• Nem Talált Eredményt

Mountain Pass Theorem

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Mountain Pass Theorem"

Copied!
13
0
0

Teljes szövegt

(1)

Solutions to an anisotropic system via sub-supersolution method and

Mountain Pass Theorem

Giovany Figueiredo

1

and Julio R. S. Silva

B1, 2

1Departamento de Matemática, Universidade de Brasilia – UNB, CEP: 70910-900, Brasília–DF, Brazil

2Universidade Federal do Pará – Campus Universitário de Cametá, CEP: 68.400-000 , Cametá–PA, Brazil

Received 21 September 2018, appeared 28 June 2019 Communicated by Dimitri Mugnai

Abstract. We use the sub-supersolution method and the Mountain Pass Theorem in order to show existence and multiplicity of solutions for the quasilinear system given by

"N

i=1

∂xi

∂u

∂xi

pi−2

∂u

∂xi

#

=a1(x)u+Fu(x,u,v) inΩ,

"N

i=1

∂xi

pi∂v

∂xi

pi−2

∂v

∂xi

#

=a2(x)v+Fv(x,u,v) inΩ,

u,v>0 inΩ, u=v=0 on ∂Ω,

where aj, j =1, 2 are functions in L()and andFu and Fvare continuous functions on×R2.

Keywords: anisotropic operator, sub-supersolution method, Mountain Pass Theorem.

2010 Mathematics Subject Classification: 35J65, 35B45.

1 Introduction

In this paper we are concerned with existence and multiplicity of positive solutions for the following class of system nonlinear boundary value anisotropic problems given by





















h

N i=1

∂xi

∂u

∂xi

pi2∂u

∂xi i

= a1(x)u+Fu(x,u,v) inΩ,

h

N i=1

∂xi

∂v

∂xi

pi2∂v

∂xi i

= a2(x)u+Fv(x,u,v) inΩ, u,v>0 in Ω,

u,v∈W1,

p 0 (),

(1.1)

BCorresponding author. Email: giovany@unb.br

(2)

whereΩ⊂RNis a bounded smooth domain with smooth boundary,N≥3 ,−→

p = (p1, . . . ,pN), pi > 1, ∑iN=1 1

pi > 1, p1 < p2 < · · · < pN < p := NN pp. In this paper p denotes the harmonic mean

p= N

Ni=1 1 pi

.

For j= 1, 2, aj ≥0 is a nontrivial mensurable function. More precisely, we will suppose that the functionaj satisfy the following assumption:

(H) The functionaj ∈L()withaj(x)>0.

In this paper Fis a function onΩ×R2 of classC1 satisfying (H1) There isδ>0 such that

Fs(x,s,t)≥(1−s)a1(x), for every 0≤s ≤δ, a.e. inΩ, and

Ft(x,s,t)≥ (1−t)a2(x), for every 0≤t ≤δ, a.e. inΩ. (H2) There is 1<r < p such that

Fs(x,s,t)≤ a1(x)(sr1+tr1+1), for every 0 ≤s, and

Ft(x,s,t)≤ a2(x)(sr1+tr1+1), for every 0≤t.

Thus, in order to show existence and multiplicity of solutions to problem (1.1), we define the Sobolev spaceE=W01,p()×W01,p()endowed with the norm

k(u,v)k= kuk1,p +kvk1,p, where

kuk1,p =

N i=1

∂u

∂xi pi

.

We say thatu,v ∈Eis a positive weak solution of (1.1) ifu,v>0 inΩand it verifies

N i=1

Z

∂u

∂xi

pi2

∂u

∂xi

∂ϕ

∂xi dx=

Z

a1(x)uϕdx+

Z

Fu(x,u,v)ϕdx,

and N

i

=1 Z

∂u

∂xi

pi2

∂u

∂xi

∂ψ

∂xi dx =

Z

a2(x)vψdx+

Z

Fv(x,u,v)ψdx, for all ϕ,ψ∈W01,p().

In our first theorem we apply the sub-supersolution method to establish the existence of a weak solution for (1.1).

Theorem 1.1. Assume that conditions(H),(H1)and(H2)hold. Ifkajk is small, for j=1, 2, then system(1.1)has a positive weak solution.

In order to establish the existence of two solutions for problem (1.1), we also assume

(3)

(H3) There ares0,t0>0 such that

0<F(x,s,t)≤θss Fs(x,s,t) +θtt Ft(x,s,t), a.e in Ω, for allt ≥t0ands≥s0 inΩ, where p1 <θs,θt < p1

N.

Theorem 1.2. Assume that conditions (H), (H1)–(H3)hold. Then, problem (1.1) has two positive weak solutions ifkajk is small, for j=1, 2.

A considerable effort has been devoted during the last years to the study anisotropic prob- lems. With no hope to be thorough, let us mention, for example [1,2,4–7,9–14,16,20–22] and references therein.

In some sense our paper is a natural continuation of the studies initiated in [2] and it com- pletes the results obtained there, because we study the existence and multiplicity of solutions for a system involving an anisotropic operator using subsolution & supersolution method.

This paper seems to be the first to show results on an elliptic system involving an anisotropic operator.

When pi = 2 we have

Ni=1

∂xi

∂x∂u

i

pi2∂u

∂xi

= ∆u and when pi = p we have ∑iN=1

∂xi

∂u

∂xi

pi2∂u

∂xi =pu. Both cases are called isotropic cases or non-anisotropic cases and this kind of problem has been studied by many authors.

This paper is organized as follows. In the Section 2 we prove the unicity of solutions for the Linear anisotropic problem, a Comparison Principle and a regularity result for solutions to this class of problems. In the Section 3 we prove Theorem 1.1. Theorem 1.2 is proved in Section 4.

2 Technical results

We start proving a result of unicity of solution to the linear problem and a Comparison Prin- ciple of the anisotropic operator.

Lemma 2.1. There is u∈W01,p()the unique solution of problem





h

N i=1

∂xi

∂w

∂xi

pi2∂w

∂xi i

=a(x)inΩ, w=0on ∂Ω.

(2.1)

Proof. Consider the operatorT :W01,p()→(W01,p())0 such thathTu,φiis given by hTu,φi=

N i=1

Z

∂u

∂xi

pi2

∂u

∂xi

∂φ

∂xi dx.

Since the inequality Ci

∂u

∂xi∂v

∂xi

pi

*

∂u

∂xi

pi2

∂u

∂xi

∂v

∂xi

pi2

∂v

∂xi, ∂u

∂xi∂v

∂xi +

(2.2) is true for some Ci >0 and for alli=1, . . . ,N, we have that

hTu−Tv,u−vi>0 for allu,v∈W01,p()withu6=v.

(4)

Moreover, ifkuk →+∞, then, without loss of generality, we can assume that Z

∂u

∂xi

pi

dx≥1, for alli=1, 2, . . . ,N.

Hence, since 1< p1 ≤ pi, for alli=1, 2, . . . ,N, we have

N i=1

Z

∂u

∂xi

pi

dx≥

N i=1

Z

∂u

∂xi

pi

dx

p1

pi1

Np11 N

i

=1

∂u

∂xi Lpi

p1

, which implies

kulimk→

hTu,ui

kuk = +∞.

Thus, by Minty-Browder’s Theorem [8, Théorème 5.16], there exists a unique u ∈ W01,p() that satisfiesTu=a(x).

Lemma 2.2. IfΩis a bounded domain and if u,v ∈W01,p()satisfy





"

N i=1

∂xi

∂u

∂xi

pi2

∂u

∂xi

! #

≤ −

"

N i=1

∂xi

∂v

∂xi

pi2

∂v

∂xi

! #

inΩ, u≤v on∂Ω,

then u≤v a.e. inΩ.

Proof. Taking 0≤φ=max{u−v, 0} ∈W1,

p

0 ()as a test function, we obtain Z

T[u>v]

N i=1

∂u

∂xi

pi2

∂u

∂xi

∂v

∂xi

pi2

∂v

∂xi, ∂u

∂xi∂v

∂xi

dx≤0.

From inequality (2.2), we conclude that k(u−v)+k ≤0, this impliesu≤va.e. inΩ.

Before proving theL-regularity we enunciate an iteration lemma by Stampacchia that we will use.

Lemma 2.3 (See [18]). Assume that φ : [0,∞) → [0,∞) is a nonincreasing function such that if h > k > k0, for some α > 0,β > 1, φ(h) ≤ C(φ(k))β/(h−k)α. Then φ(k0+d) = 0, where dα = c2βαβ1φ(k0)β1.

Lemma 2.4. Let v∈W1,

p

0 ()be a solution to problem





"

N i=1

∂xi

∂v

∂xi

pi2 ∂v

∂xi

! #

= f inΩ, v=0 on∂Ω.

such that f ∈ Lr()with r > p/(p−p1).Then v∈ L().In particular, ifkfkr is small, then alsokvk is small.

(5)

Proof. Considervk =sign(u)(|u| −k)+, then vk ∈W01,p()and ∂x∂v

i = ∂v∂xk

i in A(k) ={x ∈:

|u(x)| > k}. Let |A(k)| be the Lebesgue measure of A(k). Using vk as test function and the Hölder inequality, we have

N i=1

Z

A(k)

∂vk

∂xi

pi

dx=

Z

f vkdx≤ Z

|vk|pdx p1Z

|f|rdx 1r

|A(k)|1 p1+1r

. Let

0<S= inf

uD1,p(RN),kukp=1

N

i

=1

1 pi

∂u

∂xi

pi

pi

, see [12].

Once thatpi ≥ p1 >1, we have S

Z

|u|pdx pp1

N i=1

Z

∂u

∂xi

pi

dx, for all u∈W01,p(). This implies

S Z

A(k)

|vk|pdx

p11 p

Z

|f|rdx 1r

|A(k)|1 p1+1r

. Note that if 0<k <h, A(h)⊂ A(k)and

|A(h)|p1(h−k) = Z

A(h)

(h−k)pdx p1

Z

A(k)

|vk|pdx p1

, then

|A(h)| ≤ 1 (h−k)p

1 S

p p11

kfk

p p11

r |A(k)| p

p11

1 p1+1r . Sincer > ppp1, we have β:= pp

11

1− p1 +1r>1. Therefore, if we define

φ(h) =|A(h)|, α= p, β= p

p11

1− 1

p + 1 r

, k0=0, we have thatφis a nonincreasing function and

φ(h)≤ C

(h−k)αφ(k)β, for all h>k>0.

By Lemma2.3, we haveφ(d) =0 ford=ckfk

1 p11

r ||βα1/Sp111, then kukckfk

1 p11

r ||βα1 Sp111

.

3 Proof of Theorem 1.1

We say that[(u,v),(u,u)]is a pair of sub and supersolution for the problem (1.1), respectively, ifu,v∈E∩L(),u,u ∈E∩L()

(6)

a) u≤u,v≤ v in Ωandu=0≤u,v=0≤v on ∂Ω, b) Givenϕ,ψ, with ϕ,ψ≥0, we have









N i=1 Z

∂u

∂xi

pi2∂u

∂xi

∂ϕ

∂xi

Z

a1(x)uϕ+

Z

Fu(x,u,w)ϕdx for all w∈[v,v]

N i=1

Z

∂v

∂xi

pi2∂v

∂xi

∂ψ

∂xi

Z

a2(x)vψ+

Z

Fv(x,w,v)ψdx for all w∈[u,u]

(3.1)









N i=1

Z

∂u

∂xi

pi2∂u

∂xi

∂ϕ

∂xi

Z

a1(x)uϕ+

Z

Fu(x,u,w)ϕdx for all w∈[v,v]

N i=1

Z

∂v

∂xi

pi2∂v

∂xi

∂ψ

∂xi

Z

a2(x)vψ+

Z

Fv(x,w,v)ψdx for all w∈[u,u]

(3.2)

Lemma 3.1. Assume that(H), (H1)and(H2)hold. Ifkajk is small, for j = 1, 2, then there exist u,v,u,v∈ ETL()such that

i) k(u,v)kδ, whereδ is the constant that appeared in the hypothesis(H1). ii) 0< u(x)≤u(x)a.e inΩand0<v(x)≤ v(x)a.e inΩ.

iii) (u,v)is a subsolution and(u,v)is a supersolution of (1.1).

Proof. By Lemma2.1, there is a unique positive solutionu ∈W01,p()satisfying the problem below





"

N i=1

∂xi

∂u

∂xi

pi2 ∂u

∂xi

! #

=a1(x) inΩ, u=0 on∂Ω.

Similary, there exists a unique positive solutionv∈W01,p()satisfying





"

N i=1

∂xi

∂v

∂xi

pi2

∂v

∂xi

! #

=a2(x) inΩ, v =0 on Ω.

By Lemma 2.4, u,v ∈ L() and there exist C1,C2 > 0 such that kuk ≤ C1kak and kvk ≤C2kak. Now we fixkajk, withj=1, 2 so that

kukδ

2 and kvkδ 2, which ends the proof of the condition (i).

In order to prove ii), we invoke Lemma 2.1 one more time to show that there exists a unique positive solutionu∈W1,

p

0 ()TL()





"

N i=1

∂xi

∂u

∂xi

pi2

∂u

∂xi

! #

=1+a1(x) in Ω, u=0 on ∂Ω

(3.3)

(7)

and there exists a unique positive solutionv∈W01,p()





"

N i=1

∂xi

∂v

∂xi

pi2

∂v

∂xi

! #

=1+a2(x) inΩ, v=0 onΩ.

(3.4)

Note that, for all 0≤ ϕ,ψ∈W1,

p

0 (), we have

N i=1

Z

∂u

∂xi

pi2

∂u

∂xi

∂ϕ

∂xi dx =

Z

[a1(x) +1]ϕdx≥

Z

a1(x)ϕdx=

N i=1

Z

∂u

∂xi

pi2

∂u

∂xi

∂ϕ

∂xi dx and

N i=1

Z

∂v

∂xi

pi2

∂v

∂xi

∂ψ

∂xi dx=

Z

[a2(x) +1]ψdx≥

Z

a2(x)ψdx=

N i=1

Z

∂v

∂xi

pi2

∂v

∂xi

∂ψ

∂xi dx.

Then, from Lemma2.2 we conclude thatu(x)≤ u(x)a.e. inΩandv(x)≤ v(x)a.e. inΩ, which proves the conditionii).

Our final task is to check that the conditioniii)holds. First, we use the maximum principle in [9, Corollary 4.4] and conclude thatu,v>0. Now using the definition ofu, vand(H1), we obtain, for each ϕ,ψ≥0,

N i=1

Z

∂u

∂xi

pi2 ∂u

∂xi

∂ϕ

∂xi

Z

a1(x)uϕdx

Z

Fu(x,u,v)ϕdx

Z

a1(x)ϕdx

Z

a1(x)uϕdx

Z

(1−u)a1(x)ϕdx

=0 and

N i=1

Z

∂v

∂xi

pi2

∂v

∂xi

∂ψ

∂xi

Z

a2(x)vψdx

Z

Fv(x,u,v)ψdx

Z

a2(x)ϕdx

Z

a2(x)vψdx

Z

(1−v)a1(x)ψdx

=0

Then,(u,v)is a subsolution for problem (1.1).

Now, we use(H2), (3.3) and (3.4) we have forkajksufficiently small such that

N i=1

Z

∂u

∂xi

pi2 ∂u

∂xi

∂ϕ

∂xi

Z

a1(x)uϕ

Z

Fu(x,u,v)ϕdx

1− ka1kkuk− ka1k− ka1kkukr1− ka1kkvkr1

Z

ϕdx>0 and

N i=1

Z

∂v

∂xi

pi2

∂u

∂xi

∂ψ

∂xi

Z

a2(x)vψ

Z

Fv(x,u,v)ψdx

1− ka2kkuk− ka2k− ka2kkukr1− ka2kkvkr1

Z

ψdx>0 Thenu,vis a supersolution of (1.1).

(8)

Consider the functions

Gs(x,s,t) =





a1(x)u(x) +Fs(x,u(x),t), s>u(x)

a1(x)s+Fs(x,s,t), u(x)≤s≤ u(x) a1(x)u(x) +Fs(x,u(x),t), s<u(x),

(3.5)

and

Gt(x,s,t) =





a2(x)v(x) +Ft(x,s,v(x)), t> v(x)

a2(x)t+Ft(x,s,t), v(x)≤t ≤v(x) a2(x)v(x) +Ft(x,s,v(x)), t< v(x),

(3.6)

and the auxiliary problem





























"

N i=1

∂xi

∂u

∂xi

pi2 ∂u

∂xi

! #

=Gu(x,u,v)inΩ, u>0 inΩ,

"

N i=1

∂xi

∂v

∂xi

pi2

∂v

∂xi

! #

=Gv(x,u,v)in Ω, u,v >0 inΩ,

u,v ∈W01,p().

(3.7)

We define the functionalΦ:E→Rby Φ(u,v) =

N i=1

Z

1 pi

∂u

∂xi

pi

dx+

N i=1

Z

1 pi

∂v

∂xi

pi

dx−

Z

G(x,u,v)dx. (3.8) We haveΦ∈ C1 E,R

with Φ0(u,v)(ϕ,ψ) =

N i=1

Z

∂u

∂xi

pi2

∂u

∂xi

∂ψ

∂xi dx+

N i=1

Z

∂v

∂xi

pi2

∂v

∂xi

∂ϕ

∂xi dx

Z

Gu(x,u,v)ψdx−

Z

Gv(x,u,v)ϕdx, for allu,v,ψ,ϕ∈E.

From(H2)and definition of GsandGt, we have that

|Gs(x,s,t)| ≤K1, for some K1>0, a.e. inΩ (3.9) and

|Gt(x,s,t)| ≤K2, for some K2 >0, a.e. inΩ. (3.10) From(3.9)and (3.10) , we have that Φis coercive. Then, we can obtain that (un,vn) is a bounded sequence in E such that

Φ(un,vn)→c=inf

M Φ, where

M =(u,v)∈ E:u≤u≤u a.e. inΩ andv≤v ≤va.e. in Ω .

(9)

Hence, up to subsequence, we have





(un,vn)*(u,v)inE,

(un,vn)→v inLs()×Ls(), 1≤s< p, (un(x),vn(x))→(u(x),v(x))a.e inΩ.

(3.11)

Now, note that M is closed and convex in E. By [19, Therem 1.2], the restriction Φ M

attains its infimum at a point (u,v) in M. Using the same argument as in the proof of [19, Therem 2.4], we see that (u,v) weakly solves (3.7). Since Gs(x,s,t) = a1(x)s+Fs(x,s,t) for s ∈ [u,u] and Gt(x,s,t) = a2(x)t+Ft(x,s,t) for t ∈ [v,v] then (u,v) is a positive weak solution of (1.1).

4 Proof of Theorem 1.2

Let(u,v)∈E∩L()the subsolution of Problema (1.1). In our next result we prove that the functionalΦsatisfies the geometric hypotheses of the Mountain Pass Theorem (to see [3]).

Consider the functions Gbs(x,s,t) =

(a1(x)s+Fs(x,s,t), s >u(x)

a1(x)u(x) +Fs(x,u(x),t), s ≤u(x), (4.1) Gbt(x,s,t) =

(a2(x)t+Ft(x,s,t), t>v(x)

a2(x)v(x) +Ft(x,v(x),t), t≤v(x) (4.2) and define the functional Φb :W1,

p

0 ()→Rby Φb(u,v) =

N i=1

Z

1 pi

∂u

∂xi

pi

dx+

N i=1

Z

1 pi

∂v

∂xi

pi

dx−

Z

Gb(x,u,v)dx. (4.3) Note that by(H2),(4.1) and (4.2) , we have

Gbs(x,s,t)≤fC1|t|+a1(x)|s|r+a1(x)s|t|r, for all s≥0, (4.4) and

Gbt(x,s,t)≤Cf2|t|+a2(x)|t|r+a1(x)t|s|r, for allt ≥0, (4.5) for some constantsfC1,Cf2>0.

Lemma 4.1. The functionalΦb satisfies the(PS)-condition for every c∈R. Proof. Let(un,vn)⊂Ebe a sequence such that

Φb(un,vn)→c and Φb0(un,vn)→0. (4.6) Using(H3)and Sobolev’s embedding, there areC1,C2 >0 such that

C1+k(un,vn)k ≥Φb(un,vn)−hθunΦˆ0(un,vn)(un, 0) +θvnΦb0(un,vn)(0,vn)i

≥C2k(un,vn)kp1, (4.7)

(10)

where get that (un,vn) is a bounded sequence inEand hence, up to subsequence, we have





(un,vn)*(u,v) inE,

(un,vn)→(u,v) in Ls()×Ls(), 1≤s< p, (un(x),vn(x))→(u(x),v(x)) a.e. in Ω.

(4.8)

Using (4.6), (4.8), (2.2), the Lebesgue dominated convergence theorem and standard argu- ments, up to subsequence, we obtain

N i=1

Z

∂un

∂xi∂u

∂xi

pi

≤on(1),

and N

i

=1

Z

∂vn

∂xi∂v

∂xi

pi

≤on(1), which implies(un,vn)→(u,v)inE.

Lemma 4.2. Assume that(H),(H1)–(H3)hold. Then forkajkL small, for j=1, 2,Φb satisfies:

i) There are R >k(u,v)kandβ>0,such that

Φb(u,v)<0< β≤ inf

(u,v)∈∂BR(0)

Φb(u,v). ii) There are e∈W01,p()\B2R(0)such thatΦb(e)<β.

Proof. Since(u,v)is a subsolution of (1.1),Gcs(x,u,t) = a1(x)u+Fs(x,u,t)uandcGt(x,s,v) = a2(x)v+Ft(x,s,v)v, with pi >1, fori=1, 2, ...N, we have

Φb(u,v) =

N i=1

Z

∂u

∂xi

pi

dx+

N i=1

Z

∂v

∂xi

pi

dx

Z

(a1(x)u+Fs(x,u,t))udx−

Z

(a2(x)v+Fs(x,s,v))v dx. (4.9) Now, letk(u,v)k= R>1, without loss of generality, we can assume that

Z

∂u

∂xi

pi

dx≥1, for alli=1, 2, . . . ,N, and

Z

∂v

∂xi

pi

dx≥1, for alli=1, 2, . . . ,N.

Hence, using this inequality, (4.4) and (4.5) with the Sobolev Embedding Theorem, we find positive constants, such that

Φb(u,v)≥Kk(u,v)k −c3ka1kL()kukL()k(u,v)k −c4ka1kL()k(u,v)k

−c5ka1kL()k(u,v)kr−c6ka2kL()kvkL()k(u,v)k

−c7ka2kL()k(u,v)k −c8ka2kL()k(u,v)kr−c9ka1kL()k(u,v)kr

−c10ka1kL()k(u,v)kr−c11ka2kL()k(u,v)kr

−c12ka2kL()k(u,v)kr, for all k(u,v)k=R, (4.10)

(11)

where K = mink1

pN, pk2

N . Note that, if (u,v) ∈ ∂BR(0) with R > 1 and for kajkL() suffi- ciently small, with j= 1, 2, there existsβR such that Φb(u,v) ≥ β, for all(u,v) ∈ ∂BR(0). Hence, the choices of β, R andkajkL()combined with inequalities (4.9)and(4.10)result in

Φb(u,v)<0<β≤ inf

(u,v)∈∂BR(0)

Φb(u,v), which shows the conditioni).

Now, by definition ofGbswe have

Gbsu(x,su, 0)≥ F(x,su, 0) for all s≥1, a.e. inΩ.

We invoke(H1)and(4.3)to obtain

Φb(su, 0)≤

N i=1

spN p1

Z

∂u

∂xi

pN

Z

F(x,su, 0)dx.

Using(H3), there existsKe1 >0 such that

F(x,s, 0)≥ Ke1sθs1, for all s ≥max{1,s0}, wheres0 are the constants that appear in(H3). Then,

Φb(su, 0)≤spN

N i=1

Z

1 p1

∂u

∂xi

pi

−Ke1sθs1 Z

|u|θs1 dx.

Since p1 < θs < p1

N, we conclude that Φb(su, 0) → − as s → +∞. So, we may find e=s0(u, 0)∈Esuch thatkek> RandΦb(e)<β, which satisfies the condition ii).

Proof of Theorem1.2. Let(u,v),(u,v)be the subsolution and the supersolution of (1.1) given in Lemma (3.1) and(u1,v1)the solution of (1.1) obtained in Theorem1.1.

Using the Lemma4.2, we conclude, with the Mountain Pass Theorem (see [3]), that bc= inf

γΓmax

t∈[0,1]

Φb(γ(t)), whereΓ={γ∈ C [0, 1],W01,p():γ(0) = (u,v), γ(1) =e}, is critical value ofΦ.b

By (3.5),(3.6),(4.1) and (4.2),Gs(x,s,t) = Gbs(x,s,t)fors ∈ [0,u]andGt(x,s,t) = Gbt(x,s,t) fort ∈[0,v], thusΦ(u,v) =Φb(u,v)withu∈[0,u]andv∈ [0,v], whereΦandΦb are given in (3.8) and (4.3), respectively. Then,

Φb(u1,v1) =inf

MΦ(u,v), where

M=(u,v)∈E:u≤u≤ua.e. in Ωandv≤v≤va.e. in Ω . was given in the proof of in Theorem 1.1.

Therefore, the problem (1.1) has two weak solutions v1,v2 ∈W1,

p

0 (), such that Φb(u1,v1)≤Φb(v)<0< βbc=Φb(u2,v2).

(12)

Recall thatu ≤ u1 ≤u a.e. in Ωandv≤ v1 ≤ v a.e. in Ω, thus(u1,v1)>0. Now, we will show that(u2,v2)>0.

Taking ((u,v)−(u2,v2))+, as test function and defining {(u2,v2) < (u,v)} := {x ∈ : u2(x)<u(x) andv2(x)<v(x)}, we have

N i=1

Z

∂u2

∂xi

pi2

∂u2

∂xi

(u−u2)+

∂xi dx+

N i=1

Z

∂v2

∂xi

pi2

∂v2

∂xi

(v−v2)+

∂xi dx

=

Z {u2<u}

(a1u+Fs(x,u,t))(u−u2)+dx+

Z {v2<v}

(a2v+Ft(x,s,v))(v−v2)+dx. (4.11) Since(u,v)is a subsolution of (1.1), using (4.11) we obtain

N i=1

Z

∂u

∂xi

pi2

∂u

∂xi

(u−u2)+

∂xi dx−

N i=1

Z

∂u2

∂xi

pi2

∂u2

∂xi

(u−u2)+

∂xi dx≤0

and N

i

=1

Z

∂v

∂xi

pi2 ∂v

∂xi

(v−v2)+

∂xi dx−

N i=1

Z

∂v2

∂xi

pi2 ∂v2

∂xi

(v−v2)+

∂xi dx≤0.

From inequality (2.2), we conclude thatk(u−u2)+k1,p ≤ 0 and k(v−v2)+k1,p ≤ 0, this implies 0<u≤u2 a.e. inΩand 0<v≤ v2 a.e. inΩ. We concluded that(u2,v2)>0.

References

[1] A. Alberico, G.di Blasio, F. Feo, A priori estimates for solutions to anisotropic elliptic problems via symmetrization,Math. Nachr.290(2017), No. 7, 986–1003.https://doi.org/

10.1002/mana.201500282.

[2] C. O. Alves, A. El Hamidi, Existence of solution for a anisotropic equation with critical exponent,Differential Integral Equations21(2008), No. 1–2, 25–40.MR2479660.

[3] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications,J. Funct. Anal.14(1973), 349–381.https://doi.org/10.1016/0022-1236(73) 90051-7.

[4] H. Ayadi, F. Mokhtari, Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity,Electron. J. Differential Equations2018, No. 45, 1–23.MR3781160.

[5] P. Baroni, A. Di Castro, G. Palatucci, Intrinsic geometry and De Giorgi classes for certain anisotropic problems, Discrete Contin. Dyn. Syst. Ser. S 10(2017), No. 4, 647–659.

https://doi.org/10.3934/dcdss.2017032,

[6] M. Bendahmane, K. H. Karlsen, Renormalized solutions of an anisotropic reaction- diffusion-advection system with L1 data, Commun. Pure Appl. Anal. 5(2006), No. 4, 733–

762.https://doi.org/10.3934/cpaa.2006.5.733.

[7] M. Bendahmane, M. Langlais, M. Saad, On some anisotropic reaction-diffusion sys- tems with L1-data modeling the propagation of an epidemic disease, Nonlinear Anal.

54(2003), No. 4, 617–636.https://doi.org/10.1016/S0362-546X(03)00090-7.

[8] H. Brezis,Analyse fonctionnelle, Masson, Paris, 1983.MR697382.

(13)

[9] A. DiCastro, E. Montefusco, Nonlinear eigenvalues for anisotropic quasilinear degen- erate elliptic equations,Nonlinear Anal.70(2009), 4093–4105.https://doi.org/10.1016/

j.na.2008.06.001.

[10] A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv.

Nonlinear Stud.9(2009), 367–393.https://doi.org/10.1515/ans-2009-0207.

[11] A. Di Castro, Anisotropic elliptic problems with natural growth terms, Manuscripta Math.135(2011), 521–543.https://doi.org/10.1007/s00229-011-0431-3.

[12] A. ElHamidi, J. M. Rakotoson, Extremal functions for the anisotropic Sobolev inequal- ities, Ann. Inst. H. Poincaré Anal. Non Linéaire 24(2007), 741–756. https://doi.org/10.

1016/j.anihpc.2006.06.003.

[13] B. Ellahyani, A. El Hachimi, Existence and multiplicity of solutions for anisotropic elliptic problems with variable exponent and nonlinear Robin boundary conditions,Elec- tron. J. Differential Equations2017, No. 188, 1–17.MR3690215.

[14] G. M. Figueiredo, J. R. SantosJunior, A. Suarez, Multiplicity results for an anisotropic equation with subcritical or critical growth,Adv. Nonlinear Stud.15(2015), No. 2, 377–394.

https://doi.org/10.1515/ans-2015-0206.

[15] I. Fragala, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic quations, Ann. Inst. H. Poincaré Anal. Non Linéaire 21(2004), 715–734.

https://doi.org/10.1016/j.anihpc.2003.12.001.

[16] H. Gao, S. Liang, Y. Cui, Regularity for anisotropic solutions to some nonlinear elliptic system, Front. Math. China 11(2016), No. 1, 77–87. https://doi.org/10.1007/s11464- 015-0443-5.

[17] D. Repovš, Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators, Discrete Contin. Dyn. Syst. Ser. S 12(2019), No. 2, 401–411.

https://doi.org/10.3934/dcdss.2019026.

[18] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire Jean Leray, No. 3 (1963–1964), pp. 1–77.http://www.numdam.org/item/SJL_1963-1964_

__3_1_0/

[19] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer-Verlag, 1996. https://doi.org/10.1007/978-3-540- 74013-1.

[20] J. Vétois, The blow-up of critical anisotropic equations with critical directions,Nonlinear Differ. Equ. Appl.18(2011), 173–197.https://doi.org/10.1007/s00030-010-0090-1.

[21] J. Vétois, Decay estimates and a vanishing phenomenon for the solutions of critical anisotropic equations,Adv. Math.284(2015), 122–158.https://doi.org/10.1016/j.aim.

2015.04.029.

[22] J. Vétois, Strong maximum principles for anisotropic elliptic and parabolic equations, Adv. Nonlinear Stud.12(2012), 101–114.https://doi.org/10.1515/ans-2012-0106.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In 2013, Tang [29] gave some much weaker conditions and studied the existence of in- finitely many solutions for Schrödinger equation via symmetric mountain pass theorem

In this section, we shall prove the following local existence and uniqueness of strong solutions to the Cauchy problem (1.1)..

In Section 3, in The- orem 3.1, we show that under some additional conditions the representation theorem yields explicit asymptotic formulas for the solutions of the linear

In Section 3, in The- orem 3.1, we show that under some additional conditions the representation theorem yields explicit asymptotic formulas for the solutions of the linear

The main contributions are as follows: (a) we present problems with linear boundary value conditions, and on this basis we obtain the existence of the extremal solutions for

In Theorem 1.1, f may be superlinear or asymptotically linear near zero, we can get two nontrivial solutions by the mountain pass theorem and the truncation technique.. In Theorem

In this section we study the boundedness and persistence of the positive solutions of (1.3) and the convergence of the positive solutions of (1.3) to the unique

In this paper, we study existence of solutions to a Cauchy problem for non- linear ordinary differential equations involving two Caputo fractional derivatives.. The existence