• Nem Talált Eredményt

The prisoners' dilemma, congestion games and correlation

N/A
N/A
Protected

Academic year: 2022

Ossza meg "The prisoners' dilemma, congestion games and correlation"

Copied!
13
0
0

Teljes szövegt

(1)

The prisoners' dilemma,

congestion games and correlation

by Ferenc Forgó

C O R VI N U S E C O N O M IC S W O R K IN G P A PE R S

http://unipub.lib.uni-corvinus.hu/2187

CEWP 7 /201 6

(2)

!

" #

$ % &' ( # ) % ( *

+ & & & , & %

# # - - . & / & 0

0 #1 ( $2 3 # & 4 & / & 0 ' 3

- &( 5 & + & + 6 ' 6% * %

7 8 & & ( 9 #

0 : & & 8 - # %

# &2% # ( ; / &

& n% , & # -

& / & 0 0 & (

# & , & # & ∞,

& 2( 9 & & & 0& , & # (

, & # # & / & 0%

& &

<2 !

9 , & 0 # # 0= #

& & & ( ;

& # ( 9 # & :

0 & 0= & # &%

4 : ( 9 0

# - & 0 -

- 8 0 && & %

# && $ && # *( 9 &

& & - & 0 # & 4 & & #

# (

7 0 0 0& %

& : $ (#( && - # # > &&

/ & 0 : # *( ; # & # &

# 3 $ <?* / & 0 :

# @ % 7 ( 9 , & -

# & ' & 7 & &

2% , & ( 9 # & 4 3 ,

(3)

& 0 5 & A & $ < * B & %

B & & B- . & B & && # / & 0

7 , & , & 0

# - - . & - & & & ( 3 # %

& 4 & & & B & / & 0 B

0 #1 $2 * - - - 0 0& @ % 7

(

3 - && 0 # &

# # & & - , & # ( 9 0

/ && # # 8

8 . & 0 0 # 0 , &

# ( ; & & & %

> 3 & # &( $2 * 0 &

, & # ( C - && - &

& / & 0 & n% , & # $

> 0 " 0 # <!* ∞ - & # 0 K

> n% , & # -

& - & 0& 0 & K%

& - & / 7 / & 0 ( 9 &

& 2 ( ( 0 & : & - &

0 2% & - & & ( C

# & 0& n% # ( + & - & >

8 $ & * & (

9 # 4 && - ( + 2 & & %

0& 0 - & & # &

# # ( ; + 3 -

& & / & 0 & & & # #

, & # ( + 4 & (

" #

+ & # # & - % # 0&

& > & 8 & -

& & ( C - && -

& ( 3 n% & 2% & & # # 0 # 0

B # B' - # n% a = (a1, ..., an), b = (b1, ..., bn)

# j & & (F1), # &

aj k & & 2(F2), # & bk(

9 # # > 0 & N #

{F1, F2} & 0 D 0 {1,2}, 8

0 & a b( 3 # >& n & (i1, ..., in)

- ij ∈ {1,2}, j ∈N( : & n= 4 (1,1,2,1)

- & 1,2,4 F1 & 3 F2(

3 & & - & 0 & ( 32$

& & & # # > 0 & aj =jx+u, bj =

y+jz, j= 1, ..., n,- x, u, y, z ( 3 2

(4)

# # $ & & * & 7

/ & 0 $P N E* & C $ <!*(

+ & & # %SD* 2% 0 # -

# B & B ' 0& 7

/ & 0 $N E*( 9 SD , & $P D*(

SD, (#( 0 & : . # ( &

0 0 $ ?*( 9 && - # -

& & 0 - SD, 2% & & # # (

& E SD $& *2% & & # # (

@ 3 SD 0 a, b, c, d #

0 : #

A B

A a, a b, d B d, b c, c .

9 #

F1 F2

7 ( A B

1 b d

2 a c

( (1)

.

E: & ' 3 P D # 0 0 ≤ b < c < a < d( ;

2% & & # # A B B $C* B

B B $D*( ; B : B # # ' # F1

# F2.

9 @ & (

& " E 2% 2% & & # # 0

2% 0 # (

@ ; # # (1) & -

F1 F2 # # 0 8

F1 F2 F1 a, a b, d F2 d, b c, c . .

9 - P D - 0

$" 0 # <!* && - #'

P1E & # $D*

P2$D, D* & 7 / & 0 (N E).

9 - # & 4 P D n & & $ *(

9 / # & 4 P1 P2.

!

(5)

&& - # " 0 # $ <!* - > B , B C(k), k =

1, ..., n - 8 C% k

B , B D(k), k = 0,1, ..., n−1 - #

8 D% # k C% ( C(0) D(n)

> ( C

(Q1)C(k)< D(k−1), k= 1, ..., n−1, (Q2)C(n)> D(0).

3 Q1, Q2 P1 P2

n% ( Q1 #& & > 0& &

- ( Q2 . &&

0& && (

3 # & , , 0

0& > & n% P D, ( ; #

0 : & & 2% & # # (

# - - & #

& & & ( 9 # &&

# & ( 3 n% P D 0

n & & & & 2×2 P D # - &&

& / . n−1#

& #(

n% P D # : & 0 : ( 3

# & " 0 # $ <!* & $ * +4 4.

+4 & # $2 2* +4 & # $2 !*( + CE & SW

0 & && #P D

0 N E( 9 8 - # & 4 & (

C > & 0 & & & / & 0 $CE* 3 %

$ <?* - . $ * & / & 0 %W CE* 5 & A &

$ < * & / & 0 $SCE* #1 $2 * 0 %#

0 ( . / & 0

0 # - - & & # >& 0

& . - 0 0 & 0 ( ; CE

& # - && # 0 & - %

( 9 & -

# ( 9 0 0 & 0 CE &

# & # : 8 0 # %

0 & & ( W CE &

& && - 0& & ( ;

# ( E/ & 0 > -

CE' & 0 > # 0 & (

SCE & W CE : - # %

& && - # - & 0 %

( 3# / & 0 & &

> 0& : 8(

3 - #1 $2 * W CE SCE # & 4 CE 0

(

3 & # & 4

?

(6)

& - & $SW) - & # - &

# - # & - && 0&

0& - ( + - - && 0 - SCE &

P D # : 2% & & # # -

SCE 8 : #1 $2 ?*(

C . B & 0B - & 0 -

& ( 9 # & 0 ( E - . &

# & . - 0 0 & 0 # #

& 0 & ( @ 0 .

# # & 0 ( ( .

# 0 & ( & & &

& 0 # & $ & * - &

& $ > &

& & & - 0 # 4 *( ; SCE 0 0

0 & # # &

&& (

; #1 $2 * 0 # W CE =CE.9

SD# & SCE $ &&* SW( # 3 & #

& $2 * - - && 0 & & &

SCE 0 - SW 0 N E

- & 0 & $ &* : SW &

# $ & n% P D, : & & 2% &

# # * - # ( - &

$M V* & $EV*(

F G∈ Γ 0 # & > # P(G) 0 %

0 & 0 # >& G M(G) 0 0 &

0 # 0 : 7 / & 0 S(G) SCE, (

F SW(p)0 & - & $ : & & *

0 0 & 0 p( > & SCE G

M V(G) = maxpS(G)SW(p) maxpM(G)SW(p)

&

EV(G) = maxpP(G)SW(p) maxpS(G)SW(p).

9 & M V & EV SCE

& # Γ >

MV = sup

GΓ

M V(G), EV = sup

GΓ

EV(G).

; - # MV B0 B - & EV B- B

( M V 0 0& & ∞ EV 0 0& &

1(

G

(7)

; #1 $2 ?* M V EV + E n% & 2% & & %

# & # # - (

9 4 : 0&

7 0 & M V M V P EV

2 ∞ ∞ 1

3 43 43 1

4 ? ≥43 1.007478...

... ... ... ...

n ? ≥4(nn1)43

9 & MV P - > M V &

NE, ( 9 . && '

& 0& 0 0& n% & 2% & : &

& # # & P D# (

' ( ) * ) ) +

)

# n% & 2% & & : &

# #

F1 =C F2 =D a1= 0 b1=y+ (n−1)z a2=x b2=y+ (n−2)z a3= 2x b3=y+ (n−3)z

... ...

an= (n−1)x bn =y .

- x, y, z >0( ; , ,

0 0& .

F1 =C F2 =D

C(1) = 0 D(n−1) =y+ (n−1)z C(2) =x D(n−2) =y+ (n−2)z C(3) = 2x D(n−3) =y+ (n−3)z

... ...

C(n) = (n−1)x D(0) =y

.

+ - - && P D# & 0 #

C D$ * - &&( # 8

0 #

> 0& 0 ( ; #

# & & - & >: 0. 5 # &

- & & P D, 0 & 2% & & : &

# # - 0 # ( ; & 0 .

6

(8)

& : & # # - bn < a1$ (#( .

# n= 2* 0 - - && (

F t 0 & & # D t = 0,1, ..., n. 9

# SCE $ #1 2 ?*

(−y+ (n−1)(x−z))q0+1 n

n1

t=1

(ty−t(n−t)(x−z)+

(n−t)((n−t−1)(x−z)−y))qt+yqn≥0. (2)

9 . > 0& : 8

0 $ # *(

@ 0 0 & 0 # 1

n

t=0

qt = 1, (3)

qt ≥ 0, t= 0,1, ..., n.

C - : 4 SW - & , : 8

SW =n(n−1)xq0+

n1

t=1

(t(y+ (n−t)z)+ (n−t−1)(n−t)x)qt+nyqn ( (4)

; # n% P D Q1 Q2

0 > ( ; t & & D n−t & C( Q1 at+1≤bnt

t= 1, ..., n−1 &

y+tz > tx, t= 1, ..., n( (5)

3&& / & & 0 #& / &

y+ (n−1)z >(n−1)x. (6)

9 . # Q2 - # C(n) = (n−1)x > D(0) =y( +

2% & & : & # # n% P D

x, y, z 0< 1

n−1y < x < 1

n−1y+z n≥2. (7)

#M V / & n≥2.; 0

0& (

& ' n% P D & MV =∞.

<

(9)

@ 9 . & x= 1, y=ε, z= 1 ε >0( 9 q0=qn =

1

2, qi= 0, i= 1, ..., n−1 SCE & 0 > 0 0 #

(2). 3& x, y, z (7) && n ≥ 2( 9 SW n% P D

- 0 0 0 # (4) 0

1

2n(n−1) +12nε( 9 & N E n% P D - && &

SW nε( 9 MV

1

2n(n−1) +12nε nε

- # ∞ ε→0(

+ P D 2% & & : & # # && -

@ G MV =∞ - & # - &&( 7 -

- # EV & 2% & & : &

# # (

& , 2% & & : & # # %

& EV ≤2(

@ ( > & 0 t∈[0, n] / W 0

W(t) =

n

t=0

(t(y+ (n−t)z) + (n−t−1)(n−t)x). (8)

9 : W W(t) [0, n] 0 0 & : %

SW - # [0, n]( 9 H

/ (8) x−z( # # x−z - #

- (

( x≥z( ;

W= max{W(0), W(n)}= ny x≤n11y n(n−1)x n11y < x .

9 0 0 & qt= 0, t= 0,1, ..., n−1, qn = 1 &- SCE

y >0 - && EV = 1 W=ny( -

0 - W=n(n−1)x.9 0 0 & q0=qn= 12, qt= 0, t=

0, n & 0 SCE0 0 # (2) # #

1

2(−y+ (n−1)(x−z)) +1

2y= (n−1)(x−z)≥0(

9 SW SCE

1

2n(n−1)x+1 2ny(

9 - #

EV ≤ n(n−1)x

1

2n(n−1)x+12ny <2(

(10)

2( x < z( 3 > n ( 3 SCE 0 0 0

# 0 0 & q = 1, qi= 0, i=n2.9 > (2)0

n 2y−n

2(n−n

2)(x−z)+(n−n

2)((n−n

2−1)(x−z)−y) = n

2(z−x)>0( (9)

9 SW 0 & # # SCE

W(n 2) =n

2(y+n 2z) +n

2(n

2−1)x) = n 2(y+n

2z+n 2x−x)(

; / W(t) 0 & : %

r= y+nz2(z(2nx)1)x( ; r > n = - EV = 1(

; r <0 W(0)> W(t) &&t∈[0, n] -

EV ≤ W(0)

W(n2) = n(n−1)x

n

2(y+n2z+n2x−x)= 4 (n−1)x

2y+nz+ (n−2)x = 4 (n−1)x

2y+nz+ (n−2)x<2(

- & & z > x(

- r∈(0, n)( C & H qt (2)

n

2 ≤t ≤n( 9 0 t

0& H qt / t

H x−z / # ( 9 H y qn

0 H q 0 (9)( 9

& & && 0 0& #

& (

9 : r W && &

[n2, n], # : t$0 # # 0 # #

r*( 9 H qt 0 # qt = 1, qt = 0, t =t SCE

EV = 1. 9 - & - 0≤ r < n2( 9

: 0 0 0

W=W(r) =n(n−1)x+r2(z−x)< n(n−1)x+n2 4(z−x) 0 r < n2 z−x >0( EV -

EV < W

W(n2) = n(n−1)x+n4 (z−x)

n

2(y+n2z+n2x−x) =4(n−1)x+n(z−x) 2y+nz+ (n−2)x <2(

7 - - - n n≥3( C &

H qt / & (2) n+12 ≤t ≤n

# : t W && & EV = 1( 9

(11)

# & - - 0 ≤r < n+12 ( SCE = q =12, q = 12, qi= 0, i= n21,n+12 .9 SW SCE

W = 1

2W(n−1 2 ) +1

2W(n+ 1 2 ) = 1

2(n−1

2 (y+n+ 1

2 z) +n−1 2

n+ 1

2 x+n+ 1

2 (y+n−1

2 z) +n−1 2

n−3 2 x).

9 -

EV ≤ n(n−1)x+r2(z−x)

1

2W(n21) +12W(n+12 ) ≤

n(n−1)x+(n+1)4 (z−x)

1

2(n21(y+n+12 z) +n21n+12 x+n+12 (y+n21z) +n21n23x).

3 & & # 0 4 & #

- #

EV ≤ 4n(n−1)x+ (n+ 1)2(z−x)

(n−1)(n+ 1)z+ (n1)(n+1)2 x+(n1)(n2 3)x.

C - & & . 2( 9

&& - # / & &

4n(n−1)x+ (n+ 1)2z−(n+ 1)2x≤2(n2−1)z+ 2(n−1)2x.

# # - #

(n−3)(n+ 1)x≤(n−3)(n+ 1)z

- 0 & & 0 x < z( 9 - 2% &

& : & # # EV ≤2(

# 0 & P D # 0

0 0 # EV( 3 0 & & P D,

- x = z( # - & , = # &

: # #

- 0 > ( 9 # && B 0& B

: 0 # : & " 0 # $ <!*(

& - n% 0& P D & EV =

2.

@ ; @ ? - & 2% & & :

& # # EV ≤ 2 x ≥ z $ * & x = z(

(12)

9 & / - ' 0 # I n%

0& P D - x= 1, y =ε, z = 1. 9

(7) ε && # ( 0 # (2) (3) - #

&& - #LP - & SW : 4 #SCE:

maxn(n−1)q0+

n1

t=1

(tε+ (n−1)(n−t))qt+nεqn.

0= nq0

n1

t=1

(n−2t)qt−nqn ≤ 0,

q0, q1, ..., qn ≥ 0, q0+q1+, ...,+qn= 1.

3 n ( 9 q = 1, qj = 0, j = n2 0& &

u = 12(n−1)− ε2, v = n2(n−1) + n2ε 0& & & -

0= & n2(n−1) +n2ε( 9 0 & : SW

n(n−1).9 EV

n(n−1)

n

2(n−1) + n2ε = 2 n−1 n−1 +ε

- # 2 ε→0(

9 & n & ( ; - 0&

& q = 12, q =12, qj = 0, j=n21,n+12 .

2% & & : & # # %

& EV = 2.

" n% P D & EV = 2.

; - - -n% , & # 0

2% & & : & # # ( 9

& / & 0 @ % #

7 ( 9 & - ∞ &

- 0 2 n( 9 & & 2 0&

n% , & # ( & & #

# & 4 n & & 0 0

& (

. 9 # 9J3 22? # %

&& . -& # ( .

/ )

(13)

3 & # ; 5 9 &4 5 $2 * & & % ( K & 3 > & ; && # !!'G<G%6

3 K $ <?* + 0= & 4 # (

K & 5 & E '6<% 6

& K C $ * ; 7% & , & # @ & %

& + G!' ? %? G

#1 $2 * 3 # & 4 & / & 0 ' 3 - &(

5 & + & + 6 ' 6%

#1 $2 ?* 5 # - & / & 0 2%

& & % # & # # & E K %

& 22 $ *' ! % 6G

" 0 # " $ <!* 7% , & ( K & 5 &

+ & # !' 2<%?

5 & " A & K%@ $ < * + # && 4 % # ' &

# - & & : / & 0 0 ( ; %

& K & L 9 <'2 %22

0 5 K 0 3 $ 6* 3 # ( 9 5;9

@ 0 # 53

& C $ <!* 3 & # # % # 7 / %

& 0 ( ; & K & L 9 2'6G%6<

+4 & # 5 7 $2 !* 3 # 7% , & %

& : ?' GG% <?

+4 4. +4 & # 5 7 $2 2* 3 3 & & + 7%

@ @ , & + - K & @ 3 & 5 %

$ & & * 2'22%!

2

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The experts highlighted that planners worldwide know that urban transport based on cars does not depict a sus- tainable development path – neither with respect to urban

Non-invasive assessment and clinical importance of the extravascular lung water in heart failure: the B-lines Pulmonary congestion is a common and important pathophysiological fi

Keywords: Infinite dimensional duality theorems, TU games with infinitely many players, Core, Bondareva–Shapley theorem, Exact

Furthermore, we extend Dubey (1982)’s and Moulin and Shenker (1992)’s results to the class of irri- gation games, that is we provide two characterizations of the Shapley value for

The network approach inspired by the qualitative games approach, on the other hand, focuses primarily on analysing the development and the outcome of interaction

While in case of a unified risky option agents coordinate on a single target, thus the negative strategic correlation does not arise.. It is easy to show that the 0-C area indeed

 We will illustrate the basic concepts of correlation by discussing only the Pearson correlation coefficient, which is one of the more widely used correlation coefficients.. 

Accordingly, we cannot say that these changes would only be the direct result of the applied medication (selective serotonine reuptake inhibitor (SSRI)) since in this case we