• Nem Talált Eredményt

(1)Analysis of Queues with Bath Arrivals G.Wolfner 1 and M

N/A
N/A
Protected

Academic year: 2023

Ossza meg "(1)Analysis of Queues with Bath Arrivals G.Wolfner 1 and M"

Copied!
13
0
0

Teljes szövegt

(1)

Analysis of Queues with Bath Arrivals

G.Wolfner 1

and M. Telek 2

1

HungarianTeleommuniationCompany,TeleommuniationsDevelopmentInstitute

H-1456Budapest,PoB2{Hungary

2

Departmentof Teleommuniations,TehnialUniversityofBudapest

Sztozek2,H-1111Budapest {Hungary

Email: fwolfner,telekghit.bme.hu

Abstrat

The steady state distributionof quasi-birth-deathproessesanbe eÆiently obtained

by matrix-geometri (MG) methods. Sine a number of teleommuniation problems are

modelledbyproesseswithbatharrivals,theextensionofMGmethodsfortheseproesses

haspratialimportane. ThispaperpresentsanextensionofMGmethodswhihiseetive

fortheanalysisofquasi-birth-deathproesseswithbatharrivals. Theproposed methodis

omparedwithoneof thewell-knownmethods.

1 Introdution

Withtheextremelyrapidevolutionofommuniationandomputersystemsandwiththeinten-

tionoftheirintegration,whosemostwell-knownexampleistheintrodutionoftheasynhronous

transfermode (ATM),thepresentandfutureommuniationnetworksareharaterizedbythe

oexisteneof dierent transmission/servierequirements, ommuniationprotools andtrans-

missionspeeds. WithverysimpleassumptionsonthestohastibehaviourofthenetworktraÆ

(memoryless orMarkov modulated arrivaland servie) the transfer of data from one part of a

network to an other resultsin omplexqueue behaviourat thetransfer point. For example, in

onepartofthenetworkpaketsofsize1500bytearetransmitted(IPpaketsizeusedinEthernet

LANs)whileinanother partellsofsize48+5 byte (thesizeofATMellpayload+header)are

thebase dataunits. At theborder of theseommuniationprotools thearrivalof a1500 byte

paketon theone siderequires thetransmissionof 32 ells on theother side. Thisphenomena

isommonly referred to asbath arrival.

A queueing system withmemoryless arrival and servie an be analysedby theunderlying

Markov hain. When in addition the arrival and servie is queue length independent and the

bath sizeis boundedtheunderlyingMarkov hainhasa nieblokstrutureandis referredto

asaquasi-birth-death(QBD)Markovhain[8 ℄. Thereareseveralnumerialmethodstoevaluate

thesteadystatebehaviourofQBDproesses. Themostwell-knownistheoneproposedbyNeuts

whih is often referred to as Matrix Geometri (MG) method [8 ℄ and is based on an iterative

proedure alled SimpleSubstitution (SS) method. Mitrani and Chakka proposed a one step

methodbasedonthespetralexpansionofsubmatries[2,6 ℄. WhileLatouhe andRamaswami

proposed an other iterative proedure with better numerial properties [5 ℄. Naoumov et al.

enhanedthismethodbyreduingtheomplexityoftheiterationsteps[7 ℄withahighermemory

requirement.

To analyze real ommuniation networks an eetive extension of these methods for bath

arrivals is neessary. An obvious solution of proesses with bath arrivals is to enlarge of the

ThisworkwassupportedbytheEuropeanCommunitythroughCOPERNICUS'94ontratn. 1463, bythe

HungarianOTKAontratn.F-23971andbytheHungarianMinistryofCultureandEduationFKFP-0420/1997

projet.

(2)

ment is the signiant inrease of omputation omplexityand omputer storage requirement.

Spetralexpansionisoneofthemethodshasbeendevelopedforbatharrivalsand hasshowna

good performaneomparedto theothers[4 ℄. There isan extensionoftheSS algorithm forx

sizebatharrivalsthatalsoshowssomeadvantagesinperformaneandstoragerequirement[10 ℄.

Inthispaperweproposeanalternativemethodthatgenerallyhasabetter performanebothin

omputationomplexityandomputerstoragerequirementthantheabovementionedones. Re-

entlyapaperthatusesasimilairapproahfornitstatespaeametotheauthers'knowledge.

[11 ℄.

The rest of the paper is organized as follows. The next Setion desribes the analyses of

the QBD proesses. In Setion 3 the problem of bath arrivals and the proposed algorithm is

introdued. that isan extensionof MGsolution. Setion4 isdevotedto theomparison of the

proposed algorithmand thealgorithmproposedbyNaoumov etal. whihseems tobe thebest

methodsfora generalQBDproess. Thepaperis onludedinSetion 5.

2 Analyses of quasi-birth-death proesses

Consider a Disrete Time Markov Chain (DTMC) where the state of system is desribed by

two randomvariables: Z

n

=fI

n

;J

n g;I

n

istaking its value from f1;2;:::;Ng and J

n

istaking

its value from f0;1;:::g. This DTMC is alled a quasi-birth-death proess if only the state

transitionswhere J

n+1 J

n

2f 1;0;1g have a positiveprobability. The states withthe same

value of J

n (J

n

= j) denes a level (j). By the above denitionstate transitions are possible

insidethe levelsand betweenthe neighbouringlevels.

The nonzero transition probabilitiesaregiven bythesubmatries

A (j)

(lateral transitions): A (j)

(i;k) = Pr(I

n+1

= k;J

n+1

= jjI

n

= i;J

n

= j) 1

(i;k 2

f1;2:::;Ng, j2f0;1;:::g);

B (j)

(upward transitions): B (j)

(i;k) = Pr(I

n+1

= k;J

n+1

= j+1jI

n

= i;J

n

=j) (i;k 2

f1;2;:::;Ng,j2f0;1;:::g);

C (j)

(downward transitions): C (j)

(i;k) = Pr(I

n+1

= k;J

n+1

= j 1jI

n

= i;J

n

= j)

(i;k 2f1;2;:::;Ng,j 2f1;2;:::g);

and all theothertransition probabilitiesequalto 0.

As itis seenfrom these denitions A (j)

, B (j)

and C (j)

arematries of sizeN N. Assume

thatan m (m1) thresholdexistssuh that

A (j)

=A; 8j m,

B (j)

=B; 8j m 1,

C (j)

=C ; 8jm+1,

whihmeansthatthetransitionprobabilitiesarelevelindependentifjm. Theblokstruture

of the transition probability matrix of a QBD proess is shown in Figure 1. The upper-left

submatrixofsize(Nm)(Nm)is referredto astheirregularpartof thetransitionprobability

matrixand therest asits regular part.

The methods developed for the analysis of level independent QBD proesses, suh as the

spetral expansionortheMG methods, protfrom the strutureof theregular partand allow

anykindofbehaviourintheirregularpartinludingtransitionsbetweennon-neighbouringlevels.

Denote thesteady state distributionby

p

i;j

= lim

n!1 Pr(I

n

=i;J

n

=j)

1

(i;k)denotes thekthelementoftheithrowofamatrix

(3)

= 6

6

6

6

6

6

6

4 A

(0)

B (0)

C (1)

A (1)

B (1)

C (2)

A (2)

B

C (3)

A B

C A B

.

.

. .

.

. .

.

. 7

7

7

7

7

7

7

5

Figure1: The nonzero bloksof thetransition probabilitymatrixof aQBDproess (m=3)

and introduevetorsv

j

(j 0) as

v

j

=[p

0;j

;:::;p

N;j

℄:

As a onsequene of the blok struture of the transition probability matrix the steady

state distributionof a QBD proess an be obtainedby solvingthe following systemof vetor

equations:

(a) v

0

= v

0 A

(0)

+v

1 C

(1)

(b) v

j

= v

j 1 B

(j 1)

+v

j A

(j)

+v

j+1 C

(j+1)

m>j >0

() v

j

= v

j 1 B+v

j A+v

j+1

C jm

(d) 1 =

P

1

j=0 v

j e

T

N

(1)

wheree T

N

istheolumnvetor of1sof sizeN.

Themethodsdevelopedforthesteady-stateanalysisarebasedonthefat[8 ℄that8j m 1

v

j+1

=v

j

R ; (2)

where R is a matrix of size N N, and it is theminimal non-negative solutionof the matrix

equation

B+R A+R 2

C=R : (3)

A simple way to evaluateR is to applythe SS algorithm whose iteration step is shown in

Figure 2 [8℄. The sequene of R

n

(n=0;1;:::) isentry-wise nondereasing and itonverges to

matrixR [8℄.

R

0

=0

n=0

DO

R

n+1

=B+R

n A+R

2

n C

n=n+1

WHILE (jjR

n R

n 1 jj)

Figure2: The simplesubstitution(SS)algorithm

The disadvantage of the method is the slow onvergene, espeially when theutilization of

themodelledsystemapproahes1. Latouhe etRamaswamiproposedanotheriterativemethod,

a LogarithmiRedution(LR) algorithm,thatonverges muhfaster[5 ℄.

Reently Naoumov et al. proposed an enhanement of the LR algorithm (Figure 3), that

requireslessoperationsperiteration[7℄. AniterationstepoftheLRmethodismoreompliated

than a step of the SS algorithm,but the fewer iterations makes theLR algorithm faster. The

experienesso far have shown that usually the number of needed iteration steps are less than

20 [4 ,5 , 10 ℄.

Mitrani and Chakka proposed a diret method, alled spetral expansion [2 , 6 ℄. In this

method theleastN eigenvaluesand theassoiatedeigenvetorsmustbeobtained from

=

B+A+ 2

C

;

(4)

L=B

M=C

W =A I

DO

X = N 1

L

Y = N 1

M

Z =LY

W =W +Z

N =N+Z+MX

L=LX

M =MY

WHILE (jjZjj)

R= BW 1

Figure 3: The logarithmiredution(LR)algorithm ofNaoumov etal.

whereis aomplexnumberand is avetor of N omplexelements.

The advantage of this method is the diret solution and the easy alulation of the state

probabilities based on the eigenvalues and the eigenvetors, but numerial problems an arise

bytheloseeigenvaluesandeigenvetors.

The detailedomparison of this method and the algorithm of Naoumov et alhas not pub-

lishedyet. Sinethetheoretial omplexityofthealgorithmsaresimilar(O(N 3

))thedierene

betweenthe algorithmsan be shown byexperienes. Thepreviously publishedresultsshow a

better performaneof spetralexpansion,espeiallywhenthe utilisationisnear1,butspetral

expansionmaylead inaurateresultsbeause ofits numerialproblems.

3 The extension of MG approah for bath arrivals

3.1 Proesses with bath arrivals

Consider the DTMC Z

n

= fI

n

;J

n

g, where I

n

is taking its value from f1;2;:::;Ng and J

n

is taking its value from f0;1;:::g, as in the previous setion. Models with bath arrivals and

single serverdiersfrom QBDproesses onlybytheallowed upwardtransitions. Now, upward

transitionsareallowedfromleveljtolevelj+l(l =1;2;:::;y),wherey isthemaximumbath

size.

In thisasethe nonzero transitionprobabilitiesaregiven bythesubmatries

A (j)

(lateral transitions): A (j)

(i;k) = Pr(I

n+1

= k;J

n+1

= jjI

n

= i;J

n

= j) (i;k 2

f1;2;:::;Ng,j2f0;1;:::g);

B (j)

l

(upward transitions): B (j)

(i;k) = Pr(I

n+1

= k;J

n+1

= j+1jI

n

= i;J

n

=j) (i;k 2

f1;2;:::;Ng,j2f0;1;:::g and l2f0;1;:::;yg);

C (j)

(downward transitions): C (j)

(i;k) = Pr(I

n+1

= k;J

n+1

= j 1jI

n

= i;J

n

= j)

(i;k 2f1;2;:::;Ng,j 2f1;2;:::g);

and all theothertransition probabilitiesequalto 0.

Assume that anm (my) thresholdexistssuh that

A (j)

=A; 8j m;

B (j)

=B; 8j m y;

C (j)

=C ; 8jm+1;

(5)

ofthetransitionprobabilitymatrixofaproess withbatharrivalsisshowninFigure4(where

y=3 and m=6).

= 2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4 A

(0)

B (0)

1 B

(0)

2 B

(0)

3

C (1)

A (1)

B (1)

1 B

(1)

2 B

(1)

3

C (2)

A (2)

B (2)

1 B

(2)

2 B

(2)

3

C (3)

A (3)

B (3)

1 B

(3)

2 B

3

C (4)

A (4)

B (4)

1 B

2 B

3

C (5)

A (5)

B

1 B

2 B

3

C (6)

A B

1 B

2 B

3

C A B

1 B

2 B

3

.

.

. .

.

. .

.

. .

.

. .

.

. 3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Figure4: Theblokstrutureofthetransitionprobabilitymatrixofaproesswithbatharrivals

(y=3,m=6)

Toobtainthe steadystate distributionthefollowingsystemof equationsmustbe solved:

(a) v

j

= P

j 1

i=0 v

i B

(i)

j i +v

j A

(j)

+v

j+1 C

(j+1)

j<y

(b) v

j

= P

y

i=1 v

j i B

(j i)

i

+v

j A

(j)

+v

j+1 C

(j+1)

m>jy

() v

j

= P

y

i=1 v

j i B

i +v

j A+v

j+1

C jm

(d) 1 =

P

1

j=0 v

j e

T

N

(4)

3.2 Analysis by blok size enlargement

A possiblesolutionto analyse systems of thiskindis thetransformation of the probleminto a

QBDproessbyintroduingbloksofsizeyNyN (Figure4) [4℄. Theadvantageofthisblok

size enlargement is that the standard QBD methods an be used, but its disadvantage is the

inreaseinomputation omplexity(O(y 3

N 3

))and storage requirement (O(y 2

N 2

)).

Thespetralexpansionmethodhasbeenextendedtoanalysesystemswithmulti-leveljumps

without blok size enlargement [2 , 6 ℄. Although the omputation omplexity of solving the

spetral deomposition is similar to the blok enlargement (O(y 3

N 3

)) numerial experienes

shows a better performane of this method [4℄. But the aforementioned numerial instability

remainsits mainproblem.

3.3 A level-blok-size method

Here we propose a method, whih is more eetive than the blok size enlargement both in

omputationomplexityandinstorage requirement and doesnothave the numerial problems

of spetral expansion. The proposed method is an extension of the SS method for proesses

withbath arrivals.

If the MG methods(either the simplesubstitution orthe logarithmi redution algorithm)

withbloksizeenlargement areused thenmatriesof sizeyNyN aretreated. Asa resultof

theMG methodsan Rmatrix ofsizeyN yN is obtained. Denote theN N submatriesof

thisRas

R= 2

6

4 R

1;1

R

1;y

.

.

.

.

.

.

R

y;1

R

y;y 3

7

5:

The extensionof theSS methodis basedon thefollowingimportant theorem:

(6)

v

j

= y 1

X

i=0 v

j y+i T

i

; 8jm;

whereT

i

=R

i+1;1 .

Proof: Consider the proess as a QBD proess with blok size enlargement. Equation (2)

holdsfortherst yN sizevetor ofthe regularpart:

[v

m

;:::;v

m+y 1

℄=[v

m y

;:::;v

m 1

℄R;

i.e., thetheorem holdsforj =m.

Now, assumingthatthe sizeofthe irregularpart ism 0

=m+l; l0 theregular partof

theproess remainsthesame, and sodoesR. Inthisase Equation(2) gives:

[v

m+l

;:::;v

m+l +y 1

℄=[v

m+l y

;:::;v

m+l 1

℄R:

Sine thisequationis satised8j =l0the theoremis proved. 2

The mainonsequeneof thetheorem isthat therst N olumnsofR (T

i

; i=0;:::y 1)

ontains suÆient information to determine the steady state distribution of the proess. The

followingtwo theoremsallowto obtainthe T

i

(i=0;:::y 1) matries.

Theorem 3.2 The T

i

;i = 0;:::;y 1 matries are the minimal nonnegative solutions of the

following system of matrix equations:

T

0

=B

y +T

0 (A+T

y 1 C)

T

i

=B

y i +T

i (A+T

y 1

C)+T

i 1

C i=1;:::;y 1 (5)

Proof: ApplyingTheorem3.1fortheleft handsideofEquations (4)wehave:

v

j

= P

y 1

i=0 v

j y+i T

i

(6)

and applyingit fortheright handsideof Equations(4) we have:

P

y

i=1 v

j i B

i +v

j A+v

j+1 C=

P

y

i=1 v

j i B

i +v

j A+

P

y 1

i=0 v

j+1 y+i T

i

C =

= P

y

i=1 v

j i B

i +v

j A+

P

y 2

i=0 v

j+1 y+i T

i

C+v

j T

y 1 C=

= P

y

i=1 v

j i B

i +v

j

(A+T

y 1 C)+

P

y 2

i=0 v

j+1 y+i T

i

C=

= P

y 1

i=0 v

j y+i B

y i +

P

y 1

i=0 v

j y+i T

i

(A+T

y 1 C)+

P

y 1

i=1 v

j y+i T

i 1

C=

=v

j y (B

y +T

0 (A+T

y 1 C))+

P

y 1

i=1 v

j y+i (B

y i +T

i (A+T

y 1 C)+T

i 1 C)

(7)

The theorem omes from the equality of the oeÆients of v

j y+i

; i =0;1;:::;y 1 in

Equation (6)and (7). 2

Theorem 3.3 If X (0)

i

=0; i=0;1;:::;y 1 then the iteration

X (n+1)

0

=B

y +X

(n)

0

(A+X (n)

y 1 C)

X (n+1)

i

=B

y i +X

(n)

i

(A+X (n)

y 1

C)+X (n)

i 1

C i=1;:::;y 1

onverges on the minimal non-negative solutions of Equation(5).

(7)

thealgorithm an be establishedinthesame wayasit isin[8 ℄: rst itis proved that the

sequenesof X n

i

areentry-wisenondereasing thentheonvergene isveried.

Sine the B

y

, A and C matries onsist of nonnegative elements, X (1)

i

X

(0)

i

= 0; i =

0;:::;y 1 entry-wise. The inreaseof X (n+1)

i

; i=0;:::;y 1; n1 an beproved by

indution:

X (n+1)

0

=B

y +X

(n)

0

(A+X (n)

y 1

C) B

y +X

(n 1)

0

(A+X (n 1)

y 1

C)=X (n)

0

and

X (n+1)

i

=B

y i +X

(n)

i

(A+X (n)

y 1

C)+X (n)

i 1

C

B

y i +X

(n 1)

i

(A+X (n 1)

y 1

C)+X (n 1)

i 1

C=X (n)

i

i=1;:::;y 1

X (0)

i T

i

; i=0;:::;y 1 entry-wiseand theX (n)

i T

i

; i=0;:::;y 1; n0 also an

beveriedbyindution:

X (n+1)

0

=B

y +X

(n)

0

(A+X (n)

y 1

C) B

y +T

0 (A+T

y 1

C)=T

0

and

X (n+1)

i

=B

y i +X

(n)

i

(A+X (n)

y 1

C)+X (n)

i 1

C

B

y i +T

i (A+T

y 1 C)+T

i 1 C =T

i

i=1;:::;y 1

Sine an upper-bounded monotone inreasing sequene must onverge, the sequenes

X (n)

i

; i = 0;:::;y 1 onverge entry-wise. The limit matries satisfy Equation (5)

and they are not greater than the minimal nonnegative solutions, thus sequenes of

X (n)

i

; i = 0;:::;y 1 onverge on the minimal non-negative solutions of Equation (5).

2

As the result of Theorem 3.3 the algorithm in Figure 5 an be used to obtain the T

i

; i =

0;:::;y 1 matries. The omplexity of one iteration step of the algorithm is O(y N 3

) that is

signiantlybetter thantheomplexityof theother mentionedmethods.

FOR i=0TO y 1

T (0)

i

=0

ENDFOR

n=0

DO

T (n+1)

0

=B

y +T

(n)

0

(A+T (n)

y 1 C)

FOR i=1TO y 1

T (n+1)

i

=B

y i +T

(n)

i

(A+T (n)

y 1 C)+T

(n+1)

i 1 C

ENDFOR

n=n+1

WHILE (max

i (jjT

(n)

i T

(n 1)

i

jj)

Figure5: The proposednumerial methodto obtaintheT

i

matries

3.4 The steady state distribution

When the T

i

; i = 0;:::;y 1 matries are known only the vetors v

0

;v

1

;:::;v

m 1

miss to

determine the steady state distribution of the proess. Equations (4a), (4b) and (4d) an be

used to obtain these unknowns. The number of unknowns is mN and the number of linearly

independentequationsisthesame. Sinev

m

= P

y 1

i=0 v

m y+i T

i

(seeTheorem3.1)theunknowns

inEquation(4a)and(4b)arev

0

;v

1

;:::;v

m 1

. TheinnitesuminEquation(4d)anberesolved

bythefollowingtheorem:

(8)

1

X

j=m v

j

= y 1

X

i=0 v

m y+i 0

B

i

X

n=0 T

n 0

I y 1

X

l =0 T

l 1

A 1

1

C

A

Proof: Lets= P

1

j=m v

j

and makethe followingtransformations:

s= P

1

j=m v

j

= P

y 1

i=0 P

1

j=0 v

m+jy+i

= P

y 1

i=0 P

1

j=0 P

y 1

n=0 v

m+(j 1)y+i+n T

n

=

P

y 1

n=0

P

y 1

i=0 P

1

j=0 v

m+(j 1)y+i+n

T

n

= P

y 1

n=0

P

y 1

i=n v

m y+i +s

T

n

Asof onsequeneof these theTheoremomesas:

s = P

y 1

n=0

P

y 1

i=n v

m y+i +s

T

n

s

I P

y 1

l =0 T

l

= P

y 1

i=0 v

m y+i

P

i

n=0 T

n

s = P

y 1

i=0 v

m y+i

P

i

n=0 T

n

I P

y 1

l =0 T

l

1

2

By thistheorem we have a systemof equations withthesame numberunknownsand inde-

pendent equations. The result of the system of equations is the v

0

;v

1

;:::;v

m 1

vetors, thus

thesteady state distributionisobtained.

3.5 Continuous time proesses

So far the disrete time Markov hains has been disussed, but the results an be applied to

ontinuoustimeMarkovhains(CTMC)aswell. Asimplewaytodosoistheappliationofthe

method of randomization, that produes a DTMC from a CTMC with the same steady state

distribution. LetQbethegeneratormatrixoftheCTMC,and q=max

i;j

jQ(i;j)j. TheDTMC

withtransition probabilitymatrix

=Q=q+I;

where the divisionmeans division of all entry of the matrix and I is the identity matrix with

theappropriatedimension hasthesame steady state distribution[3℄.

4 Performane omparison

4.1 The system model

A simple queueing system has been evaluated to investigate the performane of the proposed

method. AsystemwithaMarkovmodulatedsoureisonsidered. Thesouretransmitspakets

toanoutputlink. Theoutputlinkworksinaslottedmanner: therearexsizetimeslotsandin

every timeslotat mostone dataunitan betransmitted. Thetransmissionofa databeginsat

thebeginningofa timeslot. Werefer todataunitsasellsbelow. An innitebuerisassumed

at theoutput link.

The souresubmitsat most onepaketat theendof thetimeslots and allof these pakets

have the same size. The probability of a paket arrival in a time slot depends on phase of

the Markov modulated soure. The soure may hange its phase at the end of the time slots

independent ofpaket arrivals.

These assumptions are realisti onsidering a le server where TCP/IP over ATM is used.

TheslottedoutputlinkhasthepropertiesofATMandpaketsonsistingofaxnumberofells

isa possiblemodel forlargeletransferssinemostoftheIP paketshasthesizeofmaximum

transferunit(MTU)duringbulktransfer[9 ℄. ForexampleinEthernet-basednetworkstheMTU

of an IP datagram is 1500 bytes, therefore the maximum paket size is 32 ells. The default

MTU value in IP over ATM environment is hosen to be 9180 byte, and thus the MTU size

is 192 ells [1℄. The Markov modulated soure represents a phase dependent arrival, e.g., the

(9)

renewal proess withphase-typedistributedinterarrivaltimes.

The systembehaviourat theendof thenth timeslotis haraterized by

thenumberofells inthebuerof theoutputlink (J

n ) and

thephase ofthesoure (I

n ).

The systemhas thefollowingparameters:

C: thenumberof phasesof thesoure;

r: the numberof ells inapakets;

D

0

(i;k)=Pr(I

n+1

=k; no message arrivesjI

n

=i), D

0

is amatrixof sizeCC

D

1

(i;k)=Pr(I

n+1

=k; message arrivesjI

n

=i), D

1

is amatrix ofsizeCC

ThestohastiproessfI

n

;J

n

gisaDTMC.FromthesteadystatedistributionofthisDTMC

thethequeue lengthdistributionand the paketdelaydistributionan beobtained. The state

transition ofthesystem areasfollows:

If no paket arrives then a ellleaves thebuer, if it wasnot empty, at the beginning of

thetimeslot, and thesourehasa phasetransition from phaseito k:

(i;j)!(k;max (j 1;0)) (8)

The probabilityof thisstate transitionis D

0 (i;k).

If paket arrives then it is stored in the buer and a ell leaves the buer, if it was not

empty,atthebeginningofthetimeslot,andthesourehasaphasetransitionfromphase

ito k:

(i;j)!(k;max (j 1;0)+r) (9)

The probabilityof thisstate transitionis D

1 (i;k).

As a onsequene of (8) and (9) the blokstruture of the transition probabilitymatrix is

asinFigure 6. Thisstrutureorrespondsto theproblem presentedinSetion 3.

2

6

6

6

4 D

0

0 0 0 D

1

D

0

0 0 0 D

1

D

0

0 0 0 D

1

.

.

.

.

.

. 3

7

7

7

5

Figure 6: The blokstrutureof transitionprobabilitymatrix(r=4)

4.2 Numerial results

We haveomparedtheproposedmethod(referredto asLevel-Blok-Size (LBS)method) to the

method proposed by Naoumov et al. (see Figure 3, referred to as LR method), sine the LR

methodisone of thebestamong thepublishedgeneralmethodsforthesteadystate analysisof

levelindependentQBDproesses.

BothmethodshavebeenimplementedinCusingtheMeshahlibrary 2

formatrixoperation.

TheCPUtimemeasurementshavebeenperformedonaPCwithIntelPentiumproessor,using

2

MeshahlibraryformatrixomputationisdevelopedatShoolofMathematialSienes,AustralianNational

UniversitybyDavidE.StewartandZbigniewLeykanditisavailablevianetlib(ftp.netlib.org//meshah).

(10)

0.1 1 10 100

8 16 32 64 100

Computationtime

[se℄

Paketlength(r)

3 3

3

3 3

3

3

3

3

3

3

3

3

3

3

3

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ LBS

LR

=40%

3

=80%

+

Figure 7: Computationtimeversusthe paketlength(C =5 and =40; 80%)

Numberofiterationstep Numberof iterationstep

Utilization (C=5; r=16) (C=5; r=32)

LR MG LR MG

20% 10 440 9 241

40% 11 1203 10 642

60% 13 2601 12 1374

80% 14 6341 13 3345

90% 15 13087 14 6917

95% 16 25370 15 13445

97% 17 40471 16 21499

Table 1: The numberof iterationstep

MSDOSandGNUCompiler. ThereportedCPUtimeinludesonlythetimeneededtoobtain

the R matrix in the LR algorithm and the T

i

matries in the proposed LBS method. In the

experimentstherequiredrelative auray() wasset to10 10

inbothalgorithms. The results

show thatthedierenes intheobtained steadystate distributionaremarginalat thisrelative

auray.

First the inuene of the bath size, that is related to the paket length (y = r 1), to

the omputation time has been investigated (Figure 7). In these experiments the number of

phases of the soure (C) was 5. We have ompared the performane of these methods with

two dierentsystemutilization parameters(40% and 80%). Thepaket lengthhasonlya little

inuene on the omputation time with the proposed method, butit has a signiant impat

withtheLRmethodwhihusesbloksizeenlargement. Thisdiereneanbeexplainedbythe

omplexityofthealgorithms,theomplexityofLRalgorithmisO(r 3

N 3

),whiletheomplexity

of theproposedmethod isO(rN 3

).

In Figure 7 it an be observed that the systemutilization inuenedthe omputation time

aswell,thus we investigated theeet of system utilization. We have foundthat theproposed

algorithm isvery sensitive to theutilizationand beomes ineÆient omparingto theLR algo-

rithmwhen utilizationonverges on 1(Figure8). Thisan beexplainedbythehighnumberof

iterationstepsof theLBSalgorithm(Table 1) andthisfatorrespondsto thepreviousresults

withtheSSalgorithm[2,6 ℄. TheutilizationlevelwhentheLRalgorithmbeomesmoreeÆient

stronglydepends onthemaximumbath size.

We then investigated The impat of the number of phases of the soure (C) is depited

(11)

0.1 1 10

20 30 40 50 60 70 80 90 100

Computationtime

[se℄

Utilization() 3

3

3

3

3 3

3

3

3

3

3

3 3

3

+

+

+

+

+ +

+

+

+

+

+

+ +

+

2

2

2

2

2 2

2

2

2

2

2

2 2

2

LBS

LR

C=5;r =16

3

C =10;r =16 +

C=5;r =32

2

Figure8: Computation timeversustheutilization(C =5and r=16; 32)

in Figure 9. For this experiment the message length (r) was 16, i.e., the bath size was 15.

Thebehaviourofthealgorithmsarequitesimilar,althoughtheproposedalgorithmseemsmore

eÆientwhen the numberof phasesof thesoureis higher. Thelarger memoryrequirement of

theLR algorithmmayause thisphenomenon.

Ourlastinvestigationwasthesensitivityofthealgorithmsontherequiredauray(stoping

riteria,). Figure 10showsresultswith anetwork utilisationof60%. The urvesinthegure

show that the required auray has only a little inuene of the omputation time of the

LR algorithm, while omputation time of the LBS method is strongly depends on it. In the

previously presented results we used a strit required auray, so the results would show a

better performaneof theLBS algorithminthease of lessstrit requiredauray.

5 Conlusions

In this paper an extension of the MG approah for proesses with bath arrivals has been

presented and a numerial method has been proposed to obtain the steady state behaviour.

A proess of this kind an be analysed as a QBD proess with a larger blok size, thus the

algorithms available for the analysis of QBD proesses are ineÆient. We proposed a method

thatperformstheomputationwithoutbloksizeenlargement. Theproposedapproahredues

theomputation omplexityand thememoryrequirement of thenumerial analysis.

A performaneomparison of the proposed method with an eÆient general method (LR)

hasalso beenpresented. Theresultsshowthat theproposedmethodis eÆient inaseof large

bath size,but itbeomesineÆientifthesystem utilizationonverges on 1.

Referenes

[1℄ R.Atkinson.DefaultIPMTUforuseoverATMAAL5,InternetRFC1626.NavalResearh

Laboratory, 1994.

[2℄ RamChakka. PerformaneandReliability Modellingof ComputingSystemsUsingSpetral

Expansion. PhD thesis,UniversityofNewastle uponTyne,1995.

[3℄ W.Feller.AnIntrodutiontoProbabilityTheoryandItsAppliation,volume2.JohnWiley

&Sons, 1971. 2nd edition.

(12)

0.1 1 10 100

4 8 12 16 20 24

Computationtime

[se℄

Numberofphasesofthesoure(C) 3

3

3

3

3

3

3

3

3

3

3

3

+

+

+

+

+

+

+

+

+

+

+ LBS

LR

=40%

3

=80%

+

Figure 9: Computationtimeversusthenumberof phasesofthe soure

[4℄ B.HaverkortandA.Ost.Steadystateanalysesofinnitestohastipetrinets: Aomparing

betweentheSpetral Expansionand theMatrix Geometrimethod. InProeedings of 7th

InternationalWorkshoponPetriNetsandPerformaneModels,pages335{346,SaintMalo,

Frane,1997.

[5℄ G. Latouhe and V. Ramaswami. A logarithmiredutionalgorithm forquasi-birth-death

proesses. Journal of Applied Probability, 30:650{674, 1993.

[6℄ Isi Mitrani and Ram Chakka. Spetral expansion solution for a lass of Markov models:

appliation and omparison with thematrix-geometri method. Performane Evaluation,

23:241{260, 1995.

[7℄ Naoumov,Krieger,andWagner. Analysisofamulti-serverdelay-losssystemwithageneral

Markovianarrivalproess. Marix-analyti methods in stohasti models,1997.

[8℄ M. F. Neuts. Matrix Geometri Solutions in Stohasti Model. Johns HopkinsUniversity

Press,Baltimore, 1981.

[9℄ G. Wolfner, T.V. Do, and M. Telek. A soure model for le transfer appliations in lo-

al ATM networks. In Proeedings of 5th IFIP Workshop on Performane Modelling and

Evaluation of ATM Networks, Ilkley(UK),1997.

[10℄ G. Wolfner and M. Telek. A numerial analysis method of queueswith bath arrivals. In

Proeedings of Fifth International Confereneon Advaned Computing, Chennai(Madras),

India,1997.

[11℄ K. Wuyts and R.K. Boel. A matrix geometri algorithm for nite buer systems with

B-ISDN appliations. In Proeedings of the ITC Speialists Seminar on Control in Com-

muniations, pages265{276, Lund,Sweden,September1996.

(13)

1 10

6 8 10 12 14 16

Computation time

[se℄

Requiredauray( lg ()) 3

3

3

3

3

3

3

3 3 3

3

3

+

+

+

+

+

+

+ +

LBS

LR

C =5; r =16

3

C =5; r =32 +

Figure10: Computationtime versustheauray

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Testing of the antibacterial activity and in vitro cytotoxicity of the pure, Sr- and Mg- doped HAP samples was carried out by determination MIC values using microdilution

The departure process analysis methods for MAP/MAP/1 queues (see Thesis 2.1) and for MMAP [ 2 ]/ MMAP [ 2 ]/ 1 priority queues (see Thesis 2.2) assume that the queue length

Based on the proposed learning function and above multiple Kriging models, a method is presented for struc- tural reliability analysis. 1 illustrates the flowchart of the

For this study we used GSA the method of variance-based sensitivity analysis, also known as (Sobol method), this method is based on the functional model decomposition, this

Observe that vectors x i , i ≥ 1 derived in Section 3 can not be used directly for the sojourn time analysis, since they correspond to the distribution of the queue length and the

Queues with Markovian arrival and service processes, i.e., MAP/MAP/1 queues, have been useful in the analysis of computer and communication systems and dierent representations for

Fundamental relationships and experience accumulated in research on, and in designing cooling towers have been complied as an aid to approximate dimensioning. The analysis method

Rheological measurements were performed by shearing the suspension at constant shear stress (5 Pa) both in lack of electric field and under the influence of field. Low oscillating