• Nem Talált Eredményt

Lecture III: Dense Granular Flows

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Lecture III: Dense Granular Flows"

Copied!
42
0
0

Teljes szövegt

(1)

1

Lecture III: Dense Granular Flows

Igor Aronson

Materials Science Division

Argonne National Laboratory

(2)

Outline

• Introduction

• Principal Experiments

• Overview of Existing Theories

• Partial Fluidization Theory (beginning)

(3)

3

large conglomerates of discrete macroscopic particles

Jaeger, Nagel, & Behringer, Rev. Mod.Phys. 1996 Kadanoff Rev. Mod. Phys.1999 de Gennes Rev. Mod. Phys.1999

Gran Mat Gran Mat

non-gas

inelastic collisions non-gas

inelastic collisions

non-liquid critical slope

non-liquid critical slope non-solid

no tensile stresses non-solid

no tensile stresses

(4)

Drop a Ball Experiment

• Granular eruption http://www.tn.utwente.nl/pof/

(5)

5

Solid Trouble

• Stress indeterminacy

• History dependence

• Hysteresis

• Plasticity and yield stress

• Is not described by granular hydrodynamics

Granular

(6)

Granular Solids at Rest

ji

ij

  Static stress tensor

 

 

zz zy

zx

yz yy

yx

xz xy

xx ij

 Force balance:

ij /  xj0gi

(only six relations, need 3 more!) Symmetry:

Linear elasticity & Hook’s law do not apply

(7)

7

Constitutive Relations for Stresses

Veje, Howell, and Behringer, Phys.Rev.E, 59, 739 (1999)

Linear relation between shear and normal stresses,

Force chains and stress inhomogeneity 

nm

 tan  

nn

zz xx xz

    

Oriented stress linearity models

P. Claudin , J. P. Bouchaud, M. E. Cates ,

and J. P. Wittmer, Phys. Rev. E 57, 4441 (1998) -hyperbolic equation

•C. Goldenberg and I. Goldhirsch Phys. Rev. Lett. 89, 084302 (2002) -elliptic (elastic) anisotropic equation

(8)

Mohr-Coulomb failure criterion

• 

0

is maximum possible angle of sandpile If MCFC is saturated, the state loses its stability

g

Check the website: http://www.granular-volcano-group.org/frictional_theory.html

0

shear sterss

max tan

normal stress  

(9)

9

Mohr-Colomb criterion in 2D

• 1,2 – eigenvalues of stress tensor

• MC criterion:

If xx=yy then MC criterion |xy /yy |<tan 0

2

2 1

2

2 2

( )

2 4

( )

2 4

xx yy xx yy

xy

xx yy xx yy

xy

   

 

   

 

 

  

 

  

2 1

0

2 1

  tan 

 

 

(10)

Bistability: Bagnold hysteresis

• 

1

static repose angle

sandpile cannot be built with

• 

2

dynamic repose angle

an avalanche cannot be triggered if

1

 

2

1

(11)

11

Short Summary

• Theoretical description of granular solid and granular liquid is very different

– Granular liquid → viscous hydrodynamic

– Granular solid → plastic solid with finite yield stress

• Various phenomena: avalanches, slides, surface flows,

stick-slips are related to the transition from granular solid to granular liquid and vise versa

• Universal description of granular systems needs a

constitutive relation valid for gran solid and gran liquid

(12)

Review of Principal Experiments

• Avalanches

• Surface shear flows

• Stick-slips

(13)

13

Experimental Observations

Cariboo Mountain, British Columbia, Canada http://www.avalanche.org

Benasque, Spain, Aug 16th

http://bcs2.unizar.es/activities/alternative.htm

(14)

Life Avalanche Experience

(15)

15

Laboratory Avalanches

Daerr & Douady, Nature, 399, 241 (1999)

1.35m

0.62m Glass beads 150-300m

CCD camera winch

(16)

Two types of avalanches discovered

(17)

17

Phase diagram

No flow

spontaneous avalanching Bistability

downhill avalanches uphill avalanches

(18)

Near-surface granular flow

10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 10 10 2 10 3

-10 -5 0 5 10

áv(h)ñ / áv(h0

( h - h 0 ) / a 0

20 40

-10 0 10

Komatsu, Inagaki, Nakagawa, Nasuno, PRL, 86, 1757 (2001)

h

1 sec 1 min 1 hour

(19)

19

Taylor-Couette granular flow (2D)

Veje, Howell, and Behringer, Phys.Rev.E, 59, 739 (1999)

) exp(

~ )

( r ar

V

10 -1 10 0 10 1

r*

10 -5 10 -3 10 -1 10 1

Vq*

.777 .779 .783 .788 .790 .792 .797

0 2 4 6 8 10 12 14

r/d 10 -6

10 -5 10 -4 10 -3 10 -2 10 -1 10 0

Vq/W

.777 .779 .783 .788 .790 .792 .797

Velocity profile:

(20)

Taylor-Couette granular flow (3D)

 (

0

)

2

exp

~ )

( r ar b r r

V   

Mueth, Debregeas, Karczmar, Eng, Nagel, Jaeger, Nature, 406, 385 (2000)

60mm

(21)

21

Taylor-Couette flow - 2

Losert, Bocquet, Lubensky, and Gollub Phys. Rev. Lett. 85, 1428 (2000)

(22)

Review of theoretical models

S. B. SAVAGE, Analyses of slow high-concentration flows of granular materials, J. of Fluid Mech 377, 1 (1998)

-plasticity relation between shear stress & strain rate

Losert, Bocquet, Lubensky, & J. P. Gollub, Particle Dynamics in Sheared Granular Matter, Phys. Rev. Lett. 85, 1428 (2000)

Bocquet, Errami, & T. C. Lubensky, Hydrodynamic Model for a Dynamical Jammed-to-Flowing Transition in Gravity Driven Granular Media, Phys. Rev.

Lett. 89, 184301 (2002)

-viscosity diverges at closed-packed density

Difficulties:

-Description of solid state and transition to motions -No hysteresis

1.75

0

(1 /

c

)

     

(23)

23

Two-phase models

Original version:

•Bouchaud, Cates, Ravi Prakash, and Edwards, J.Phys.France, 4, 1383 (1994) - BCRE theory (see also Anita Mehta, 1993)

Modification:

•Boutreux, Raphael, and de Gennes, PRE, 58, 4692 (1995)

Highlights:

•two fractions: rolling and immobile grains

•conservation laws and phenomenological rolling/static conversion rates

(24)

Two-phase models

2 2

( ) ,

( )

r

r

R t H

v R R x R

x H

x D R

t

  

   

    

 

  

 

immobile H

r

H-thickness of immobile fraction

R-thickness of rolling fraction

conversion convection diffusion

rolling R x

–local slope & r – critical slope v- typical flow velocity

(25)

25

Pierre-Gilles de Gennes, Rev Mod Phys, 1999

… the statistical physics of grains is still in its infancy. Some basic notions may emerge:

• the possibility of describing surface flows with equations coupling the two phases and reduced to a simplicity reminiscent of the Landau-Ginsburg picture of phase

transitions.

(26)

Generic theoretical description

Momentum conservation

where

- density of material ( =1) g - gravity acceleration

v - hydrodynamic velocity 

ij

-stress tensor

div v=0 incompressibility condition

00

0 0

i ij

i j

Dv g

Dt x

    

D

Dt t

   

v

(27)

27

Stress-stain relation for granular flows

const

  - viscosity, p –hydrodynamic pressure - strain-rate tensor

Stress-strain relation in Newtonian Fluid

ij ij

p

ij

   &  

s ij f

ij

ij

 

  

Here

s

ij

- quasistatic (contact) part

f

ij

- fluid part

i j ij

j i

v v

x x

 

 

&

(28)

Order parameter- degree of fluidization

1 for

0

0 for

1

q

q

-characterizes the “state” of the granular matter:

xy s

xy xy

f

xy

q    q  

  ( ) ;  ( 1  ( ))

 0

 - pure fluid   1 - pure solid

ii i

s ii ii

i f

ii

q    q  

  ( ) ;  ( 1  ( ))

The simplest choice:

 )  1  (

q

Renormalization of stresses

(29)

29

Hybrid stress-stain relation in partially fluidized granular matter

• order parameter controls balance between fluid and solid parts of stress (in fully fluidized state solid part vanishes)

•shear stresses in partially fluidized flow are reduced by the factor 1-q(  )≈

•liquid part is defined as

0 0

0 for 1

(1 ( )) ,

1 for 0

s

ij ij ij

q q

q

    

 

       

( )

f ij ij

p q

 

 

 & 

(30)

Orrder parameter: microscopic definition

OP characterizes the phase state of granular matter:

solid:  = 1 liquid:  = 0

Compare: Lindenmann criterion for melting of solids

Z

st

  Z

• Z -total number of contacts per particle (coarse-grained)

• Zst -number of persistent contacts

Z≈4 in 2D and Z≈6 in 3D

2D simulations of granular shear flow between 2 plates. OP is shown by color Volfson, Tsimring & Aranson

liquid-like v

(31)

31

Time evolution of order parameter

2D MD simulations of shear flow with stick-slip, 2400 soft particles.

Supported by the National Energy Research Center for Supercomputing, DOE BES

(32)

Equation for order parameter



 

0

D / Dt   F

Ginzburg-Landau free energy for “shear melting” phase transition

Requirements: two stable states:  =  and =1 one unstable state u

 is a control parameter (“shear temperature”)

  f ( 

ij

) r

d l ( ) ( )]

[

2

2

fF    

0,l –characteristic time & length

2

(1 ) ( , )

D         G  

(33)

33

Ginzburg-Landau Free Energy

3 .

0

5 .

0

7 .

0

0

1

f

1

0

1

 ( , )

G      

solid-like liquid-like

2

(1 )( )

D Dt

          

(34)

Shear Temperature: General Definition

• 

1

,

2

– tangents of dynamic/static repose angles

•for  – granular solid is unstable

•for  – granular liquid is unstable

2

2 1

2 2

2 1

shear normal

 

 

 

 

  

 

 

(35)

35

Summary of the Model

v 2 (1 )( )

t             

(1 ( ))

0 i j

ij ij

j i

v v

x x q

   

   

            144424443

div v=0

Order parameter equation

Constitutive relation for shear stress

Mass conservation + Momentum conservation

0

0

ij

i j

x g

 

  

(36)

Simple example: chute flow

Equilibrium conditions

, ,

, ,

cos sin

zz z xz x

xz z xx x

g g

  

  

 

   Stresses:

cos ; sin ; 0

zz g z xz g z xx xy yy yz

 

 

 

 / | tan

|

xz zz

h

y

x

g

z

(37)

37

Shear Temperature: Simplified Version

) tan

(tan 2

tan tan

2 tan

1 2

2

1 

  

• 

1

, 

2

– dynamic/static repose angles

•for 

 – granular solid is unstable

•for 

 – solid/liquid equilibrium

(note slightly different definition of )

(38)

Chute: stability of solid state 

Boundary conditions:



= 1 for

z



h

(rough bottom)



z = 0 for

z

free surface

OPE:

t

2

( 1 )( )

Perturbation:

Eigenvalue:

1 ),

2 / cos(

1   

Ae

t

z h A const

2 2

/ 4

1  h

   

h

y

x

g

z

(39)

39

Stationary Flow

Stationary OPE:

zz

( 1 )( ) 0

1st integral:

const

z2

/ 2  2 (   1 ) / 3 

3

 

2

c

Velocity profile – from stress constitutive relations:

(1 )

0

0

x

xz

v

z     

Boundary conditions:

z

(rough bottom) 0 =1 for

0 =0 for 0 (open sur f ace)

x z x

v z h

v z

  

   

h

y x

g

z

(40)

Stationary Flow Existence Limit

Solution exists only for   1 hh

min

()

1

0 3

min 2

0

/ 2 2 ( 1 ) / 3 ( )

min

   

c h d

z

2 / 1

~ for

) 2 / 1 log(

min

  2   

h

1 for

2 / 1 2

min

  /    

h

Solving the first integral:

(41)

41

Phase Diagram

no flow solid only

solid &

liquid flow

liquid only

2 / )

1 ( 

1/2

   h

s

h

min

(42)

Theory of partial fluidization

• Igor Aranson and Lev Tsimring, Continuum description of avalanches in granular media, Phys. Rev. E 64, 020301 (2001)

• Igor Aranson and Lev Tsimring, Continuum theory of partially fluidized granular flows, Phys. Rev. E 65, 061303 (2002)

• Dmitri Volfson, Lev Tsimring, and Igor Aranson, Order Parameter Description of Stationary Partially Fluidized Shear Granular Flows Phys. Rev. Lett. 90, 254301

• Dmitri Volfson, Lev Tsimring, and Igor Aranson, Partially fluidized shear granular flows: Continuum theory and molecular dynamics simulations, Phys. Rev. E (2003)

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Tying a microtubule with optical twizzers Itoh, Nature 99 Knotted jets in accretion disks (MHD) F Thomsen 99 Strain on knot (MD) Wasserman, Nature 99.. Redner, A guide to first

The surface of the investigated pollen grain was rarely covered with the organic em- bedding material with electron dense granular particles.. 1 in Plate 4.6., illustrate the

Description: Amb triangular, with convex sides. The apertural area is prominent. Sur- face granular to finely rugulate. The in- fratectum is a little thicker than the tectum and

The impacts of the Caline§ti Oa§ reservoir on the monthly and annual flows The annual mean flows past the Negre§ti Oa§ gauging station upper of the reservoir, that is uninfluenced

It can be proven by the tools of analysis (squeeze lemma, a bounded sequence has a convergent subsequence, etc.) that in any flow network, there is always a maximum flow..?. So

With floating exchange rates and liberalized crossborder capital movements, the logical chain leading from real econ- omy transactions (current account imbalances resulting

1*.. A granular support IS prepared previously by some means and the solution of the active agent is sprayed on it. Subsequently the product is further ground. Active

texture velvety to granular due to ascomata production; sporu- lation dense, conidia en masse dark green; soluble pigments absent; exudates absent; reverse brown at centre,