispassive fromtheinputu(j)totheoutputy(j)inEq.(27).

Proof. Considerthestoragefunction(25).Thetimederivativeof S(j)readsas:

(j)(c(j))= Vj

Lnc(j)−Lnc(j)∗+1

T

˙

c(j)1Tc˙(j)

, (28)

(j)(c(j))= Vj

Lnc(j)−Lnc(j)

T

1

Vju(j)+Y(j)A(j)ϕ(c(j))

. (29) ByAssumption1,ifu(j)=0, ˙S(j) isnon-increasing,seee.g.the study[11].Hence,

Lnc(j)−Lnc(j)

T

Y(j)A(j)ϕ(c(j))≤0.Ityields:

(j)(c(j))≤y(j)Tu(j), (30)

i.e.thesystem(24)ispassive.䊐

(5)

Remark1. ForpassivityanalysisofopenCRNsasimilarapproach was taken in [32]: the input was chosen proportional to the positive input flow rate and the passive output was taken as (Lnc−Lnc)T(c−cIN),wherecINistheinletconcentration.How- ever,forcontrolpurposesitismorebeneficialtochoosetheinput u(j)asin(24)sincethecontrolcanbeimplementedbymodifying theinletconcentration.

4.2. Distributedsetpointcontrol 4.2.1. Controlproblemstatement

ConsideraprocessnetworkconsistingofCsubsystems(CRNs) thatareinterconnectedthroughadelayedconvectionnetwork.The reactionsthattakeplaceinthereactorsaredescribedbytheopen CRNmodel(24).

Controlobjective:LetthesetpointofthejthCSTRbec(j)SP that belongstotheequilibriumpointsetof(17).Designadistributed controllerforeachCRNsuchtoassurethatc(j)c(j)SPast→∞,∀j= 1...C.

4.2.2. Localcontrolinput

Toimplementthecontrol,augmenttheinputofeachCRNwith alocalcontrolinflow(vLjc(j)L )inwhichthespecies’concentrations (c(j)L )arespecifiableandtheyareusedaslocalcontrolinputs,and vLj ∈R+istheconstantlocalinputflowrate,j=1...C;vL0=0.

As it has already been noted before, the constant volume assumptionineachCSTRimpliesthattheflowratescannotbefreely manipulated,buttheyarerelated.Therefore,thelocalinletspecies concentrations,thataredifferentfromtheoverallfeedconcentra- tionassumedtobeconstantinAssumption3,arethemanipulable localinlet concentrations. In practical schemes,the volume(or overallmass)ofeachCSTRisheldconstantonalowerlevelofa hierarchicalcontrolschemebymanipulatingtheoutputflowrates [6,33]whiletheconcentrationsarecontrolledonahigherlevel:

thatisconsideredinthispaper.

Inthecontrolledprocessnetworktheinputvectorofthejth openCRNhastheform:

u(j)=

C =0

aj˜vc()(t−Tj)+aLj˜vjc(j)Lv˜jc(j) (31)

wherev˜j=vj+vLj,aLj=vLjvj.

Inthecontrolledprocessnetworkthebalanceequationsinthe convectionnetwork(similartoEq.(19))readas:

C =0

aj=1, j=0,...,C, (32)

˜vj=

C

=0

aj˜v+aLj˜vj, j=0,...,C. (33)

Letusdistinguishintheinflowvectoru(j)theinterconnection term(i(j))andthelocalcontrolterm(u(j)L )asfollows:

u(j)=i(j)+u(j)L , (34)

i(j)=

C =0

ajv˜c()(t−Tj)−(1−aLjvjc(j), (35)

u(j)L =aLj˜vj

c(j)Lc(j)

. (36)

Theinterconnectiontermcontainstheflowsfrom-andtotheother openCRNs.Thevalueoflocalcontrolflowcanbespecifiedthrough c(j)L .

Fig.1.Interconnectionsbetweentheenvironmentandprocessnetwork.

Theflowsbetweenthecontrolledprocessnetworkandtheenvi- ronmentareshowninFig.1.

4.2.3. Theconceptofsynchronization-basedcontrol

Thepropertiesofthebalanceequations(32)and (33)canbe exploitedtoachieve thedistributedcontrolobjectivebytracing backtheformulatedcontrolproblemtothesynchronizationprob- lem,discussedinSection2.

Ifthesynchronizationcanbereachedintheprocessnetwork,the steady-stateoutputsoftheCRNstakethesamevalue,i.e.y(j)=y(k) ast→∞∀j,k=1...C.

Asthesupplyhasconstantconcentrationvector,i.e.c(0)=c(0) itcanbeconsideredthaty(0)(t)=0,see(27).

IftheoutputsofallCRNsaresynchronized(y(j)=y(i)i,j),it yieldsthaty(j)=y(0)=0 ∀j∈N0,i.e.c(j)=c(j)∗ ∀j∈N0.More- over,ifAssumption4holds,y(j)=0,i.e.c(j)=c(j)j=1...C.

Accordingtothesynchronizationprotocol(8)theinputu(j)of thesubsystemhastobedesignedasafunctionofthepassiveoutput (y(j))ofthesubsystemandtheneighboringsubsystems.

However,intheprocessnetworktheinterconnectioninput(i(j)) dependsonthestatevectors(c(j)),seeEq.(35).

Definethedesiredinputvectoru(j)y oftheCRNsasafunctionof thepassiveoutputs:

u(j)y =

C

=0

ajv˜y()(t−Tj)−(1−aLjvjy(j). (37)

Herey(j)=

Lnc(j)−Lnc(j)SP

wherec(j)SPistheprescribedequilib- riumpoint(setpoint)∀j=1...C.

Thelocalcontrolinputsu(j)L oftheCRNsin(34)havetobefor- mulatedsuchthattheycompensatethedifferencesbetweenthe desiredinterconnection(necessarytoreachthesynchronization withtheprescribedsetpoint)andtherealinterconnections.

Fromtherelations(35),(36),(37)wecancomputetheexplicit formofthelocalcontrolinputwhichsatisfiesu(j)=i(j)+u(j)L =u(j)y :

c(j)L =y(j)+ 1 aLj˜vj

C

=0

aj˜v

y()(t−Tj)

c()(t−Tj)

v˜j

y(j)c(j)

. (38)

It is visible from (38) that the computation of the control law of each subsystem requires the knowledge of the outputs oftheneighboring(connected)subsystems.Thisnecessitatesthe localcommunicationofthecontrollersinastraightforwardimple- mentation.Therefore,theproposedapproachcanbeclassifiedas distributedcontroldesignasitisdefinede.g.in[7,34].

(6)

4.2.4. Stabilityandsteady-statesoftheclosedloopsystem

Theorem1. ConsiderasystemofinterconnectedCRNsinwhicheach subsystemmodelisgivenby(24),(34),(35),(36)andtheintercon- nectionparametersaredefinedasin(32)and(33).IfAssumptions 1–4holdandc(j)L in(36)canbechosensuchthatu(j)=u(j)y element- wise∀j=1...C,thenc(j)(t)isboundedfor t≥0andc(j)c(j)SP as t→∞∀j>0.

Proof. BasedonthestoragefunctionS(j),givenin(25),definethe followingLyapunov-Krasovskiifunctional:

S=2

C j=0

S(j)+

C j=0

C =0

aj˜v

t

t−Tj

y()Ty()d. (39)

Thetimederivativeofitreadsas S˙=2

C j=0

(j)+

C j=0

C

=0

aj˜v

y()Ty()y()T(t−Tj)y()(t−Tj)

.

(40)

ByLemma1ityieldsthat ˙S(j)y(j)Tu(j)j.Accordingly:

≤2

C j=0

y(j)Tu(j)+

C j=0

C

=0

aj˜v

y()Ty()

y()T(t−Tj)y()(t−Tj)

. (41)

By choosing c(j)L such that u(j)=i(j)+aLjv˜j

c(j)Lc(j)

=

u(j)y ∀j=1...C,andsincey(0)=0,ityields:

≤2

C j=0

y(j)T

C

=0

ajv˜y()(t−Tj)−(1−aLjvjy(j)

(42)

+

C j=0

C =0

aj˜v

y()Ty()y()T(t−Tj)y()(t−Tj)

.

Asv˜j=aLj˜vj+

C

=0aj˜v=

C

=0ajv˜j (the sum of inflows is equaltothesumoftheoutflows),itresultsthat

C j=0

C

=0

aj˜v

y(j)Ty(j)+2y(j)Ty()(t−Tj)

y()T(t−Tj)y()(t−Tj)

,

≤−

C j=0

C =0

ajv˜

y(j)y()(t−Tj)

T

y(j)y()(t−Tj)

≤0.

(43)

Letusintroducethenotation

e(j,)i (t)=yi(j)(t)−y()i (t−Tj). (44) As ˙S≤0 it yieldsthat S(∞)=limt→∞S(t)<∞ for finite S(0).Accordingly,by(43)ityieldsthat:

C j=0

C =0

ajv˜

K i=1

t=0

y(j)i ()−yi()(−Tj)

2

d≤S(0)

−S(∞)<∞. (45)

Hence,e(j,)i ∈L2i,j,.

SinceS(t)<∞andcSPi(j)isafinite,strictlypositiveconstant∀i,j, ityieldsthatc(j)i andconsequentlye(j,)i ,y(j)i ∈Li,j,.Hence,all theentriesofc(j)arebounded∀j.

c(j)i ∈Landy(j)i ∈Limpliesthatu(j)i ∈L.ByEq.(24)itcan beseenthat ˙ci(j) ∈Li,j.Thetimederivativeofy(j)i readsas ˙y(j)i =

˙

ci(j)/c(j)i .ByAssumption2ityieldsthat ˙yi(j) ∈L.Hence ˙e(j,)i ∈ Li,j,.

Ase(j,)i ∈L2,e(j,)i ∈Land ˙e(j,)i ∈L,byBarbalat’slemma,it yieldsthatlimt→∞e(j,)i =0∀i,j,.

SinceTjarefinite,limt→∞yi(j)(t)=limt→∞y()i (t), ∀i,j,.From Assumption3itresultsthaty(0)i =0.Hence,byAssumption4,it yieldsthatlimt→∞ci(j)(t)=ciSP(j)i,j.

It is importanttonotethat S in (39)and thelocalcontrol input(38)areindependentofthekineticparametersoftheCRN subsystems.

4.3. Distributedsetpointcontrolwithdisturbanceattenuation Thecontrollaw,presentedintheprevioussubsections,requires theknowledgeoftheconvectionnetwork parameters.Theaug- mented controlproposedin this subsectionfollows theideaof high-gaincontrolmethodstoattenuatetheeffectsofunmodelled disturbancesanduncertaintiesintheinterconnectionsonthecon- trolperformances:instablecontrolloops,withsufficientlyhigh feedbackgaintheeffectoftheboundeddisturbancesonsteady- stateperformancescanbemadearbitrarilysmall(seee.g.[35]).

ConsiderthattheCRNsintheinterconnectedsystem,originally describedbythemodel(24),aresubjecttoadditivedisturbances, i.e.theycanbemodelledas

dc(j)

dt =Y(j)A(j)ϕ(j)(c(j))+ 1

Vju(j)+d(j), j=1...C (46) wherethedisturbanceinputd(j)(t)∈RK.

It isimportant tonoticethat theabovegeneralformis also derivedfromEq.(18)byconsideringthedifferencebetweenthe convectivecomponentmassin-andoutflowtermasaninput,and byseparatingtheinflowtermoriginatingfromtheenvironmentas thedisturbance,i.e.d(j)0jv0c(0).Byassumingthedisturbance changingintime,wehaverelaxedtheconstantenvironmentcon- centrationconditionsinAssumption3inordertodesignacontroller thatrejectsitseffectonthecontrolledoutput.

Notethatthepassivityproperty,discussedinLemma1,ispre- servedfromd(j)toy(j)whenu(j)=0.Itisbecausethedisturbance inputvectorhasthesamedimensionandthesamelinearinput structureasthelocalcontrolinputvector.

Assumption5. Thedisturbanceinputd(j)iscontinuousand

d(j)2≤d(j)M (47)

wheredM(j) ∈R+isafiniteconstant.

Definetheinputandoutputvectorsofallthesubsystems

u=(u(1)T...u(C)T)T, (48)

d=(d(1)T...d(C)T)T, (49)

y=(y(1)T...y(C)T)T. (50)

ByAssumption5ityields

d2≤dM, where dM=

C

j=1

d(j)M

2

. (51)

(7)

Fig.2.ExampleofcontrolledinterconnectedCRNs.

Toattenuatetheeffect ofdisturbances,augmentthedesired input,originallygivenin(37),as

u(j)d =

C =0

aj˜vy()(t−Tj)−(1−aLjvjy(j)

2y(j) (52)

where ∈R+istheconstant,finitecontrolgain.

Theorem2. ConsiderasystemofinterconnectedCRNsinwhicheach subsystemmodelisgivenby(46),(34),(35),(36)andtheinterconnec- tionparametersaredefinedasin(32)and(33).IfAssumptions1–5 holdandc(j)L in(36)canbechosensuchthatu(j)=u(j)d element-wise

j=1...Cwith >1+dM

ε , 0<ε<∞, (53)

thenyconvergestowardtheset{y|y2≤ε}.

Proof. ConsidertheLyapunovfunctioncandidateSgivenin(39).

WiththeCRNmodel(46),byfollowingsimilarargumentsasin theproofofTheorem1,thetimederivativeofSreadsas:

≤−

C j=0

C =0

ajv˜e(j,)Te(j,)y22+2yTd (54)

wheree(j,)=y(j)(t)−y()(t−Tj).

By applying that yTd≤|y|T|d|≤(y22+d22)/2, and by Assumption5ityields:

≤−

C j=0

C

=0

ajv˜e(j,)Te(j,)

+(dM+(−1)y2)(dM−(−1)y2). (55)

Since >1+dεM, it yields that dM+(+1)y2>0 and, if y2>ε, dM−(−1)y2<0. Accordingly, ˙S<0 i.e S is a decreasingstoragefunctionify2>ε.

By(39)thedecreaseofSinvolvesthedecreaseofS(j) orthe decreaseof

t

tTjy()Ty()dterms.

AsS(j)=0iff y(j)i =0,i=1...K,j=1...C thedecreaseof S(j) involvesthatsomey(j)i tendto0.

As Tj are finite and positive ∀,j, the decrease of

t

tTjy()Ty()dalsoinvolvesthatsomey(j)i tendto0.

Theconvergenceofy(j)i towardszeropersistsuntily2≥ε,i.e.

untiltherelation(53)issatisfied.䊐

4.4. Restrictiononconvectionflowrates:positivity

During thecontrol design thephysical meaning of thecon- trolinputs,thatareconcentrations,shouldbetakenintoaccount.

Thisimplies,thatthecontrolshouldalwaysbepositive,i.e.c(j)L0 element-wise∀j=1...C.Thesepositivityconditionsimplyrestric- tionsontheachievablesetpointsthatwillbederivedbelow.

Considertheequationsusedforcontroldesignu(j)=i(j)+u(j)L = u(j)y,andi(j)+u(j)L =u(j)d respectively.Insteady-stateu(j)y =u(j)d =0 sincey(j)=0j=1...C.Hence,thesteady-statevalueofthecontrol is

c(j)L = 1 aLj˜vj(i

(j)

SP+aLjv˜jc(j)SP)= 1 aLjv˜j

C =0

aj˜vc()SPvjc(j)SP

. (56)

Thepositivenessofthecontrolinputinsteadystateisassured ifthefollowinginequalitiesholdelement-wise:

C =0

aj˜vc()SP ≤˜vjc(j)SP, ∀j,=1...C. (57)

Theaboveinequalityexpressesthecomponentmassconservation conditions,similarlytothosefortheoverallmassinEq.(33).Eq.

(57)putsaconditionontheachievablesetpointinthejthCSTR dependingonthesetpointintheCSTRsconnectedtoitsincoming flows.

Therelation(56)canalsobeappliedtoderiverelationsamong thesetpoints of thecontrolledsubsystem and thesteady state upperboundofthecontrolinputs.

5. Acasestudy

5.1. InterconnectedCRNmodelforsimulations

AninterconnectedCRNnetworkwasconsideredconsistingof threedifferentCRNsandtheenvironment.TheCRNsinthethree subsystemswerechosenas

CRN1: R11:2C312A122B, R12:2C32

[23]2B. (58)

CRN2:R2: 2A12

[21]2B. (59)

CRN3:R3: A+C45

[54]

B. (60)

Itis easytoseethat allthreeCRNsarereversibleorweakly reversibledeficiencyzeronetworkswithasinglegraphcomponent (linkageclass).Therefore,basedon[28],Assumptions1and2(com- plexbalanceandthuspersistenceofthedynamics)arevalidfor themindependentlyoftheirreactionratecoefficients.Itisimpor- tanttoremarkthatcomplexbalanceisoftenfulfilledinpracticefor thermodynamicalreasons,especiallyinthecaseofpurechemical reactions[36].

For thesimulations, therate parameters werechosen tobe ij=1mol/m3/s, ∀i,j.Thereactionstakeplaceinreactorshav- ingconstantvolumes(Vj=1m3).ForeachCRNthestatevector, incorporatingtheconcentrationofspeciesA,BandC,isdefinedas c(j)=(cAcBcC)T, ∀j.

TheinterconnectionsamongtheCRNswereimplementedasit ispresentedinFig.2withthefollowingparametersv˜=0.1m3/s, a31=0.1. Thedelays in theinterconnectionswerechosen Tij= 10s, i,j=1,2,3.

(8)

Theflowratesintheinterconnectionsbetweentheenvironment andtheprocessnetworkare: fromthesupplytoCRN1 theflow rateis(1−a31v;thecontrolflowratesoftheCRNsarevL1,vL2, vL3;theproductflowratefromtheCRN3 totheenvironmentis

˜vP=(1−a31v+vL1+vL2+vL3.

TheoutflowsoftheopenCRNsare:v˜1=v˜+vL1,v˜2=v˜1+vL2,

˜v3v2+vL3.

Theconstantsupplyconcentrationwaschosen c(0)=(0.02 0.02 0.02)Tmol/m3.

TheinitialstatesoftheCRNswerechosenas c(j)(0)=(0.05 0.1 0.15)Tmol/m3,j=1,2,3.

Thesetpointswerechosenas:

c(1)SP =(√ 0.016 √

0.032 √

0.016)Tmol/m3, c(2)SP =(0.180.18√

0.016)Tmol/m3, c(3)SP =(0.875 0.8752 0.875)Tmol/m3.

5.2. Simulationexperiments 5.2.1. Nocontrolcase

ThesimulationswereperformedinMatlab/Simulinkenviron- ment.First,thebehavioroftheCRNnetworkwasexaminedwithout control(u(j)L =0, j=1,2,3).Fig.3showsthetrajectoriesforthis case.ThebehaviorsoftheinterconnectedCRNsdependboth on thedynamicsoftheindividualchemicalreactionsandontheflows throughtheinterconnectionsamongthereactors.Thetrajectories oftheuncontrolledsubsystemsinterconnectedwiththeconvection networkconvergetoinitialvaluedependentequilibriumstates.

Fig.3.SimulationresultsinterconnectedCRNswithoutcontrol.

Fig.4. SimulationresultsinterconnectedCRNswithdistributedsetpointcontrol.

(9)

5.2.2. Distributedsetpointcontrol

Second,thedistributedcontrolwascomputedandimplemented based on the relation u(j)L =u(j)yi(j) with vLj=0.01m3/s j= 1,2,3,seethecontrolsignaldefinedin(38).Duringthissimulation experiment,nodisturbancewasconsidered.Thecontrolledtrajec- toriesoftheCRNsarepresentedinFig.4.Fig.4showsthat,withthe proposedcontrol,theprescribedsetpointsarereached.Theoutput calibrationconstantin(27)waschosen =0.8mol/m3.

Theparameter ,introducedintheoutputEq.(27),actsasagain inthecontroller.Itseffectonthecontroltransientperformances ispresentedinFig.5.Thisexamplepresentsthetrajectoryofthe controlledconcentrationc(1)A fordifferentvaluesof .

5.2.3. Comparisonwithamodelpredictivecontroller

ForthesameinterconnectedprocessnetworkaModelPredic- tiveController(MPC) wasdesigned usingthe MPC Controller Simulinkblock of MatlabMPC Toolbox [37]. Thisperforms the linearizationaroundthesetpoint,andthediscretizationofthelin- earizedmodel.Thesamplingperiodfordiscretizationwaschosen 0.1s.TheMPCblocksolvesaconstrainedoptimizationproblemin eachsamplingperiodtoobtainthecontrolinput,see[38].Allthe outputweightsandinputcontrolrateweightsofthecostfunction werechosen0.1.Thelowerboundconstraintsforalltheoutputs andcontrolinputswerechosen0.

Fig.5.Simulationresultseffectof ondistributedsetpointcontrol.

The simulation results withthe MPC is presented in Fig. 6.

By comparing the simulations results of the proposed control withtheMPC,itcanbeaffirmedthatsimilarsettlingtimesand trackingcontrolperformancescanbeobtained.However,forthe implementationoftheproposeddistributedcontrolalgorithmonly the convection network parameters should be known. For the implementationoftheMPC,besideit,theparametersoftheCRN subsystemsshouldalsobeknown.

Fig.6.SimulationresultsinterconnectedCRNswithMPC.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

When models of process and control systems are integrated to a process Data Warehouse the resulted structure support engineering tasks related to analysis of system performance,

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Abstract: Presented process calculus for software agent communication and mobility can be used to express distributed computational environment and mobile code applications in

In this paper the similarities and the differences between three different control methods, namely the robust VS/SM Controller, the Adaptive Slotine – Li Controller and a

In this paper we combine the characteristics of fuzzy systems, the technique of feedback linearization, the adaptive control scheme and the H ∞ optimal control theory with aim

A bilateral control algorithm is proposed that can assure both stability and proper force reflection in the presence of non-constant delay in the communication