• Nem Talált Eredményt

PHYSICSBUDAPEST INSTITUTE FOR* RESEARCH CENTRAL S^xiri^axian S4cademi^ of (Sciences щ

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PHYSICSBUDAPEST INSTITUTE FOR* RESEARCH CENTRAL S^xiri^axian S4cademi^ of (Sciences щ"

Copied!
20
0
0

Teljes szövegt

(1)

щ

b o 3 í .

K F K I - 7 1 - 3 3

( # KÖNYVTARA * J

P . H a s e n f r a t z

C O N S T R U C T I O N O F T H E E F F E C T IV E L A G R A N G I A N O F P I O N I C P R O C E S S E S

F O R A R B IT R A R Y S U ( 2 ) x S U ( 2 ) B R E A K IN G

S ^ x ir i^ a x ia n S 4 c a d e m i^ o f ( S c ie n c e s

C E N T R A L R E S E A R C H

I N S T I T U T E F O R * P H Y S I C S

B U D A P E S T

(2)
(3)

KFKi-71-33

CONSTRUCTION OF THE EFFECTIVE LAGRANGIAN OF PIONIC PROCESSES FOR ARBITRARY SU (2)xSU (2) BREAKING

P , H a s e n f r a tz

C e n tr a l R esearch. I n s t i t u t e f o r P h y s ic s o f t h e H ig h E n erg y P h y s ic s D ep artm en t

(4)

ABSTRACT

By assu m in g t h a t t h e SU (2)xSU (2) symmetry i s b ro k e n b y t h e i s o s c a l a r e le m e n t o f t h e r e p r e s e n t a t i o n (Я Д ) e f f e c t i v e L a g ra n g ia n s r e p r o d u c in g t h e r e s u l t s o f c u r r e n t a l g e b r a and t h e PCAC a s s u m p tio n can be c o n s t r u c t e d

by a d i r e c t m ethod s u g g e s te d by R. D ashen and M. W e in s te in r2] . I t i s shown t h a t th e sy m m e try -b re a k in g p a r t s o f th e s e L a g ra n g ia n s a r e t h e s o l u t i o n s / i n c lo s e d f o r m / o f th e d i f f e r e n t i a l e q u a tio n f o r th e b r e a k i n g p a r t s i n W ein b e rg ’s fo rm a lis m [31 , an d t h u s t h e c o n n e c tio n b etw een t h e two ap­

p ro a c h e s i s e s t a b l i s h e d .

РЕЗЮМЕ

П р едп о л агая , что изоскалярны й элем ент п р ед ст а в л ен и я (г. > 0 нарушает симметрию s u ( 2 ) x s u ( 2 ) , непосредствен н ы м м етодом , предложенным Р . Дашеном и М. Вейнштейном можно за п и с а т ь эффективные функции Л агранж а, которые при­

в о д я т к тем же самым р е зу л ь т а т а м как и в сл у ч а е и с п о л ь зо в а н и я токовой а л ­ гебры и ’предполож ения РСАС. П о к азан о, что нарушающие симметрию ч асти э т и х функций Лагранжа представляю т с о б о й решения (в закрытом в и д е ) дифференци­

ал ь н о го ур авн ен и я для нарушающих ч а с т е й в формулировке В е й н б ер га L3J , а также с о з д а н а с в я зь между двумя приближениями.

KIVONAT

На f e l t é t e l e z z ü k , hogy az ( t ,£ ) . r e p r e z e n t á c i ó i z o s k a l á r eleme meg­

t ö r i az SU (2)xSU (2) s z i m m e t r i á t , a k k o r az R. D ashen és M. W e in s te in [2]

á l t a l j a v a s o l t d i r e k t m ó d s z e rr e l e l ő á l l i t h a t ó k a z e f f e k t i v L a g r a n g e - f ü g g - v é n y e k , am elyek újból, az á ra m a lg e b ra és a P O A C -feltev és f e l h a s z n á l á s á ­ v a l k a p o tt eredm ényekhez v e z e tn e k . M egm utatjuk, hogy e L a g ra n g e -fü g g v é n y e k s z im m e t r i a - t ö r ö r é s z e / z á r t a l a k b a n / a W e in b e rg - fé le fo rm a liz m u s 131 я я 1 т - m e t r i a - t ö r ö r é s z é r e f e l í r h a t ó d i f f e r e n c i á l e g y e n l e t m e g o ld á sá t a d j a , és e z ­ z e l b e b i z o n y í t o t t u k , hogy a k é t f é l e k ö z e l í t é s k ö z ö t t k a p c s o l a t v a n .

(5)

I . INTRODUCTION

R. D ash en and M. W e in ste in I I I , [2] h a r e p o in te d o u t t h a t t h e m ost l o g i c a l e x p l a n a t i o n f o r th e s u c c e q ^ o f t h e PCAC h y p o th e s i s i s t h a t th e r e a l w o rld s a t i s f i e s an a p p ro x im a te SU2xSU2 sym m etry.

The symmetry i s r e a l i z e d b y th e a p p e a ra n c e o f m a s s le s s p io n s /G o ld s to n e b o s o n s / , th e vaccuum i s n o t i n v a r i a n t .

Many g e n e r a l th e o re m s have b e e n p ro v e d i n [2] w ith t h e h e lp o f a n i d e n t i t y w hich g iv e s th e m a tr ix elem en t <a + n ir|s |ß > i n term s o f m a tr ix e le m e n ts o f tim e - o r d e r e d p r o d u c ts o f v e c t o r and a x i a l v e c t o r c u r r e n t s . S t a r t i n g from t h i s i d e n t i t y th e a u t h o r s c o n s t r u c t e d i n th e SUxSU2 sym m etry case th e e f f e c t i v e L a g r a n g ia n , w h ich i n t h e t r e e a p p ro ­ x im a tio n r e p r o d u c e s th e r e s u l t s o f t h e j o i n t a s s u m p tio n s o f PCAC and c u r r e n t a l g e b r a .

f o l l o w i n g t h i s a p p ro a c h , I h a v e lo o k e d f o r th e e f f e c t i v e L a n g ra n g ia n i n th e case o f any ty p e o f symmetry b r e a k in g a n d any ty p e o f d e f i n i t i o n o f th e p i o n i n t e r p o l a t i n g f i e l d , I s h a l l d i s c u s s th e c o n n e c tio n w i t h W e in b e rg 's r e s u l t s [31 « and t h u s com plete t h e connec­

t i o n betw een t h e above m e n tio n e d d e f i n i t i o n o f PCAC and W e in b e rg 's

p h e n o m e n o lo g ic a l L a g ra n g ia n f o r m a lis m . I s h a l l t h e n d i s c u s s how one c a n o b t a i n th e g e n e r a l form o f t h e ’ c o v a r i a n t d e r i v a t i v e i n t h i s way, an d p ro v e t h a t t h e symmetry—b re a k in g p a r t s o f th e L a g ra n g ia n s a r e th e s o l u ­ t i o n s i n c l o s e d form o f th e d i f f e r e n t i a l e q u a t i o n d e te r m in in g th e b r e a k ­

i n g L a g ra n g ia n i n W einberg s f o r m a lis m .

C u r r e n t a l g e b r a , w ith th e a i d of th e a p p ro x im a te symmetry- a s s u m p tio n , d e te r m in e s t h e a m p litu d e s on th e m ass s h e l l , b u t a t a n o n - p h y s i c a l p o i n t /w h e re a s t h e u s u a l PCAC te c h n iq u e d e te r m in e s th e S m a t r i x e le m e n t o f f t h e mass s h e l l / . I s h a l l make some rem ark s a b o u t t h i s i n c o n n e c tio n w i t h th e тгтт a m p litu d e .

(6)

- 2 -

I I . THE EFFECTIVE LAGRANGIAN I E THE CASE OF ARBITRARY TIRE OF SYMMETRY BREAKING

The e f f e c t i v e L a g ra n g ia n s can b e c o n s t r u c t e d i n c lo s e d form f o r a n a r b i t r a r y t y p e of s y m m e try -b re a k in g from one o f Dashen a n d Wein­

s t e i n ' s i d e n t i t i e s t 2 j . They a r e ;ju st t h e W e in b e rg 's p h e n o m e n o lo g ic a l L a g ra n g ia n s i n t h e c a s e of g e n e r a l p io n f i e l d d e f i n i t i o n . The m e n tio n e d i d e n t i t y i s t

<a + V W1 + 2 (p2 )+ ” - 'ra O n ^ S |ß> = f ? < a |^ n ) ( 'P l 'P 2 '- * * pn ) l 3>n

/1/

w ith ( P1 fP2 • • d e f in e d t o be t h e c o e f f i c i e n t o f f " i n t h e e x p a n s io n o f th e e x p o n e n ti a l

T^exp |± J d 4x X (x) ^ / 2/

I n / 2 / <C(x.) i s i n g e n e r a l a sum o f two p a r t s , w hich we can o b t a i n from

\

I f , \

fTjd u « ex p - i f ffu j d 3x G ( f 2) f .A ° ( x ) ^Эу ( с ( ^ 2) ^ ) А у ( у ) | е х р | ^ и | н 3г G ( f 2) f .A^jjj

+ fir[du ' exp [ - i f 7ru [ d 3x g(* 2) ^ .A ° (x) ^G (f2) f . Эу Ay (y)) exp | i f iru jd 3z G^P2) f .A°(z)j /3 / i f i n t h e r e s u l t i n g e x p r e s s io n we r e p l a c e t h e term s э f .A , f . a Ay / l i n e a r i n ^f(x) / w i t h ayf .A y , ^.э^А , Here ^f(x) i s a c num ber i s o v e c t o r f u n c t i o n :

n i p .x

£.(*) “ I e 3 /4 /

j =1 3

where _e^ i s an i s o v e c t o r a l l o f whose com ponents e x c e p t i t s —th component a r e e q u a l t o a e r o , a n d o n ly t h o s e te rm s o f t h e r e s u l t i n g e x p r e s s io n sh o u ld be k e p t f o r w h ic h a l l t h e P j arp d i s t i n c t , a p(x)

/ i = l , 2 ,3 / a r e th e a x i a l v e c t o r c u r r e n t s e n c o u n te re d i n t h e t h e o r y o f weak i n t e r a c t i o n s , a n d th e b a r r e d q u a n t i t i e s a re d e f i n e d a s b e i n g e q u al t o th e c o r r e s p o n d in g u n b a rre d q u a n t i t y w ith th e p io n p o l e rem oved,

G (>?2) s t a n d s f o r a n a r b i t r a r y f u n c t i o n ojP * f2 .

e rfo rm in g t h e o p e r a tio n s i n th e f i r s t term o f ( 5 ) , we g e t s i n f . Gf / ч , . c o s f G f-1

^ --- - К (‘f ) + ---- ^ r - --- ^ 2“--- /5 /

(7)

- 3 -

wh e r e

к(*> = f 3G

э7 f 1тг f—

s i n f GfTT f 2

/6/

L e t |a> = |8> = |o> i n ( 1 ) . I n th e lo w e s t o r d e r we g e t c o n t r i b u t i o n s fro m d i r e c t an d p o le te r m s . L e t u s lo o k f o r t h e c o n t r i b u t i o n o f t h e d i r e c t p a r t . From th e f i r s t te rm i n (3 ) we o b t a i n a p a r t w h ich i s sec­

ond o r d e r i n p io n momenta:

i < ° | j p C - i ) 2 (x) <£(y))d4x d 4y | 0 > } | n / 7 / I n th e c a s e o f th e d i r e c t d iag ram we can p u t a c a r e t ab o v e th e a x i a l v e c t o r c u r r e n t s i n ( 5 ) , w hich g i v e s

{ (

P

d 4x d 4y 2J '(Э l . £ ) f e ( x) s i n f ^ Gf

K (f) + Э f у a(x)

K(vf)+ s i n £ ^ 3v f ß ( y) <o|t(ÄJ; a£ ) |o> /8/ , , f n

■>' TT Here

< ° |t(aJ A g ) |o>

-

ъ

4 f

C le a r l y we o b ta in t h e same r e s u l t b y p u t t i n g £ (x ) — *-tt(x) i n ( 8 ) , sa n d w ic h in g i t b e tw e e n n p io n s , a n d c a l c u l a t i n g th e d i r e c t d ia g ra m . Thus t h e k i n e t i c p a r t o f th e e f f e c t i v e L a g ra n g ia n i s

where

- ■ H ТГ (x ) D ТУD TT (x )

s i n f Git __

D TT 2 --- 3 TT + — v--- ---- K (tt)

у ír у — it v '

( 5y H ) l

191

I Ю /

L e t us compare t h i s w ith th e g e n e r a l form o f t h e c o v a r i a n t d e r i v a t i v e o f W einberg [3 ] *

я T h ere i s a m i s p r in t i n th e e x p r e s s io n o f d^jt and v ( n 2 ) i n 131

(8)

- 4 -

D TT = --- ---Л~Н) Э ТТ + — ----- ~ ( f ' (тт2 ) + ivjTT.a тт2 / 1 1 /

"■ v ~ £2( ” 2 ) +” 2 V 2 ' ~ м_

w here

v ( , 2 ) - - Ф 2 ) - И т ф * £ 1^ 1 - , £ . ( , . 2 ) 1 ä i i i ! 2

тт2 dir

I t can be s e e n im m e d ia te ly t h a t t h e two e x p r e s s io n s a r e t h e same, a s ­ sum ing

s i n f Gtt = --- ---TTT~ Д 2 /

’ ( f 2 ( , 2) ♦ , 2) 1 /2

To f i n d th e s y m m e try -b re a k in g p a r t o f th e L a g ra n g ia n assum e t h a t th e s t r o n g i n t e r a c t i o n H a m ilto n ia n can b e decom posed a t any t tim e i n t o two p a r t s

и = Ho ( t ) + e Ht ( t ) I Hx( t ) = ] ^ ( х ) а 3х

w here HQ(t) p o s s e s s e s a c h i r a l sym m etry, a n d eH-^t) tr a n s f o r m s a s some sum o f i r r e d u c i b l e t e n s o r s u n d er t h e SU2xSU2 g r o u p . The f i r s t o r d e r te rm I n € comes from

< 0 | ~ ( - i ) | d 4x oC(x) | o > / 1 3 /

I t s v a lu e c a n be o b ta in e d by e v a l u a t i n g th e s e c o n d p a r t o f ( j ) . H ere we m ust make a g e n e r a l c h i r a l t r a n s f o r m a t i o n on th e Ay ( y ) o p e r a t o r , assu m in g t h a t th e s y m m e try -b re a k in g o p e r a t o r I s th e i s o s c a l a r e le m e n t o f th e r e p r e s e n t a t i o n ( l , z ) . I s o s c a l a r and i s o v e c t o r . . . e le m e n ts a - r i s e from t h e t r a n s f o r m a t i o n , b u t b e c a u s e o f ( 1 3 ) we m ust lo o k o n ly f o r

t h e c o e f f i c i e n t o f i s o s c a l a r p a r t . T a k in g i n t o a c c o u n t t h a t

<0 | € (O) | 0 > =

2

hlir 3

4 f2 21(21+2 )

1 IT

/1 4 /

one can se e t h a t th e s y m m e try -b re a k in g p a r t o f t h e e f f e c t i v e X a g ra n g ia n i s

X( b 4 x ) = i f ir l ( 2 l + \ ) ( 2 l + 2 ) [ du ( п , 2ш)

Í (x)-mt(x ) / 1 5 /

(9)

- 5 -

I n /1 5 / d e n o te s th e r e p r e s e n t a t i o n o f th e SU2 g e n e r a t o r and D ^ ( n f 2a>) t h e m a tr ix f o r th e r o t a t i o n 2ш = 2 ( - f f ^ Gu) a b o u t th e a x i s n = I o f ( 2£+ l) d im e n sio n s / s e e A p p e n d ix /.

We f i n d from t h e known [41 form o f 2

' \ x ) = 2 Ц 2Л+1 ) (2£+2 ) [c o s (2 n fTT ■ 1]

TT

/ n = l /2 i f

| f ( х ) ч - Т Г ( х )

i s h a I f i n t e g e r /

/ 1 6 /

W ith t h e a i d o f /1 2 / we g e t

(A,U(x) = co n st . Re 3--- f£+1

q - 1 ' + c o n s t ' /1 7 /

w here q = - - -я" " - тг- , a n d th e c o n s t a n t s may h e o b ta in e d b y f (tt ) - i f f

dem anding t h a t t h e T a y lo r s e r i e s o f Л ^'^(т т 2 ) s t a r t w it h ^ mjj ‘”2 • L e t us sum m arize o u r r e s u l t s i n th e f o ll o w i n g theorem *

I n t h e lo w e st o r d e r of momenta and e th e p io n * s a m p litu d e s a r e c o r r e c t l y c a l c u l a t e d b y u s in g t h e e f f e c t i v e L a g ra n g ia n / i n th e c a s e o f (i. Д ) - t y p e sy m m e try -b re a k in g /

X (x) - - j D^tt . Dp tt + X ^ ' l \ x ) /1 8 / w here d^tt(x) , L ^ ' ^ x ) a re d e f i n e d by ( 1 0 ) / o r ( l l ) / and (1 6 ) / o r ( 17 ) / r e s p e c tiv e ly ^ c a l c u l a t i n g a c c o r d in g t o th e u su al. Feynman r u l e s b u t s u b j e c t t o th e r e s t r i c t i o n t h a t one k e e p s o n ly t r e e d ia g ra m s . I n t h i s way t h e c o n n e c tio n b etw een t h e p o i n t of. v ie w o f b r o k e n symmetry and W einberges p h e n o m en o lo g ica l L a g r a n g ia n fo rm a lis m Ъ есо тев c o m p le te . Namely, X ^ '^ ^ x ) i s th e s o l u t i o n o f t h e d i f f e r e n t i a l e q u a t i o n :

2 , 2 ( 1 ( , 2) +, 29 ( , 2 ) ) 2 х ( г ' ^ ( . 2) +

+ (f (п2)+ п2д ( и 2)) ^3f (n2 )+ir2g (» 2 )+2ii2 ( f (ii2)+i,2g ( » 2) ) 1 * (24+Я ‘% 2)‘

= c o n s t.

1 + 2 f (tr2 ) f ' (tt2 )- f { - 2 ) - 2тг2 f ' ( i r 2 )

/ 1 9 /

(10)

- 6 -

I I I . THE ТПТ AMPLITUDE

The u s u a l m eth o d g iv e s t h e o ff -m a s s s h e l l a m p litu d e a s [5 ] :

<irv ÍP])17« (4 ) Is I "ß (k )irő(P2)> q 2=k2=0 = - i ( 2 1T'J164 ( p 1+ q -p 2- k ) 4 f 2 . s=mf+2P iq

t= °2 u=m‘ - 2p !q

[ 2 ( P i q ) ( 6oi6öYß ‘ 6c r A ß ) + i<7ryCPl) )17Т6<Гр2>>]

w here

/2 1/

za g (q ) = J d 4x e ÍC^X 6(xo) [a° (x) , 9yA j(0 )] / 2 2 / W ith r e g a r d t o th e A d le r s e l f - c o n s i e t e n c y c o n d i t i o n , Bose s t a t i s t i c s a n d c r o s s i n g sym m etry, i f -v <5^ ’/ a s i t i s i n th e a m o d e l/, we g e t

M1 - - 4 f 2 ( t - ™2 ) M2 - - 4 f J ( u - mj ) и 3 = - l f j ( s - m j ) / 2 3 /

/a b o u t t h e p o i n t s=u=m2 , t = О / E x t r a p o l a t i n g t h i s up t o t h e t h r e s h o l d / h e r e t h e PCAC a s s u m p tio n e n t e r s

i n t o th e gam e/ we o b t a i n t h e known s c a t t e r i n g l e n g t h s .

On t h e o th e r ‘h a n d , w ith t h e b ro k e n sym m etry m ethod we g e t t h e a m p litu d e on th e mass s h e l l . I n d e e d , l e t us c o n á id e r th e e x p r e s s io n

w hich g i v e s th e s y m m e try -b re a k in g L a g r a n g ia n i n W e in b e rg ’s m e th o d , a s we can c o n v in ce o u r a e l v e s by d i r e c t s u b s t i t u t i o n . The o t h e r s o l u t i o n s

/ i + i \

o f ( l 9 ) a r e ^ im j f w h ic h a re s i n g u l a r when т г =0 , an d we d i s ­ r e g a r d them

In th e s p e c i a l c a se o f f( ir 2 ) = - - Л - ( l - f2 tr2 ) we g0tx

^ C l / 2 , 1 / 2^ 2 ) , , 2 1 , * , 20. ,

1 * f ; *

4 „2

i ('1 , 14 »2) - -$■ Ч2 --- Ц - Т Г 2 . / 20Ь/

2 ( l + t 2J Y

/_ 0. m2 . - 1 - 6 / 5 f 2Tr2 + f 4ir4

i ( 2 ’ 2V ) = £ , 2 ' » ' , 20с /

t 1 + Ф )

2 0 / fi i s th e o n ly c l o s e d s o l u t i o n w hich was d e m o n s tra te d by W einberg tjl*

(11)

- 7 -

<7Ту(р1) -

< % (P i) I {т ( эа ( q ) 3ß ( - k jKlq ) T( Aa (q ) 3 ß (“k ) + ( - i k v) т (9а ( q )Aß C~k )) + + ( % ) ( - i k v ) T ( < ( q ) Ag ( - k) ] I*6 ^P2 ) >

T (9a (q ) 9g(-k)) = j d 4x d 4y e iq x e _iky Т ^ А ^ ( х ) 3vAg ( y ) ) and so^on P u l i i n g a l l d e r i v a t i v e s th r o u g h th e tim e - o r d e r e d i n s t r u c t i o n , s e p a r a t i n g o f f a l l term s c o r r e s p o n d in g t o th e p io n - p o l e d ia g r a m s , we g e t i n lo w e st o r d e r o f th e momenta q , к a n d o f t h e e y m m e try -b re a k in g p a r a m e te r e *

<*Y( P l) 1Ta Cq)|s|TT3 Ck)TT6 ( p 2 )> ( q 2=IV k2=nV “ i-C2 " ) 4 6 4( P l + q - p 2- k )

4 f j[ 2 ( p ,q ) C « a6 «Yß - 6с г Д з ) ‘ i < 1TY(p l ) l l:a ß C q ) l’T6CP2) >] ' 25' H ere К , n a r e u n s p e c i a l i z e d v a r i a b l e s w hich were f i x e d when we e x t r a c t ­ ed t h e p io n - p o le term s* L é t u s compare t h i s w ith e x p r e s s i o n ( 2 1 ) , We o b s e rv e t h a t t h e r e th e e ig n o f th e 2 com m utator i s o p p o s i t e , t h e two e x p r e s s io n s a r e d i f f e r e n t . However, t h i s i s u n d e r s ta n d a b le , s i n c e th e y d e te r m in e th e S m a tr ix e le m e n t a t d i f f e r e n t v a lu e s o f t h e i r v a r i a b l e s * Of c o u r s e , th e A d le r s e l f c o n s is te n c y c o n d i t i o n , w h ic h i s an o ff -m a s s s h e l l s ta t e m e n t, d o es n o t make any r e s t r i c t i o n on ( 2 5 ) , On t h e o t h e r h a n d , we can d e te r m in e th e I co m m u tato r’ s m a trix e le m e n t i n o u r a p p ro ­ x im a t i o n . L et us c o n s id e r t h e i d e n t i t y

j d 4x e ip x T^3y (x>e3t1 ( o ) j = - ( i p ^ ) |d 4x e ip x T (a p (xjetf^ ( o ^ - J d 4x e i p x 6(x o) |a° ( x^e'3j(o)j

/2 6/

S andw iching i t b e tw e e n < o |__ |тт6 (р 2)> » s e p a r a t i n g ó f f th e p i o n - p o l e . t e r m s , we g e t i n t h e case o f p+o and i n f i r s t o r d e r o f e :

<nY( p l) l Za ß (q ) I V P 2>> 2 2 2=- 1баЗ Le * l f ° ) l ^ ( P 2) > 2 2 2 =

P ^ Pz^ ti P l“P

*' -16 . 6, ..milOt 3 Y 6 TT 9 9

The l e f t - b a n d s i d e o f (25) i s in d e p e n d e n t from q , к i n t h e c a s e o f any £ » 'I • T h is p r o p e r t y m ust a l s o h o ld a f t e r th e a p p r o x im a tio n , and t h i s g iv e s a r e s t r i c t i o n on £ , n * I f we choose c = v = ^ ( q + J ^ p ^ p j ) и = x =• (qk), th e n w ith th e a i d o f ( 2 5 ) , ( 2 7 ) ,

Ml (q2 = k " = " V V' x = ° ) - "V

M2 (q 2 -= k2 * v , x= o) * - 4 f ^ ( - v ) / 2 8 /

(12)

- 8

M3 (q2=k2=m^, v, x = o ) « - 4 f 2 v /2 8 /

2 2 2 2 2 2

S in c e q =k =m , x=0 , t h e r e f o r e s=m + v , u=mw- v , t=2m • Be спив*»

o f Вова s t a t i s t i c s and c ro s s in g - s y m m e tr y , we f i n d fr o m (28) t h a t around th e on-m ass s h e l l p o i n t s=u=m2 , t= 2m2

M, я) - 4 f 2 ( t - m 2 ) M. « - 4 f 2 ('u-m2 ) M, - 4 f 2 ( s- m2 ) / 2 9 /

w hich i s i d e n t i c a l w ith W ein b e rg ’s r e s u l t e x t r a p o l a t e d t o th e m ass s h e l l .

\

(13)

APPENDIX

I f х ± a n d y i / 1 = - £ , . . 0 , . Л / a r e th e r e p r e s e n t a t i o n s Of th e two in d e p e n d e n t SU2 g e n e r a t o r s , th e n

* 1 Д ) = xk yk А Л

L e t u s b e g in w ith th e sec o n d te rm o f ( 3 ) . B ecause

3^Ay (x ) = - i F5 , e ( x ) j A .2

we g e t

, Í Г i - i u f 4G ( f 2J ^ (y lF 5 - i u £ , G ( f 2) J ( y ) F 5

- l e f , GW2) J d u [ l ( y ) F 5 ,e ’ * £ ' * > & ) e•* J l ' - J Ä.3

О

where t h e ő3( x - z ) a p p e a r in g i n th e e q u a l tim e co m m u tato rs h a s b e e n u se d t o ex ch an g e a°-*-f5 . With t h e a i d of A .l

e LaC^ F- , L - l ' i - l ™ .

■ * k ( ^ ° ( ü . “ ) y t " * k D‘ ( a ' 2 “ > k t a. 5

/ s = Gu/

where DA(n,u>) i s t h e m a tr ix o f th e r o t a t i o n ш- s f a b o u t th e a x i s n = |-in (2 £ + l) d im e n s io n s . L e t u s s u b s t i t u t e A .5 i n A .3 ,

1

- ie f ^ G ^ du xk i f № , е(А)(п, 2ш) | +— у Ь A. 6

о •'

d e n o tin g by J (T ) th e r e p r e s e n ta tio n o f th e SU2 g e n e r a t o r . We m ust lo o k fo r th e i s o s c a la r elem en t from A .6 , b e c a u s e o f (1 3 )* I t i s th e t r a c e tim e s 2 T f i • t b e ° t h e r h an d

(14)

- 1 0 -

<o| e T f | ' \o)|o> - Щ 21+2Т 4í;

a n d so we o b t a i n

П Т 2 Ш Х 2

Ш du Ч 1 5 ^ % - 2“))| £-*тт (x )

A . 8

The r e l a t i o n b etw een n , 2 ш and t h e a p p r o p r i a t e E u l e r a n g l e s i s , Ф12 , Ф2"Ф1"

COSüJ-i % siníü

0 1 2

c o s e 4 i s i n ^ - e 0 2

Ф2 -Фх , Ф1+Ф2 4—У

• ^3 COSCU+l—T- s inw

T

i s i n | e 0

c o s 2 1 2

e sinio

A . 9

The e x p r e s s i o n a. 8 i s a n i s o s p a l a r , so we can p r o c e e d i n a s p e c i a l c o o r ­ d i n a t e sy ste m : £ = ( o , o , f ) '* 0=o , Then i t i s e a s y t o see t h a t

(ф1 , 0 , ф 2)) = I ^ n . f

l - 1 п ( ф 1 +ф2 )

A . 1 0

By A. 8 a n d A .9 we g e t ( l 6) . On t h e o t h e r h a n d

Jl £

^ У c o s ( 2 n f G'f), = I Re ( c o s f G'P+i s i n f Gf)

n= l 11 n«=l v v

(n=l / 2) ( n - 1 / 2)

2n ф-*тг

A . 1 1

Prom ( 1 2 ) we g e t

( c o s f ^ G * + i s i n f ^ G f ) 2" = ЧП A. 12

(15)

- 1 1 -

S u b s t i t u t i n g a. 12 i n A. 11 we o b t a i n ( 1 ? ) , b e c a u se

Re --- 3 — - = c o n s t . A. 13 q - 1

(16)

- 1 2 -

REFERENCES

[1] R . Dashen.Pb.yB .Rev, 183 1245 /1 9 6 9 /

[2] R . D ashen, U. W e in s te in P h y s.R ev . 185 1261 / 1 9 6 9 / [3] S . W ein b e rg ,P h y s.R e v . 166 1568 /1 9 6 8 /

[4] И.М. Гельфанд, P .A . Минлос, З . Я . Шапиро, П редставления г р у п ­ пы вращений и группы Л оренца, их применения

[5 ] S . W ein b e rg ,P h y s.R e v . L e t t . 17 61€> /1 9 6 6 /

*

t

(17)
(18)

£ 4 . У з г .

(19)
(20)

K i a d j a a K ö z p o n ti F i z i k a i K u ta t ó I n t é z e t F e l e l ő s s z e r k e s z t ő : K iss D ezső, a KFKI

N a g y e n e r g iá jú F i z i k a i Tudományos T an á c sá n a k e ln ö k e S zakm ai l e k t o r i F r e n k e l A ndor

N y e lv i l e k t o r : T im othy W ilk in s o n P é ld á n y sz á m : J I O T ö rz ssz ám : 71-5728

K é s z ü l t a KFKI s o k s z o r o s í t ó ü ze m é b en , B u d a p e st

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The second result follows from our approach too: it is shown that the identification of gravitation with a massless spin 2 gauge field requires the restriction

100 m magas kéménytől 800 m-re szélirányban, 1 m/s szél- sebesség mellett, D stabilitási kategória esetén a csóva gamma-sugárzása által okozott földfelszini

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Lőcs Gyula. Szakmai lektor: Pócs Lajos Nyelvi lektor: Harvey

Mivel a rendszerben a nyomáskülönbségek ekkor más csak néhány század MPa-t tesznek ki, ugyanebben az időpontban vált előjelet a gőzfejlesztők primer és

Both the Curie temperature and the mean magnetic moment of iron and holmium decrease with increasing holmium content.. The temperature dependence of magnetization

characterise different flow regimes. We propose to desc r i b e the propagating two-phase substance by the spatial correlation function of its density

Near transitions of these types pretransitional phenomena are observed in the nematic range, which are due to the presence of small clusters in which the

Considering now only the sample With loo ppm Fe, the comparison of its excess second moment /relative to the second moment of pure aluminium/ with the values measured