• Nem Talált Eredményt

dt f.x V dx

N/A
N/A
Protected

Academic year: 2022

Ossza meg "dt f.x V dx"

Copied!
28
0
0

Teljes szövegt

(1)

CONTINUOUS FERMENTATION

P1 P2

So S,X

S,X

Friss tápoldat

f f

V

Friss tápoldat CSTR “leerjedt”

fermentlé P- szivattyú

Cell mass:

ith substrate:

dt f.x V dx

dt V dx

growth

 

 

= 

growth x/S

i i,0

i

dt dx Y

V 1 fS

dt fS V dS

i

 

 

− 

=

V D f =

Dilution rate

FRESH CULT. MEDIUM CSTR FERMENTED

BROTH

P-pump

(2)

V D f =

m

3

/h m

3

h

-1

1 t

= h

Átlagos tartózkodási idő

Higítási sebesség Dilution rate

CONTINUOUS FERMENTATION

D t

1 = h

Átlagos tartózkodási idő

Mean residence time

(3)

( )

dx

dt x Dx D x S

K S D x

S

= − = − =

+ −

  

 

µ µ µ

max

In steady state

0 dS =

and dx 0

=

( )

dS

dt D S S x

=

0

− − µ Y

In the case of one limiting S ( if MONOD model holds ):

Necessary and

enough condition of the steady state

CONTINUOUS FERMENTATION

0 dt =

and dt = 0

D µ

D

= K S

S K

µ S D

max S S

max

⇒ −

= +

( )

x Y S S Y S K D

D

= − = −

S

  

 

0 0

µ

max

( )

D S S x

0 − = µ Y

µ=D

CHEMOSTAT

CHEMOSTAT

(4)

S x J, , S x,

x x 3

x 2 x 1

J=D

.

x

S

S03

S02 S01 S0

tg

CONTINUOUS FERMENTATION

D D

max S

0 0 max

CRITICAL

µ

K S

µ S D

µ ≅

= +

=

Chemostat always operates in substrate limitation Limited balanced growth

(corresponds to the declining phase)

(5)

CONTROLL VARIABLES OF THE CHEMOSTAT CONTROLL VARIABLES OF THE CHEMOSTAT

V ONLY TECHNICAL CONSTRAINT

f

CONTINUOUS FERMENTATION

D <<<< µmax=DC

S0 ONLY TECHNICAL CONSTRAINT:

solublity

(6)

PRODUCTIVITY:

D 0 J =

[ g/l.h ] or [ kg/m h ]

D.x

J =

3

J D x D Y S K D

D

= = −

S

  

 

. .

max

0

µ

= max!!!

 

 

 

 

− + µ

=

2 / 1 S

max

max

S K

1 K D

CONTINUOUS FERMENTATION

D = 0

( )

[ ]

x

max

= Y S

0

+ K

S

− K S

S 0

+ K

S

 

  

 

0

+

S

max

max

S K

( )

[ ]

0 max 2

0 S 0

0 S

0 max

S 0

S 0

S 2

/ 1

0 S

S max

max max

max

S S Y

K S

S S K

Y

K S

K S

K S .

K 1 K

Y x

D J

µ

 ≈



 + −

µ

=

= +

 +







− + µ

=

=

(7)

µ>D

µ=D µ<D

SZAKASZOS

}

INDULÁS

X

Transient behaviour

1.After start: transient from bach to continuous operation

ONLY IN THIS ONLY IN THIS RANGE!!!

RANGE!!!

CONTINUOUS FERMENTATION

Always starts as batch

µ<D

}

TRANZIENS

µ = D

µ=D

t TRANSIENT

(8)

CONTINUOUS FERMENTATION

LAG Accelerating phase

exponential phase

declining phase

Steady state

Steady state

Washout

Cont.run starts

(9)

Alterations from ideal behaviour

x

D x

D x

D

0,25DC DC

Y

Y

RNS

Y

1 2 3

N,S limitáció Mg2+,K+,PO 3-limitáció

High velocity production of intermediary products

(Pyr,AcOH,...)

D<<<<0,25DC

CONTINUOUS FERMENTATION

limitation limitation

x

D x

D

DC

C/energia limitáció N,S limitáció Mg2+,K+,PO43-limitáció

4

komplex tápoldat-nemkemosztát falnövekedés

( )

5





 − −





− −

=





 − −

=

µ m Y

1 Y

1

D µ

D S K

x

µ µx m Y

1 Y

S 1 S

dt D dS

EG C

max S 0

EG C

0

wall growth

limitation limitation

limitation

Cult. Media-nonchemostat

(10)

x

D

x

D

0,25DC D Y

RNS

Y

1 3

x

D

Y

2

CONTINUOUS FERMENTATION

D

x

D x

D

D

0,25DC DC

C/energia limitáció

D

N,S limitáció Mg2+,K+,PO43-limitáció

4

komplex tápoldat-nemkemosztát falnövekedés

5

N-forrás, vagy a kénforrás a limitáló tényező Kisebb D-nél a C/en forrás feleslegben van:

Tartaléktápanyagok szintézise

(poliszaharidok,lipidek, β-OH-butirát)

(11)

x

D

0,25DC D Y

1

x

D

Y

2 x

D

RNS

Y

3

Mg2+,K+,PO 3-limitáció

CONTINUOUS FERMENTATION

D

0,25DC DC

C/energia limitáció

D

N,S limitáció Mg2+,K+,PO43-limitáció

x

D

falnövekedés

x 5

D 4

komplex tápoldat-nemkemosztát

(12)

x

D

falnövekedés

5

Dx = µ x + µ x

f

D

C

max

is elérhető!

CONTINUOUS FERMENTATION

( ) ( )

Dx x x

D S S x x Y

f

f x S

= +

− = +

µ µ

µ µ

0

/

/

( )

x = Y

x S/

S

0

− S D x x

=  +

f

  

 

µ 1

(13)

Design of the chemostat

1.Known batch kinetics: µmax, Y, KS D

2.Known batch growth curve (and derivative)

dx/ dt

tg α = µ

max

dx/ dt

tg α = µ

max

A B

CONTINUOUS FERMENTATION

dx/ dt

α

x

dx/ dt

α

x choose D-t, what is x? Choose x,

What is the necessary D?

D D

x

D D

x

(14)

Problems

Volume control aeration,foaming

USE OF CHEMOSTAT?

ADVANTAGES: higher productivity balanced, limited growth measurment and control

CONTINUOUS FERMENTATION

measurment and control

SCP, bakers yeast, fodder yeast, (cell mass), primery metabolites:

alcohol, beer research

research: kinetics, optimization,

but: secondery no, though penicillin...in lab scale

(15)

T1 T2

T3 OPTIMIZATION

CONTINUOUS FERMENTATION

T: TEMPERATURE CULTURE MEDIA...

(16)

CONTINUOUS FERMENTATION

Steady state 2

T: temperature Culture media

pH….

CONTINUOUS FERMENTATION

Steady state 1

Steady state 2

Steady state 3

Fermentation time

(17)

One stream, multiple stage

V1

x1

S1

V2

x2 S2

V3

x3

S3 f

S0

f f f

x1S1 x2 S2 x3 S3

1 2 3

CONTINUOUS FERMENTATION

Multiple stream, Multiple stage

V1

x1

S1

V2

x2 S2

V3

x3

S3 f

S0

f1 f2=f1+f02 f3=f2+f03 x1 S1 x2 S2 x3 S3

1 2 3

f02 S02

f03 S03

(18)

design:

dx/ dt

tg α = µ

max

α

CONTINUOUS FERMENTATION

x D1

D2

x1 x2 x2x3 D3

(19)

CONTINUOUS FERMENTATION

Choosing D

What the outlet will be?

Choosing outlet

What the D will be?

(20)

f S0

(1+α)f

(1-α)f x S

Chemostats with recycle

CONTINUOUS FERMENTATION

V

(1-α)f

αf

x S

(21)

S

f f

X

P Special chemostat: dialysis culture

CONTINUOUS FERMENTATION

S

X P

táptalaj dializátor fermentor

medium

dialysator

(22)

Auxostats

pH-auxostat

CONTINUOUS FERMENTATION

(23)

OTHER CULTIVATION METHODS Semicontinuous fermentation

∆ t

142 43

xmax

xmin x

xmax = xmineµ∆t vagy ln x = µ∆t x

max min

D V

t V t x

= α = α = αµ

∆ ∆

1

max

ln

max

t

t V t x

x

∆ ∆

max

min

ln

α.V volume taken off

J D x

x x

= . = x ln

max max

min

max

αµ

(24)

Other…. TURBIDOSTAT

t

xmax

xmin x

t

µµµµ =µµµµmax is possible!!!

dx dt

x t

x x

≅ ∆ = − t

∆ ∆

max min

µ = ≅ =

+

1 1 2

x

dx

dt x

x

t x x

x x

t

max min

max min

(25)

CONTINUOUS FERMENTATION

Flow cell Pump 2

photometer

Controller

Computer Other….: TURBIDOSTAT

Cult medium

Pump 3 Pump 1

broth

(26)

x

S1 S2 S3

Application for research: optimization

Other…. TURBIDOSTAT

t

t1

t2 t3

(27)

Other…….fed batch fermentation Fed batch fermentation

Continuation of the declining phase, constant, variable or periodic addition of fresh cult. medium, no broth removalno broth removal..

*keeping low, constant S concentration (Baker’s yeast: glucose

repression, Crabtree effect),

*high constant S concentration (citric acid fermentation)

*precursor continuous addition (penicillin: phenyl-acetic-acid, )

*precursor continuous addition (penicillin: phenyl-acetic-acid, )

pH control!!

Varying volume, f(t)

(28)

End of fed bacth

Batch ferm Other…….fed batch fermentation

Vstart ≅ 0,5-0,6 Vtotal Vend ≅0,7-0,85 Vtotal

Batch ferm

Steady state

Feed starts

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Effect of pre-cultivation time and applied cell amount of Micrococcus luteus on the diameter of the inhibition zones (mm) caused by the ferment broth extracts of strains

In the the area area of the of the Northern Northern Medium Medium -high - high Mountains Mountains there there are are no no any any prevailing prevailing wind wind direction. In

VILLAMOSSÁGTAN.

after addition of the enzyme, although the initial optical density Ei was constant for at least 3 min., then providing no other interfering substances are present (see below),

tonkinensis (Broth, et Par.) Thér. ceylanicum Mitt).. (Syn.: Hypopterygium trichocladon

tonkinensis (Broth, et Par.) Thér. ceylanicum Mitt).. (Syn.: Hypopterygium trichocladon

This model has three components: the constant Coulomb friction term ( F C sign (v ) ), which depends only on the sign of velocity, the viscous component ( F V v ), which

Thus, if the value of the test statistic is significant, the null hypothesis is accepted, ie the first factor has no effect on the target variable X.... The procedure is also