• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
16
0
0

Teljes szövegt

(1)

volume 7, issue 3, article 88, 2006.

Received 31 March, 2006;

accepted 06 April, 2006.

Communicated by:A. Fiorenza

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

REGULARITY FOR VECTOR VALUED MINIMIZERS OF SOME ANISOTROPIC INTEGRAL FUNCTIONALS

FRANCESCO LEONETTI AND PIER VINCENZO PETRICCA

Universita’ di L’Aquila

Dipartimento di Matematica Pura ed Applicata Via Vetoio, Coppito

67100 L’Aquila Italy.

EMail:leonetti@univaq.it Via Sant’Amasio 18 03039 Sora Italy.

2000c Victoria University ISSN (electronic): 1443-5756 099-06

(2)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

Abstract We deal with anisotropic integral functionalsR

f(x, Du(x))dxdefined on vector valued mappingsu : Ω⊂Rn →RN. We show that a suitable "monotonicity"

inequality, on the densityf, guarantees global pointwise bounds for minimizers u.

2000 Mathematics Subject Classification:49N60, 35J60.

Key words: Anisotropic, Integral, Functional, Regularity, Minimizer.

Contents

1 Introduction. . . 3 2 Proofs. . . 7

References

(3)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

http://jipam.vu.edu.au

1. Introduction

We consider the integral functional

(1.1) F(u) =

Z

f(x, Du(x))dx

where u : Ω ⊂ Rn → RN and Ω is a bounded open set. When N = 1 we are dealing with scalar functions u : Ω → R; on the contrary, vector valued mappings u : Ω → RN appear when N ≥ 2. Local and global pointwise bounds for scalar minimizers of (1.1) have been proved in [2], [7], [5], [4]. A model functional for these results is

(1.2)

Z

n

X

i,j=1

aij(x)Dju(x)Diu(x)

!p2 dx,

where coefficients aij are measurable, bounded and elliptic. Previous results for scalar minimizers are no longer true in the vector valued caseN ≥2as De Giorgi’s counterexample shows, [3]. Some years later, attention has been paid to anisotropic functionals whose model is

(1.3)

Z

(|D1u(x)|p1 +|D2u(x)|p2+· · ·+|Dnu(x)|pn)dx,

where each component Diu of the gradientDu = (D1u, D2u, . . . , Dnu) may have a (possibly) different exponent pi: this seems useful when dealing with some reinforced materials, [9]; see also [6, Example 1.7.1, page 169]. In the framework of anisotropic functionals, global pointwise bounds have been

(4)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

proved for scalar minimizers in [1] and [8]. If no additional conditions are as- sumed, these bounds are false in the vectorial case, as the above mentioned counterexample shows, [3]. The aim of this paper is to present a “monotonic- ity” assumption ensuring boundedness of vector valued minimizers. In order to do that, we recall that u : Ω ⊂ Rn → RN thus Du(x)is a matrix withN rows and n columns; the densityf(x, A)in (1.1) is assumed to be measurable with respect tox, continuous with respect toAandf : Ω×RN×n →[0,+∞).

Every matrixA={Aαi} ∈RN×nwill haveN rowsA1, . . . , AN andncolumns A1, . . . , An. In this paper we will show that the following “monotonicity” in- equality guarantees global pointwise bounds for vector valued minimizers of (1.1):

(1.4) f(x,A) +˜ µ

n

X

i=1

i−Ai

pi

≤f(x, A) +M(x)

for every pair of matricesA, A˜ ∈RN×nsuch that there exists a rowβwithA˜β = 0and for every remaining rowα6=β we haveA˜α =Aα. In (1.4)µ, p1, . . . , pn

are positive constants with pi > 1 andM : Ω → [0,+∞)with M ∈ Lr(Ω), r ≥ 1. If we keep in mind that A = Du(x), then the left hand side of (1.4) showsPn

i=1|A˜i−Diu(x)|pi, thus each componentDiuof the gradientDumay have a possibly different exponent pi, so we are in the anisotropic framework:

u ∈ W1,1(Ω,RN) with Diu ∈ Lpi(Ω,RN). In this case the harmonic mean p=

1 n

Pn i=1

1 pi

−1

comes into play. In Section2we will prove the following Theorem 1.1. We consider the functional (1.1) under the “monotonicity” in-

(5)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

http://jipam.vu.edu.au

equality (1.4) with

(1.5) p

p

1− 1 r

>1

where p is the Sobolev exponent of p < n. We consideru = (u1, . . . , uN) ∈ W1,1(Ω,RN), withDiu∈Lpi(Ω,RN)∀i∈ {1, . . . , n}, such that

F(u)<+∞

and

(1.6) F(u)≤ F(v)

for everyv ∈u+W01,1(Ω,RN)withDiv ∈Lpi(Ω,RN)∀i∈ {1, . . . , n}. Then, for every componentuβ, we have

(1.7) inf

∂Ωuβ −c ≤uβ(x)≤sup

∂Ω

uβ+c

for almost everyx∈Ω, where c =c

kMkLr(Ω) µ

1p

|Ω|

h(1−1r)pp−1ip1

2(1−1r)pph(1−1r)pp−1i−1 , c=c(n, p1, . . . , pn)>0and|Ω|is the Lebesgue measure ofΩ.

A model density f for the “monotonicity” inequality (1.4) is given in the following.

(6)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

Lemma 1.2. For every i = 1, . . . , n, let us consider pi ∈ [2,+∞) andai ∈ (0,+∞); we takem: Ω→[0,+∞)andh:R→Rwith−∞<infRh. Let us considerf : Ω×Rn×n →Rdefined as follows:

(1.8) f(x, A) =

n

X

i=1

ai|Ai|pi+m(x)h(detA).

Then the “monotonicity” inequality (1.4) holds true with µ = minjaj and M(x) = m(x)[h(0)−infRh]. Moreover, ifh≥0, thenf ≥0too.

(7)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

http://jipam.vu.edu.au

2. Proofs

In order to prove Theorem1.1, we need the following

Lemma 2.1. Let us consider the functional (1.1) under the “monotonicity”

assumption (1.4). Then, for every v = (v1, . . . , vN) ∈ W1,1(Ω,RN) with Div ∈ Lpi(Ω,RN)∀i ∈ {1, . . . , n}, for any β ∈ {1, . . . , N}, for all t ∈ R, it results that

(2.1) F(Iβ,t(v)) +µ

n

X

i=1

Z

|Di(Iβ,t(v(x)))−Div(x)|pidx

≤ F(v) + Z

{vβ>t}

M(x)dx whereIβ,t:RN →RN is defined as follows:

∀y= (y1, . . . , yN)∈RN, Iβ,t(y) = (Iβ,t1 (y), . . . , Iβ,tN(y)) with

(2.2) Iβ,tα (y) =

( yα if α6=β yβ∧t= min{yβ, t} if α=β.

Proof. For everyv ∈W1,1(Ω,RN), withDiv ∈Lpi(Ω,RN)∀i∈ {1, . . . , n}, it results thatIβ,t(v)∈W1,1(Ω,RN); moreover

(2.3) Di(Iβ,tα (v)) =

( Divα if α 6=β 1{vβ≤t}Divβ if α =β,

(8)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

where1B is the characteristic function of the setB, that is,1B(x) = 1ifx∈B and1B(x) = 0ifx /∈B. ThereforeDi(Iβ,t(v))∈Lpi(Ω,RN)∀i∈ {1, . . . , n}.

On{x∈Ω :vβ(x)> t}we haveD(Iβ,tβ (v)) = 0and, forα6=β,D(Iβ,tα (v)) = Dvα; so we can apply (1.4) withA˜=D(Iβ,t(v))andA=Dv; we obtain (2.4) f(x, D(Iβ,t(v(x)))) +µ

n

X

i=1

|Di(Iβ,t(v(x)))−Div(x)|pi

≤f(x, Dv(x)) +M(x) forx∈ {vβ > t}. On{x∈Ω :vβ(x)≤t}D(Iβ,t(v)) =Dv, thus

(2.5) f(x, D(Iβ,t(v(x)))) +µ

n

X

i=1

|Di(Iβ,t(v(x)))−Div(x)|pi =f(x, Dv(x)) forx∈ {vβ ≤t}. From (2.4) and (2.5) we have

f(x, D(Iβ,t(v(x)))) +µ

n

X

i=1

|Di(Iβ,t(v(x)))−Div(x)|pi

≤f(x, Dv(x)) +M(x)1{vβ>t}(x) for x ∈ Ω. If x → f(x, Dv(x)) ∈ L1(Ω), then x → f(x, D(Iβ,t(v(x)))) ∈ L1(Ω) too and, integrating the last inequality with respect to x, we get (2.1).

Whenx → f(x, Dv(x)) ∈/ L1(Ω), we haveF(v) = +∞and (2.1) holds true.

This ends the proof of Lemma2.1.

Now we are ready to prove Theorem1.1.

(9)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

http://jipam.vu.edu.au

Proof. Let us fix β ∈ {1, . . . , N}. Ifsup∂Ωuβ = +∞then the right hand side of (1.7) is satisfied. Thus we assumesup∂Ωuβ < t0 ≤t <+∞and we note that under this assumptionIβ,t(u)∈u+W01,1(Ω,RN)andDi(Iβ,t(u))∈Lpi(Ω,RN)

∀i∈ {1, . . . , n}since

uβ∧t = min{uβ, t}=uβ−[max{uβ−t,0}] =uβ−[(uβ−t)∨0], where(uβ−t)∨0∈W01,1(Ω)andDi((uβ−t)∨0) =Diuβ1{uβ>t} ∈Lpi(Ω)

∀i∈ {1, . . . , n}. From (1.6) and (2.1) it results that

F(u)≤ F(Iβ,t(u))

≤ F(u)−µ

n

X

i=1

Z

|Di(Iβ,t(u(x)))−Diu(x)|pidx+ Z

{uβ>t}

M(x)dx, that is

(2.6) µ

n

X

i=1

Z

|Di(Iβ,t(u(x)))−Diu(x)|pidx≤ Z

{uβ>t}

M(x)dx.

If we defineφ= (uβ −t)∨0, then we can write (2.6) as follows:

(2.7) µ

n

X

i=1

Z

|Diφ(x)|pidx≤ Z

{uβ>t}

M(x)dx.

Ifr <+∞, we apply Hölder’s inequality toR

{uβ>t}M(x)dxand we obtain Z

{uβ>t}

M(x)dx≤ kMkLr(Ω)|{uβ > t}| 1−1r

.

(10)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

Ifr= +∞, then Z

{uβ>t}

M(x)dx ≤ kMkL(Ω)|{uβ > t}|=kMkLr(Ω)|{uβ > t}| 1−1r

. In both cases, from (2.7) it results that

n

X

i=1

Z

|Diφ(x)|pidx≤ kMkLr(Ω)

µ |{uβ > t}| 1−1r

in particular,∀i∈ {1, . . . , n}

Z

|Diφ(x)|pidx≤ kMkLr(Ω)

µ |{uβ > t}| 1−1r

from which Z

|Diφ(x)|pidx pi1

kMkLr(Ω)

µ |{uβ > t}| 1−r1

1 pi

and finally

(2.8)

" n Y

i=1

Z

|Diφ(x)|pidx 1

pi

#1n

kMkLr(Ω)

µ |{uβ > t}| 1−1r

1 p

.

(11)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

http://jipam.vu.edu.au

We apply the anisotropic imbedding theorem [10] and we use (2.8):

0≤ Z

{uβ>t}

uβ(x)−tp

dx p1

(2.9)

=kφkLp

(Ω)

≤c

" n Y

i=1

Z

|Diφ(x)|pidx pi1#n1

≤c

kMkLr(Ω)

µ |{uβ > t}| 1−1r

1 p

,

wherec=c(n, p1, . . . , pn)>0. IfkMkLr(Ω) = 0, then from (2.9) it results that uβ ≤ t almost everywhere in Ωand we are done. If kMkLr(Ω) > 0, then for T > twe have

(T −t)p|{uβ > T}|= Z

{uβ>T}

(T −t)pdx (2.10)

≤ Z

{uβ>T}

uβ(x)−tp

dx

≤ Z

{uβ>t}

uβ(x)−tp

dx and from (2.9) and (2.10) we get

(2.11) |{uβ > T}| ≤cp

kMkLr(Ω) µ

p

p 1

(T −t)p|{uβ > t}| 1−1r p

p

(12)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

for every T, t with T > t ≥ t0. We set χ(t) = |{uβ > t}| and we use [7, Lemma 4.1, p. 93], that we provide below for the convenience of the reader.

Lemma 2.2. Letχ: [t0,+∞)→[0,+∞)be decreasing. We assume that there existk, a∈(0,+∞)andb∈(1,+∞)such that

(2.12) T > t≥t0 =⇒χ(T)≤ k

(T −t)a(χ(t))b. Then it results that

(2.13) χ(t0+d) = 0 where d=

"

k(χ(t0))b−12(b−1)ab

#1a . We use the previous Lemma2.2and we have

(2.14) |{uβ > t0+d}|= 0

that is

(2.15) uβ ≤t0+d

almost everywhere inΩ, where d=c

kMkLr(Ω) µ

1p

{uβ > t0}

h

1−1

r

p p−1

i

1 p

2

1−1

r

p p

h

1−1

r

p p−1

i−1 . In order to get the right hand side of (1.7), we control |{uβ > t0}| by means of|Ω|and we take a sequence{(t0)m}m with(t0)m → sup∂Ωuβ. Let us show how we obtain the left hand side of (1.7): we apply the right hand side of (1.7) to−u. This ends the proof of Theorem1.1.

(13)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

http://jipam.vu.edu.au

Now we are going to prove Lemma1.2.

Proof. We assume that A, A˜ ∈ Rn×n withA˜β = 0 andA˜α = Aα forα 6= β.

Then

X

α

|Aαi|2 =|Aβi|2+X

α6=β

|Aαi|2 (2.16)

=|Aβi −A˜βi|2+X

α6=β

|A˜αi|2

=X

α

|Aαi −A˜αi|2+X

α

|A˜αi|2 so

(2.17) |Ai|2 =|Ai−A˜i|2+|A˜i|2. Sincepi ≥2, the previous equality gives

(2.18) |Ai|pi ≥ |Ai−A˜i|pi +|A˜i|pi. Moreover

(2.19) h(detA)≥inf

R

h=h(0)−[h(0)−inf

R

h] =h(det ˜A)−[h(0)−inf

R

h].

Now we are able to estimatef(x, A)andf(x,A)˜ by means of (2.18) and (2.19)

(14)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

as follows:

f(x,A) + (min˜

j aj)

n

X

i=1

|Ai−A˜i|pi (2.20)

n

X

i=1

ai|A˜i|pi +m(x)h(det ˜A) +

n

X

i=1

ai|Ai−A˜i|pi

n

X

i=1

ai|Ai|pi +m(x)h(detA) +m(x)[h(0)−inf

R

h]

=f(x, A) +m(x)[h(0)−inf

R

h]

thus the “monotonicity” inequality (1.4) holds true withµ= minjajandM(x) = m(x)[h(0)−infRh]. This ends the proof of Lemma1.2.

(15)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

http://jipam.vu.edu.au

References

[1] L. BOCCARDO, P. MARCELLINI ANDC. SBORDONE,L-regularity for a variational problems with sharp non standard growth conditions, Boll.

Un. Mat. Ital., 4-A (1990), 219–226.

[2] E. DE GIORGI, Sulla differenziabilitá e l’analiticitá delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat., 3 (1957), 25–43.

[3] E. DE GIORGI, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital., 4 (1968), 135–137.

[4] M. GIAQUINTAANDE. GIUSTI, On the regularity of the minima of vari- ational integrals, Acta. Math., 148 (1982), 31–46.

[5] O. LADYZHENSKAYAAND N. URAL’TSEVA, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.

[6] J.L. LIONS, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Gauthier - Villars, Paris, 1969.

[7] G. STAMPACCHIA, Equations Elliptiques du Second Ordre a Coeffi- cientes Discontinus, Semin. de Math. Superieures, Univ. de Montreal, 16, 1966.

[8] B. STROFFOLINI, Global boundedness of solutions of anisotropic varia- tional problems, Boll. Un. Mat. Ital., 5-A (1991), 345–352.

[9] Q. TANG, Regularity of minimizers of non-isotropic integrals of the cal- culus of variations, Ann. Mat. Pura Appl., 164 (1993), 77–87.

(16)

Regularity for Vector Valued Minimizers of Some Anisotropic

Integral Functionals

Francesco Leonetti and Pier Vincenzo Petricca

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of16

J. Ineq. Pure and Appl. Math. 7(3) Art. 88, 2006

[10] M. TROISI, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 18 (1969), 3–24.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Further (for this class of functions), we obtain a subordination theorem, bound- edness properties involving partial sums, properties relating to an integral transform and some

The aim of the present paper is to establish Grüss type inequalities for some perturbed ˇ Cebyšev functionals... Perturbed ˇ Cebyšev

Key words and phrases: ˇ Cebyšev functional, Grüss type inequality, Integral inequalities, Lebesgue p−norms.. 2000 Mathematics

SRIVASTAVA, Some generalized convolution proper- ties associated with certain subclasses of analytic functions, J.. Some Properties for an

In the framework of anisotropic functionals, global point- wise bounds have been proved for scalar minimizers in [1] and [8].. If no additional conditions are assumed, these bounds

In this paper we consider some integral operators and we determine conditions for the univalence of these integral operators.. 2000 Mathematics Subject Classification:

Some Convexity Properties for a General Integral Operator Daniel Breaz and Nicoleta BreazJ. Title

Some reverses of the continuous triangle inequality for Bochner integral of vector-valued functions in Hilbert spaces are given.. Applications for complex- valued functions are