• Nem Talált Eredményt

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PETER PAZMANY CATHOLIC UNIVERSITY Consortium members"

Copied!
65
0
0

Teljes szövegt

(1)

Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**

Consortium leader

PETER PAZMANY CATHOLIC UNIVERSITY

Consortium members

SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund ***

**Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben

(2)

Compounds with halogen, oxygen and sulfur

(Halogén-, oxigén-, és kéntartalmú vegyületek)

Organic and Biochemistry

(Szerves és Biokémia )

Compiled by dr. Péter Mátyus

with contribution by dr. Gábor Krajsovszky

Formatted by dr. Balázs Balogh

(3)

Table of Contents

1. Halogenated hydrocarbons 5 – 34

2. Alcohols and phenols 35 – 48

3. Ethers 49 – 57

4. Hydrocarbons with sulphur 58 – 70

(4)

SUBSTITUTED

HYDROCARBONS

(5)

SUBSTITUENT: HALOGEN

HALOGENATED HYDROCARBONS

(6)

1. Structure:

Substrate Bond

length (Å)

Homolytic

dissociation energy (kcal/mol)

Alkyl-F 1.38 116

Alkyl-Cl 1.77 81

Alkyl-Br 1.91 66

Alkyl-I 2.21 51

1.69 104

60 1.86

CH2 CH

C

H2 Cl

Br CH

C H2

Cl CH

C H2

(7)

pz pz pz

sp2 sp2

hlg

-C -C

H2C CH hlg 4

H2C CH hlg H2C CH hlg

(8)

2. Physical properties:

a.) good solvents: for lipids with narcotic effects b.) boiling point > hydrocarbons

!

phosgene diethyl carbonate

toxic

detoxification

CHCl

3

CHCl

3

O

2

h C O

Cl

Cl

EtOH C O

H

5

C

2

O

H

5

C

2

O

(9)

Biological properties:

- narcotic effect

- polychlorinated products are toxic

fluothane

F

3

C CHBrCl

(10)

reaction ΔH = -BDE (products) - [ -BDE (reactants)]

Radical reactions Thermochemistry I.

Halogenation of methane

BDE (kcal/mol) F—F → 2 F 38

Cl —Cl → 2 Cl 58 Br —Br → 2 Br 46 I —I → 2 I 36 H —F → H + F 136 H —Cl → H + Cl 103 H —Br → H + Br 87 H —I → H + I 71

H3C—F + X → H3C + HX (1) chain

X—X + CH3 → X + CH3X (2) propagation

Preparation of alkyl halides

by radical reaction

(11)

Radical reactions Thermochemistry II.

R—H BDE (kcal/mol)

H3C—H 104

1° C —H 98

2° C —H 94

3° C —H 91

H3C —F 108

H3C —Cl 83

(12)

Radical reactions Thermochemistry III.

BDE (kcal/mol) 104 58 83

162 186

ΔHr = - 186 - (-162) = - 24 kcal/mol The first step of chain propagation for halogenation:

bond ΔHr

H3C—H -103-(-104) = +1 -87-(-104) = +17 3° C—H -103-(-91) = -12 -87-(-91) = +4

X = Cl X = Br

103

CH

3

—H + Cl—Cl CH

3

Cl + HCl

C H X C H X

(13)

The first step of chain propagation is endothermic process, but steps (1) and (2) together make the process exothermic.

Bromo radical is more selective radical, than chloro.

(14)

Radical reactions Thermochemistry IV.

X X + CH3 H3C X + X CH4 + X CH3 + HX

(2) (1)

Energy profile of the chain propagation steps of halogenation:

+33 +17 +1

0

-100

I

13

Br -7 Cl

-25

F

-102

F2 → extremely reactive → explosion I2 → endothermic → does not react Cl2 → high reactive → is not selective Br2 → sluggish → selective (with reactive substrate only)

(15)

Radical reactions Thermochemistry V.

CH3 CH2 CH3

Cl2

Br2

CH3 CH2 CH2Cl 45 % CH3 CH2 CH3 55 %

Cl

CH3 CH2 CH2Br < 1%

CH3 CH CH3 Br

> 99 %

(16)

Summary

Alkylation reactions 1. RX

OEt

OH R—OH

2. RX R—OEt

3. RX SEt

R—SEt 4. RX NH3

R—NH2

5.

RX R1R2 NH

R N

R1 R2

RX Ph3

P [Ph3P—R]X 6. RX N3

RN3 7. RX CN

RCN (+ R–C=N:)

8. RX

HC

EWG

EWG RC

EWG EWG

9. RX

HN C

O N C

O R

+

N C

OR

10. RX

NO2

R—NO2

(17)

Further alkylation reactions

1 1 . R - X

1 2 . R - X

1 3 . R - X

1 4 . R - X

H R H

R H l g

R C C R '

R O C O

R ' H l g

C C R '

O C O

R '

(18)

Grignard reaction

CH3I + Mg Et2O

CH3 Mg I

O Mg Et

Et

R

X

O Et Et

CO2 H2O

R H R COOH

C OH R2 R

R1

C O R1

R2

(19)

Aliphatic nucleophilic substitution

SN1 and SN2 alkylation R X + Y R Y + X

nucleophilic X nucleofugic

SN1

C Cl

HO slow HO + C + Cl

fast

HO C + C OH + Cl

(20)

S

N

2

inversion

HO +

C Cl

+ Cl

C

HO- Cl-

C HO

(21)

intermediate

reaction coordinate E

SN2

The height of the barriers depends on the substrate considerably!

SN1

1

2

(22)

1o 2o 3o

CH3Cl H3C C

CH3 CH3

Cl SN1

SN2

CH Cl H

3

C

H

3

C

(23)

E2 reaction

C C

H

Cl

HO + C C + H2O + Cl

CH X

C C

H3C H

H

H H

H base with increased spatial requirements base with decreased

spatial requirements

(24)

Reaction:

Mechanism: Step 1.

H 3 C C C H 3

B r

C H 2 C H 3 E t O H

H 2 C C C H 3

C H 2 C H 3 + C C H 3 C

C H 3 H 3 C

H

2 5 % 7 5 %

H

3

C C C H

3

B r

C H

2

C H

3

H

3

C C C H

2

C H

3

C H

3

+ B r

slow

(25)

Step 2.

H3C CH2 O H fast

"Hofmann"

H2C C CH3

CH2 CH3 H3C CH2 O H +

H CH2 C CH2 H CH3

CH3

H3C CH2 O H

"Zaitsev"

H3C C C

CH3 H3C

H H3C CH2 O H +

H H CH fast

CH3

C CH3 CH3

(26)

S

N

1, S

N

2, E1, E2 reactions

CH3X RCH2X RCHX R

R C X R

R

methyl 1

o

2

o

3

o

bimolecular mechanism (S

N

2 or E2) S

N

1/E1 or E2 S

N

2 mainly S

N

2, but

strongly hindred B : E2

weak base

(I , Cl , CN ): S

N

2 strong (RO ):

E2

S

N

2 ø

solvolysis: S

N

1/E1 (low T, S

N

1) strong base (RO ):

E2

(27)

Solvent effect

A more polar solvent increases G , if the transition state is less polar, than the starting material.

A more polar solvent decreases G , if the transition state is more polar, than the starting material.

(28)

H H H

O H I H

H

H H O

H I H

H

H H

SN2 I H2O

transition state

CH3 H H N I

Et EtEt

N Et EtEt

C H H

CH3

I

N Et

EtEt CH3 HH

I

transition state SN2

starting material

starting material

(29)

The energy of an alkyl halide is approximately

the same either in polar The transition state is more polar, than the

starting material; a polar solvent can decrease the energy needed for cleavage of the bond by solvation, thus the activation energy is smaller in the case of a polar solvent

activation energy

R X

R X

R X

R X

(30)

Increasing polarity by ionisation (protic conditions):

SN1, E1 E2

product distribution:

nucleophilicity/basicity

Aprotic, polar:

SN2, E2

1° alkyl halogenide

3° alkyl halogenide

2°: according to the nucleophilicity/

/basicity of the reagent

(31)

Aromatic halogen compounds

1. SEAr → substitution of the core

FeCl3

Cl2 H Cl

Cl

2. Derivatives halogenated in the side-chain:

R CH2Cl CH

h Cl2 CH3

OCH3 ZnCl2

H O C H OCH3

(32)

Reactivity of halogen compounds toward nucleophiles

group 1.

Alkyl halogenides, benzyl chloride

group 2.

Acid halogenides, e.g.,

group 3.

Phenyl (and aryl) halogenides, e.g., Ph-Cl halogen-ethenes, e.g.,

H3C C O

Cl H3C C

O

Cl

H2C CH Cl H2C CH Cl

(33)

a) H2C CH CH2 Cl - Cl H2C CH CH2

H2C CH CH2 H2C CH CH2 Z + Z

slow

fast

CH2 CH2 CH2 CH2

It is analogous stabilization with the allylic cation.

c.p. benzyl radical with allylic radical c.p. benzyl anion with allylic anion

(34)

N O

O

Br h

N O

O

+ Br

N O

O

Br N

O

O

H + Br

2

+ HBr

(35)

Aliphatic and aromatic hydroxy compounds:

Alcohols and phenols

(36)

Classification:according to the order of the carbon atom bearing the OH group(c.p., with alkyl halogenides)

- Substitutive nomenclature

The principal group is the OH.

As a suffix: -ol

As a prefix : hydroxy

H3C (CH2)3OH n-butanol

primary

H3C

CH H3C

OH isopropanol secondary

H3C C H3C H3C

OH tert-butanol tertiary

H2C CH CH2 CH2 OH buta-3-en-1-ol

n-butyl alcohol isopropyl alcohol tert-butyl alcohol 1. Alcohols

(37)

(formal)

(R2 = H, alkyl...)

(38)

2. Phenols

Hydroxyl group(s) is(are) attached to the aromatic ring Nomenclature:

1. Trivial names

OH OH

OH

OH

OH

OH

OH

OH

OH OH phenol pyrocatechol resorcinol hydroquinone pyrogallol

OH

OH HO

OH

CH3 phloroglucinol cresols (3 isomers)

(39)

2. Systematic names

OH

OH

OH

1,2,4-benzenetriol

(40)

Chemical properties of alcohols and phenols

1. Acidic strength

mineral acids >carboxylic acids >carbonic acid >phenols >alcohols pKa

H3C—COOH 4.76

H2CO3 6.3

phenol 9.9

methanol 15.2

- I effect increases acidity (lower pKa), e.g., halogene substituent - M effect increases acidity, e.g., NO2 group

Resonance increases acidity, e.g., RCOOH vs. RCH2OH

(41)

Phenol vs. alcohol

Phenolate anion is of greater stability, than alkoxide anion:The negative charge is dispersed

Acidity of phenols is considerably increased due to a -M substituent

O O O O

O O O

O N

H O OH

-H+

(42)

Alcohols are amphoteric compounds!

Since the pKa value of an alcohol is about equal to the pKa value of water, alcoholate can not be prepared in aqueous system.

(pKa  16, or 15.7)

Alcohols can not be ‘absolutised’ by sodium metal!

oxonium ion conjugated acid

pKa = 2

R OH + HCl R O H

H

+ Cl

R OH + OH R O + H

2

O

(43)

2. Alkylation Ether formation

Williamson synthesis

Similarly, (CH3)2SO4 could be used for pre-

paration of phenyl methyl ethers.

H3C CH2 O Na H5C2I

H3C CH2 O CH2 CH3 diethylether

ONa

C2H5I

OC2H5

phenetol

phenyl ethyl ether

But: OH

CH2N2 OCH3

+ N

(44)

3. Oxidation

a) Alcohols

oxid.

K2Cr2O7/H2SO4/water/15-20oC J o n e s r . :

C o l l i n s r . :

Swern oxid.: (CH3)2SO4 / oxalyl chloride aldehyde carboxylic acid

ketone

mixture of carboxylic acids (chain cleavage)

mixture of carboxylic acids

ox R CHO ox R COOH R CH2OH

R

CH R

OH oxid. R C R

O

oxid.

R C R

OH R

dipyridine - CrO3/CH2Cl2/20oC could be

oxidized

R

CH R

OH

(45)

p-benzoquinone

oxidizing agents: e.g., K2CrO7 / H2SO4 Ag2O

OH

OH

oxid.

O

O

b) Phenols

(46)

- tertiary alcohols: narcotics

CH3CH2OH euphoria intoxication (3 g/l)

CH3CH2OH alcohol

dehydrogenase

H C

O

CH3 aldehyde

dehydrogenase

Disulfiram

C O CH3

OH

Acetyl

Coenzyme A

e.g., HC C C OH CH3

CH2CH3

CH OH

CH2N

CH3 CH3 R

;

OCH2 R

CH OH

CH2N H CH3

-Adrenoceptor agonists -Adrenoceptor agonists

(47)

Absolutisation of ethanol

1. 96% → by azeotropic distillation 2. Removal of traces of water:

• It can not be made by sodium metal! Na + H2O → NaOH since it is dissolved!

• Mg or CaH2

Mg + 2 H2O Mg(OH)2 + H2 CaH2 + 2 H2O Ca(OH)2 + 2 H2

these hydroxides are not dissolved in alcohol

(48)

diprivane iv. anesthetic agent

Cl Cl

Cl OH

TCP antiseptic agent

HC CH

OH CH3 CH3 H3C

H3C

HO HO

CH OH

CH2NHR

R = CH3 adrenaline

H noradrenaline

HO HO

CH2 CH2NH2 dopamine

(49)

ETHERS

Two hydrocarbon groups with one free valence are connected by an oxygen atom.

R O R,

derivatives of water/alcohols/phenols

1. a. R = R’ simple ethers v.

b. R  R’ mixed ethers 2. a. Aliphatic or

b. Cyclic

(50)

Nomenclature

1. Radicofunctional nomenclature

2. Substitutive nomenclature

CH2CH2OH O

CH3

2-methoxyethan-1-ol 3. Cyclic ethers

H3C CH CH CH2OH

O a)

epoxide 2,3-epoxibutan-1-ol

b) for larger rings: name the heterocycle

• only as prefixes, then the name for the RO- group is:

alkoxy, aryloxy

H3C CH2 O CH3 ethyl methyl ether

H3C

dimethyl ether O CH3

(51)

• Trivial names

anisole guaiacol verathrol

OCH 3 OCH 3

OH

OCH 3

OCH 3

(52)

Ethers, as protected derivatives of alcohols:

1. Trityl ethers (prepared from 1o alcohols only)

2. Tert-butyl ethers

Ph3C Cl + R CH2 OH pyridine - HCl

R CH2 O CPh3

H2 / Pd or H

H2C C

CH3 CH3

+

R OH Ph OH

or

H2SO4 R O Ph O

or

C(CH3)3 C(CH3)3

HI

(53)

Physical properties of ethers:

- Boiling point alkanes ~ ethers < Alcohols Reason:

There are H-bridges in alcohols.

- Conformation: similar to that of alkanes

O

The bond angle of oxygen is very close to of the CH2.

- Dipole moments: ethers > alkanes (the C-O bond is polar)

R O H

R O H

R O H

(54)

Chemical properties of ethers

Ethers are stable in diluted acid, except for the epoxides or vinyl ethers.

Cleavage of ethers:

R O R'

HI R

R' O H Nu R OH

R' Nu + OR

AlCl3 OH

+ RCl H2C CH2

O

+ H2O H

CH2 CH2

HO OH

+ H2O H

H2C CH OR H3C C

O H

+ ROH

(55)

More important ethers: are used as solvents

OR CH2 CH2

HO

Ethylene glycol monoalkyl ether

OR CH2

CH2 RO

„monoglyme”

CH2 OR CH2

CH2 O CH2

RO

„diglyme”

O

(56)

Crown ethers

18-Crown-6 12-Crown-4 15-Crown-5

„Host-guest”

Additional types:

cryptand cryptate (containing N) podand open-chained bi- or polycycles,

but bending toward each other lariate crown ether + side chain

Na O O O

O O Li

O O

O O

K O

O

O O O

O

(57)

Compounds containing C-S bonds Thiols (thioalcohols and thiophenols) Thioethers or sulfides

- disulfides - sulfoxides - sulfones

- sulfonic acids Nomenclature

CH3SH

HSCH2CH2OH PhSH RS CH3SCH3

methanethiol

2-mercaptoethanol 2-sulfanylethanol

thiophenol benzenethiol

thiolate (c.p., with alcoholate)

dimethyl sulfide (c.p., with ethers)

As a prefix: alkylthio-, arylthio- (c.p., with alkoxy-, aryloxy-);

alkylsulfanyl-, arylsulfanyl is prefered

CH CH H C S CH H C S CH

O

(58)

H3C SO3H

H3C SO2Cl

methanesulfonic acid

methanesulfonic acid chloride (mesyl chloride)

SO3H

benzenesulfonic acid SO3H

H3C

4-toluenesulfonic acid SO2Cl

H3C

4-toluenesulfonic acid chloride (tosyl chloride)

(59)

1. Acidity

H2S HS 7.0 H2O HO 15.7 RSH RS 10-11 ROH RO 16-17 ArSH ArS 6-8 ArOH ArO 8-11

pKa

Thiols are poorly soluble in water (there are no H bridges).

2. Solubility

(60)

R S R'

O

R S R' O

R S R' O

O

2 R S R'

O

O

R S OH O

O

2 R S OH

O

O

(61)

Reactions

R SH R S

O

O

OH [O]

thiol sulfonic acid

SH CH2

C H3

2 H3C CH2 S S CH2 CH3

ethanethiol diethylsulfide

HOOC CH CH2 SH HOOC CH CH2 S S CH2 CH COOH [O]

2

[O]

[H]

(62)

More important representatives H3C S CH3

O

„DMSO” dimethyl sulfoxide

it is an excellent aprotic solvent (for SN2 reactions) But: it is a teratogenic compound

mesylate

tosylate Excellent leaving groups in nucleophilic substitution reactions:

tosyloxy, mesyloxy H3C SO2 OR + Nu H3C SO3 + RNu

H3C SO2Cl ROH

base H3C SO2 OR

base

H3C SO2Cl ROH H3C SO2 OR

-Naphthol -Naphthoic acid

H2SO4 NaOH

SO3Na

(63)

methionine

cysteine amino acids cystine

saccharin (+)-biotin (Vitamine H)

(Z)-ajoene

NH N

H

S

O

OH

H H

H

S O

C S

H2 CH2

S

CH CH2 C

H3 CH2 CH3

NH S

O

O O

NHOS 3Na

(64)

NaCN

NaOH

CN

160 °C OH 95 % H2SO4

SO3Na 80 °C

100 % H2SO4

H SO3H

NaOH COOH

Z 1. NaHSO3

2. NH3

NH2

(65)

Sulfonamides

- biosynthesis of folic acid is blocked by them in bacteria

NH2

COOH

NH2

SO2NH2

NH2

SO2NH

N N

OCH3

Quinoseptyl

X ClSO3H

X SO2Cl ArNH2

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

DURING DEVELOPMENT THESE AXONS ESTABLISH CLOSE CONNECTIONS WITH SCHWANN CELLS, THE PRINCIPAL GLIAL CELLS OF THE PERIPHERAL NERVOUS SYSTEM. SCHWANN CELLS (LEMMOCYTES) APPEAR ALONG

THEIR PROCESSES FILL THE GAPS AMONG NEURONS, PROJECT TO BLOOD VESSELS TO FORM THE BLOOD-BRAIN BARRIER, SURROUND AND ISOLATE SYNAPSING. NEURONAL ELEMENTS AND FORM THE INTERNAL

POSTGANGLIONIC NERVE FIBERS OF THE SYMPATHETIC AND PARASYMPATHETIC BRANCHES OF AUTONOMIC NERVOUS SYSTEM INNERVATE THE CARDIAC MUSCLE, SMOOTH MUSCLE BUNDLES OF VISCERAL ORGANS

UPON ACTIVATION OF THE PRESYNAPTIC ELEMENT, THE NEUROTRANSMITTERS ARE RELEASED INTO THE SYNAPTIC CLEFT5. BINDING AND RECOGNITION OF NEUROMESSENGERS BY SPECIFIC RECEPTORS

STORAGE CELLULAR STRUCTURE SYNAPTIC VESICLE TRANSPORTER NOT KNOWN. RELEASE BY

(PROLACTIN-INHIBITING HORMONE) DA or PIH Dopamine neurons of the arcuate nucleus Inhibit prolactin release from anterior pituitary GROWTH HORMONE-RELEASING. HORMONE GHRH

552.. for a constant polar component of gyro drift rate increases linearly with time. If the gyro drift rate is a random func- tion, the root m e a n square position and

The optimal polar angles resulting in maximal absorptance were determined too, these are the polar angle resulting in NbN related ATIR in case of bare NbN pattern, the polar