• Nem Talált Eredményt

INTRODUCTION For positive numbersai,1≤i≤2, let A=A(a1, a2

N/A
N/A
Protected

Academic year: 2022

Ossza meg "INTRODUCTION For positive numbersai,1≤i≤2, let A=A(a1, a2"

Copied!
6
0
0

Teljes szövegt

(1)

http://jipam.vu.edu.au/

Volume 4, Issue 2, Article 39, 2003

THE INEQUALITIES G≤L≤I ≤A IN n VARIABLES

ZHEN-GANG XIAO AND ZHI-HUA ZHANG DEPARTMENT OFMATHEMATICS,

HUNANINSTITUTE OFSCIENCE ANDTECHNOLOGY, YUEYANGCITY, HUNAN414006,

CHINA.

xzgzzh@163.com

ZIXINGEDUCATIONALRESEARCHSECTION, CHENZHOUCITY,

HUNAN423400, CHINA.

zxzh1234@163.com

Received 21 October, 2002; accepted 28 March, 2003 Communicated by F. Qi

ABSTRACT. In the short note, the inequalitiesGLI Afor the geometric, logarithmic, identric, and arithmetic means innvariables are proved.

Key words and phrases: Inequality, Arithmetic mean, Geometric mean, Logarithmic mean, Identric mean,nvariables, Van der Monde determinant.

2000 Mathematics Subject Classification. 26D15.

1. INTRODUCTION

For positive numbersai,1≤i≤2, let A=A(a1, a2) = a1+a2

2 ; (1.1)

G=G(a1, a2) =√ a1a2; (1.2)

I =I(a1, a2) =

 exp

a2lna2 −a1lna1 a2 −a1 −1

, a1 < a2,

a1, a1 =a2;

(1.3)

L=L(a1, a2) =

a2−a1

lna2−lna1, a1 < a2, a1, a1 =a2. (1.4)

These are respectively called the arithmetic, geometric, identric, and logarithmic means.

ISSN (electronic): 1443-5756 c

2003 Victoria University. All rights reserved.

The authors would like to thank Professor Feng Qi and the anonymous referee for some valuable suggestions which have improved the final version of this paper.

110-02

(2)

The logarithmic mean [1, 3], somewhat supprisingly, has applications to the economical in- dex analysis. K.B. Stolarsky first introduced the identric meanI and provedG ≤ L ≤I ≤ A in two variables in [4]. See [2] also.

The purpose of this short note is to prove the inequalitiesG≤L≤ I ≤Aof the geometric, logarithmic, identric, and arithmetic means innvariables.

2. DEFINITIONS AND THEMAIN RESULT

Leta = (a1, a2, . . . , an)andai >0for1 ≤ i ≤ n, then the arithmetic, geometric, identric, and logarithmic means innvariables are defined respectively as follows

A =A(a) = A(a1, . . . , an) = a1+a2+· · ·+an

n ,

(2.1)

G=G(a) = G(a1, . . . , an) = √n

a1a2· · ·an, (2.2)

I =I(a) = I(a1, . . . , an) = exp

"

1 V(a)

n

X

i=1

(−1)n+ian−1i Vi(a) lnai−m

# , (2.3)

L=L(a) = L(a1, . . . , an) = (n−1)!

V(lna)

n

X

i=1

(−1)n+iaiVi(lna), (2.4)

wherelna= (lna1, . . . ,lnan),ai 6=aj fori6=j,

(2.5) V(a) =

1 1 . . . 1

a1 a2 . . . an a21 a22 . . . a2n . . . . an−11 an−12 . . . an−1n

= Y

1≤j<i≤n

(ai −aj)

is the determinant of Van der Monde’s matrix of then-th order,

(2.6) Vi(a) =

1 1 . . . 1 1 . . . 1

a1 a2 . . . ai−1 ai+1 . . . an a21 a22 . . . a2i−1 a2i+1 . . . a2n . . . . an−21 an−22 . . . an−2i−1 an−2i+1 . . . an−2n

,

m=Pn−1 k=1

1

k, and1≤i≤n.

The main result of this short note can be stated as

Theorem 2.1. Leta= (a1, a2, . . . , an)andai >0for1≤i≤n, then the inequalities

(2.7) G(a)≤L(a)≤I(a)≤A(a)

of the geometric, logarithmic, identric, and arithmetic means innvariables hold. The equalities in (2.7) are valid if and only ifa1 =a2 =· · ·=an.

(3)

3. PROOF OFTHEOREM2.1 To prove inequalities in (2.7), we introduce the following means

Ir(a) = Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

" n X

k=1

ik n+r−1ak

# 1 (n+r−2r−1 )

, (3.1)

Ir0(a) = Y

i1+i2+···+in=r i1,i2,...,in≥0

" n X

k=1

ik rak

# 1 (n+r−1r )

, (3.2)

Lr(a) = 1

n+r−1 r

X

i1+i2+···+in=r i1,i2,...,in≥0

n

Y

k=1

aikk/r, (3.3)

L0r(a) = 1

n+r−2 r−1

X

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

n

Y

k=1

aikk/(n+r−1), (3.4)

wherea= (a1, a2, . . . , an)andai >0for1≤i≤n.

Lemma 3.1. Leta= (a1, a2, . . . , an)andai >0for1≤i≤n, then we have (1) I1(a) = L1(a) =A(a);

(2) I10(a) = L01(a) =G(a);

(3) For1≤j ≤n−1and

(3.5) πj = Y

i1+i2+···+in=n+r−1 ik1=ik2=···=ikj=0,for the restik≥1

n

X

k=1

ik

n+r−1ak, we have

(3.6) In+r−10 (a) =

n−1

Y

j=1

π1

(2n+r−2n+r−1)

j

Ir(a)(n+r−2r−1 )

(2n+r−2n+r−1)

; (4) For1≤j ≤n−1and

(3.7) δj = X

i1+i2+···+in=n+r−1 ik1=ik2=···=ikj=0,for the restik≥1

n

Y

k=1

aikk/(n+r−1),

we have

(3.8) Ln+r−1(a) = 1

2n+r−2 n+r−1

"n−1 X

j=1

δj +

n+r−2 r−1

L0r(a)

#

; (5) Ifr∈N, then

(a) Ir(a)≥Ir+1(a), (b) Ir0(a)≤Ir+10 (a), (c) Lr(a)≥Lr+1(a), (d) L0r(a)≤L0r+1(a), (e) Ir(a)≥Lr(a),

(f) Ir0(a)≥L0r(a),

where equalities above hold if and only ifa1 =a2· · ·=an.

(4)

Proof. The formula (3.6) follows from standard arguments and formulas (3.1) and (3.2).

Ifr ∈Nandi1 +i2+· · ·+in =n+r−1, then

n

X

k=1

ik

n+r−1ak=

n

X

k=1

ik

n+r · n+r n+r−1ak

= n+r n+r−1

n

X

k=1

ik n+rak

= 1

n+r−1

" n X

j=1

ij + 1

# n X

k=1

ik n+rak

= 1

n+r−1

" n X

j=1

ij n

X

k=1

ik

n+rak+

n

X

k=1

ik n+rak

#

= 1

n+r−1

" n X

j=1

ij n

X

k=1

ik

n+rak+

n

X

j=1

ij n+raj

#

=

n

X

j=1

ij n+r−1

" n X

k=1

ikak

n+r + aj n+r

# .

By using the weighted arithmetic-geometric mean inequality, we have

n

X

k=1

ik

n+r−1ak

n

Y

j=1

" n X

k=1

ikak

n+r + aj n+r

#ij/(n+r−1)

,

and then

Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

n

X

k=1

ik

n+r−1ak

(3.9)

≥ Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

n

Y

j=1

" n X

k=1

ikak

n+r + aj n+r

#ij/(n+r−1)

=

n

Y

j=1

Y

i1+i2+···+in=n+r−1 i1,i2,...,in≥1

" n X

k=1

ikak

n+r + aj n+r

#ij/(n+r−1)

=

n

Y

j=1

Y

ν12+···+νn=n+r ν12,...,νj−1j+1,...,νn≥1;νj≥2

" n X

k=1

νk n+rak

#j−1)/(n+r−1)

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk n+rak

#Pnj=1j−1)/(n+r−1)

(5)

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk n+rak

#(Pnj=1νj−n)/(n+r−1)

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk

n+rak

#r/(n+r−1)

= Y

ν12+···+νn=n+r ν12,...,νn≥1

" n X

k=1

νk n+rak

#(n+r−2r−1 )/(n+r−1r ) ,

notice that the result from line 4 to line 5 in (3.9) follows from a simple fact that

" n X

k=1

νk

n+rak

#j−1)/(n+r−1)

= 1 for νj = 1.

The equalities above are valid if and only if

n

X

k=1

ikak

n+r + a1 n+r =

n

X

k=1

ikak

n+r + a2

n+r =· · ·=

n

X

k=1

ikak

n+r + an n+r,

which is equivalent toa1 =a2 =· · ·=an. This implies thatIr(a)≥Ir+1(a).

The inequalityIr(a)≥Lr(a)follows easily from the generalized Hölder inequality

(3.10) Y

i1+i2+···+in=r+1 i1≥1,i2≥1,...,in≥1

" n X

j=1

ijaj

#1r

≥ X

i1+i2+···+in=r i1≥0,i2≥0,...,in≥0

" n Y

j=1

aijj

#1r .

The proofs of other formulas and inequalities will be left to the readers.

Lemma 3.2. Leta= (a1, a2, . . . , an)andai >0for1≤i≤n, then we have (1) limr→∞Ir(a) = limr→∞Ir0(a) = I(a),

(2) limr→∞Lr(a) = limr→∞L0r(a) =L(a).

Proof. It is easy to see thatlimr→∞Ir(a) = limr→∞Ir0(a)andlimr→∞Lr(a) = limr→∞L0r(a), since

r→∞lim π1/(2n+r−2n+r−1)

j = 1, lim

r→∞

1

2n+r−2 n+r−1

n−1

X

j=1

δj = 0, lim

r→∞

n+r−2 r−1

2n+r−2 n+r−1

= 1.

(6)

Straightforward computation yields ln lim

r→∞Ir0(a) = lim

r→∞lnIr0(a)

= lim

r→∞

1

n+r−1 r

X

i1+i2+···+in=r i1,i2,...,in≥0

ln

n

X

k=1

ik rak

= (n−1)!

Z

· · · Z

x1+x2+···+xn−1≤1 x`≥0,1≤`≤n−1

ln

"

1−

n−1

X

i=1

xi

! a1+

n

X

j=2

xj−1aj

#

dx1dx2. . . dxn−1

= (n−1)!

V(a)

n

X

i=1

(−1)n+ian−1i Vi(a)(lnai−m)

= lnI(a) and

r→∞lim Lr(a) = lim

r→∞

1

n+r−1 r

X

i1+i2+···+in=r i1,i2,...,in≥0

n

Y

k=1

aikk/r (3.11)

= (n−1)!

Z

· · · Z

x1+x2+···+xn−1≤1 x`≥0,1≤`≤n−1

a1−

Pn−1 i=1 xi

1 ax21· · ·axnn−1dx1dx2· · ·dxn−1

= (n−1)!

V(lna)

n

X

i=1

(−1)n+iaiVi(lna)

=L(a).

The proof is complete.

Proof of Theorem 2.1. This follows from combination of Lemma 3.1 and Lemma 3.2.

REFERENCES

[1] E. LEACHANDM. SHOLANDER, Extended mean values, Amer. Math. Monthly, 85 (1978), 84–90.

[2] A.O. PITTENGER, Two logarithmic mean innvariables, Amer. Math. Monthly, 92 (1985), 99–104.

[3] G. PÓLYAANDG. SZEGÖ, Isoperimetric Inequalities in Mathematical Physics, Princeton Univer- sity Press, Princeton, 1951.

[4] K.B. STOLARSKY, Generalizations of the logarithmic mean, Mag. Math., 48 (1975), 87–92.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Key words and phrases: Mean value inequality, Hölder’s inequality, Continuous positive function, Extension.. 2000 Mathematics

Property 1.4.. Let f be symmetrically convex w.r.t. The main result consists of the following theorem:.. Theorem 2.1. log-convex) with respect to the

Key words and phrases: Hilbert’s inequality, Hölder’s inequality, Jensen’s inequality, Power mean inequality.. 2000 Mathematics

Key words and phrases: Integral inequality, Cauchy mean value theorem, Mathematical induction.. 2000 Mathematics

In this note we focus on certain inequalities involving the arithmetic mean, the geometric mean, and the identric mean of two positive real numbers x and y.. On the other

In this note we focus on certain inequalities involving the arithmetic mean, the geometric mean, and the identric mean of two positive real numbers x and y.. On the other

We give an explicit Mertens type formula for primes in arithmetic progressions using mean values of Dirichlet L-functions at s = 1.. Key words and phrases: Mertens’ formula,

An inequality providing some bounds for the integral mean via Pompeiu’s mean value theorem and applications for quadrature rules and special means are given.. 2000 Mathematics