• Nem Talált Eredményt

The Boltzmann Distribution Matrix

T h e quantum mechanical expectation value of an operator X at time t is [cf. equations ( 1 . 2 1 ) and ( 1 . 2 2 ) in Chapter 3 ]

<X>, = Ψ\ί)ΧΨ(ί) = 2 2* , ( ί Κ * ( 0 Χ * , (3.2)

3 k

440 9. M U L T I P L E QUANTUM TRANSITIONS

where Ψ(ί) is the state vector at time t and the Cj(t) its expansion coeffi-cients relative to a suitable initial basis. T h e state vector Ψ(ΐ) can be related to ¥^(0) by a unitary operator U(t)>

Ψ(ΐ) = U(t)W(0), (3.3) so that

<X>, = W>(0)U*(t)XU(t)W(0)

= Χ2*,(0)^*(0)[£Λ(0ΧΕ/(ί)]« .

(3.4)

j k This equation can be written

<X>t = tr C(0)U*(t)XU(t), (3.5)

where

C,,(0) = o(0K*(0). (3.6) T h e statistical average of (3.5) is

&>t = trpU*(t)XU(t), (3.7)

where ρ denotes the statistical average of C(0). By assumption, the system is initially at thermal equilibrium, so that

Pa = 0, f or i Φ h

2« = ^ . = « ρ [ - * ( β<- ί 2 , ) / * Γ ]>

Pa J n

where iV^ is the occupation number of the ith eigenstate with energy fiQi. If the trace of ρ is normalized to the number of systems contained in a macroscopic unit of volume, ρ can be written in operator form as

i V0e x p t - « J R0/ * R ]

9 tr e x p [ - H^JkT] 9 { }

where 3#*Q is the stationary hamiltonian prevailing at t = 0. In the following discussion, the conditions | HQi | <^ kT> tr = 0, will be satisfied, so that (3.8) simplifies to

9 dim S V kT r K }

where dim S is the dimension of the spin space.

T o illustrate the use of (3.9), consider a single nucleus with spin I in a stationary ζ field H0 . In this case, ^ = -γΗ0Ιζ, and dim S = 2 7 + 1 ; hence

'-2ΓΪτ ('+4£4 <

3

·'°>

3. S P I N ECHO EXPERIMENTS 441

T h e statistical average of Iz at t = 0 is, by (3.7),

</;>„ = t r , / , = j t r /2 + & t r l * \ N0yhH0I(I + 1)

T h e steady nuclear polarization is

in agreement with the result derived in Chapter 1. Similar calculations show that

<4 >o

= <TV\ = 0.

As a second application of (3.10), the magnetization in the xy plane following a single φ pulse will be calculated. T h e time-dependent hamiltonian is

Jf(t) = —{ω0Ιζ + γΗλχ cos wt — Iy sin cot)}, (3.11) where ω0 = y i /0 . Introducing the transformation (2.6), one finds that

i-âf= -{ΔΙ,+γΗ^Φ, (3.12) where Δ = ω0 — ω. T h e solution of (3.12) is

Φ(ί) = exp[i(f - ί0)(ΔΙζ

+ ^4 )]Φ(0).

(3.13)

If the rf pulse is applied from t0 = 0 to t = τ0 , and the rf frequency is so close to ω0 that Δτ0 <^ 1, r0 J/g can be dropped from the exponential argument, and (3.13) simplifies to

Φ(τ0) = ^'*Φ(0). (3.14)

For £ > τ0 , the solution of (3.12) is

0(t) = ei J i /20 ( ro) , (3.15)

since ^ = 0 for / > τ0 . Combining (3.14), (3.15), and (2.6), one obtains

W(t) = ^ν^ν^Ο)

= e?*-o<V>W(0), (3.16)

442 9. M U L T I P L E Q U A N T U M T R A N S I T I O N S

since and N o w

so that

— I — I tr I e-^xl^e1*1* 2 / + 1 \ A 7 V z

e-iœ0tIze0tIz _ eTiu0tJ±

tr e-WxfreWx = tr J± = 0.

tr 7Z ε-1*1*!^*1* — tr 7± £?*>V2é?-*>7*

= tr{(/v sin <p + 72 cos φ)/*}

= ± 5 / ( / + l ) ( 2 / + l) 8 i n ç > ,

M ± ( 0 = ±i'Af0 ****** sin φ, or

Mx(t) = M0 sin φ sin ω0ί, My(t) = M0 sin φ cos ω0£.

These results are exactly what would be predicted on the basis of classical arguments. T h e ψ pulse turns the ζ magnetization through an angle ψ about the χ axis as in Fig. 9.18(b). T h e y magnetization immediately following the pulse is M0 sin φ, and, after the pulse is turned off, this component precesses in the negative sense about H0ez. C. Modulation of the Echo Envelope

T h e modulation of the echo amplitude following a pair of 90° pulses will be calculated for the AB system (25, 24). T o simplify the discussion, nuclear magnetic relaxation, molecular diffusion, and the inhomogeneity of H0 will be neglected (23, 24).

T h e stationary hamiltonian for the system will be written

= ~ { έ ( " Α + ωΒζ + £ 8 ( / A , - IBz) + JlA · IB} , (3.17) where δ = ωΑ — ωΒ. Since \fiS\<^ kT> \fij\<^ kT, and dim S = 4, (3.9) becomes

JVQ ) Y , ά(ωΑ + ωΒ) T I

P = -4-\l+ 2kT~h\' ( 3 1 8)

which is of the form (3.3), with U = Λ ^ . From (3.7) and (3.16), the χ and y components of the nuclear magnetization are given by

yh(ïïyt = Mœ± iMy

=

2fïfT

tr

I (

7

+

JT Iz) e-^e-^hl^é^hé^

3. S P I N ECHO EXPERIMENTS 443

T h e time-dependent hamiltonian during a pulse is

JT(t) = - { O ^ A * + ωΒΙΒζ + JIA · IB + γΗχχ cos œt - Iy sin œt)}. (3.19) Introducing the transformation (2.6), one finds that the Schrödinger equation in the rotating coordinate system is

i^R = * & (3.20) where

= - { ( ωΑ - œ)IAz + (ωΒ - œ)IBz + JLA · IB + yH.Q. (3.21) It will now be assumed that ωΑ , ωΒ , ω, / , and τ0 satisfy the conditions

I ωΑ — œ i τ0 , I α>Β — ω | τ0 , | / | τ0 <^ 1. (3.22) Under these conditions, only YHJ.X need be retained in (3.21) during

a pulse. Therefore,

Φ(τ0) = ^ Φ ( Ο ) , Φ(τ + 2τ0) = β^Φ(τ + τ0).

When / i j = 0, the hamiltonian in the rotating system is + ωΙζ = J^0\ so that

* ( τ + τ0) = e x p( - T^ ' ) * K ) .

Φ(ί) = exp[-i(f - τ - 2τ0)^0']Φ(2τ0 + τ) (ί > τ + 2τ0).

Combining the preceding equations, and returning to the laboratory coordinate system, one obtains

W(t) = exp(iœtlz) exp[—i(t — r ) ^ ' ] exp(i(plx) exp(—ζτ^') εχρ(ΐφΙχ)Ψ(0), (3.23) where use has been made of the fact that 2 τ0 <<ζ τ.

T h e nuclear magnetization in the XY plane is equal to the statistical average of YFT^I+}T or YFI(J~^)T . From (3.23),

= ^ωΨ+( 0 ) ί /+( ί ) /+ί/ ( 0ψ( 0 ) , (3.24) where

U = exp[-i(t - r)Ji?0'] exp(iV4) β χ ρ ( - ί τ ^ ' ) ^χρ(ιΨΙχ). (3.25) T h e statistical average of (3.24) is, therefore,

< F > , = N* W A+ ? > ^ {« I.U*WU(t)}. (3.26)

444 9. M U L T I P L E Q U A N T U M T R A N S I T I O N S

where

1 — · - Q Q = -Ar^y R = (P + s*)^.

(i + ρ

2

)ν2 > (i

+

ρ2)ΐ/2 » * g

+

#

Relative to this basis, the matrices for I+ and Iy are

(

0 c + s c — s 0 0 0 0 c + s 0 0 0 c - s 0 0 0 0

(

0 — (c

+ 5) — (c —

s) 0

£T +

S 0 0 ~ ( c + S)

c-s 0 0 -(c-i)l'

0 C

+ ί C — 5

0

T h e matrices for e x p ( — z V ^ ' ^ e x p ^ V J ^ ' ) and exp[i(J — r)Jf0']I+ exp[-i(i - T)J^Q] may now be computed by equation (1.27) of Chapter 3.

T h e matrix for ei(7Tl2)Ix is, by Table 4.1 and equation (3.17) of Chapter 2,

(

1 i(c + s) i(c — s) —1

i(c + s) 1 - 2cs -(c2 - s2) i(c + s) i{c - s) -(c2 -s2) 1 + 2cs i(c - s)

- 1 i(c + s) i(c — s) 1

T h e contribution from the identity operator of (3.18) vanishes, since tr Uf(t)I+U(t) = 0.

In the special case where φ = π/2, the trace in (3.26) simplifies to

tr

IzUf(t)I+U(t)

= tr exp(—ιτ^')/,, exp(zYJ^') exp (—i^Z^

X exp[i(f - t )JÎJ']/+ exp[-i(f - t )JT

0

'] exp /,). (3.27)

T h e remaining trace is most conveniently evaluated relative to the basis that diagonalizes «#^\ The eigenvectors and eigenvalues of J ^ ' are

«ι = l + +>, "2 =

c

| + _>+,|-+>,

% = -*!+-> + Ί-+>, «4 = I—>,

ßi = - Î W

+ ωΒ - 2ω

+ i / } ,

ί22 = fâj - R),

3. S P I N ECHO EXPERIMENTS 445 T h e trace calculation is straightforward, but very tedious. T h e echo amplitude at t — 2r is obtained by collecting the coefficients of exp[—(ij2)(œA + ωΒ — 2œ)(t — 2τ)]. One finds that the absolute value of the echo amplitude is given by

δ2

2R2 1 + 2δ2 2 sin2 \]τ sin2 \ R T (3.28) F °r I /1 ^ I δ I, this reduces to

1 — 2 sin2 \]τ sin2 \ δτ | (3.29) Figure 9.19 shows the observed echo envelope for the protons in 2-bromo-5-chlorothiophene. T h e modulation of the envelope is in good agreement with (3.28), and the values of / and δ are in good agreement with the results obtained from steady-state experiments (cf. Chapter 6).

T h e method of calculation used for two 90° pulses may also be used to calculate the signals observed with more complicated pulse sequences (27).

τ in seconds

FIG. 9.19. O b s e r v e d e c h o envelope for t h e p r o t o n s in 2 - b r o m o - 5 - c h l o r o t h i o p h e n e . T h e lower plot of t h e o b s e r v e d e n v e l o p e is n o r m a l i z e d t o u n i t y in t h e u p p e r p l o t to correct for t h e d a m p i n g effects of n u c l e a r relaxation a n d diffusion. [ H a h n a n d M a x w e l l (23).]

446 9. M U L T I P L E Q U A N T U M T R A N S I T I O N S R E F E R E N C E S

1. V. W . H u g h e s a n d J. S. Geiger, Phys. Rev. 9 9 , 1842 (1955).

2. W . A. A n d e r s o n , Phys. Rev. 1 0 4 , 850 (1956).

3. J. I. K a p l a n a n d S. M e i b o o m , Phys. Rev. 1 0 6 , 499 (1957).

4. S. Yatsiv, Phys. Rev. 1 1 3 , 1522 (1959).

5. B . Dischler a n d G . E n g l e r t , Z. Naturforsch. 1 6 a , 1180 (1961).

6. K . A. M c L a u c h l a n a n d D . H . Whiffen, Proc. Chem. Soc. 1 9 6 2 , 144.

7. W . A. A n d e r s o n , R. F r e e m a n , a n d C.A. Reilly, / . Chem. Phys. 3 9 , 1518 (1963).

8. J. I. M u s h e r , / . Chem. Phys. 4 0 , 983 (1964).

9. F . Bloch, (a) Phys. Rev. 9 3 , 944 (1954); (b) ibid. 1 0 2 , 104 (1956).

10. A. L . B l o o m a n d J. N . Shoolery, Phys. Rev. 9 7 , 1261 (1955).

11. W . A. A n d e r s o n , Phys. Rev. 1 0 2 , 151 (1956).

12. R. Kaiser, Rev. Sei. Instr. 3 1 , 963 (1960).

13. R. F r e e m a n , / . Mol. Phys. 3 , 435 (1960).

14. J. P . M a h e r a n d D . F . E v a n s , Proc. Chem. Soc. 1 9 6 1 , 208.

15. R. F r e e m a n a n d D . H . Whiffen, / . Mol. Phys. 4 , 321 (1961).

16. (a) R. L . F u l t o n a n d J. D . Baldeschwieler, / . Chem. Phys. 3 4 , 1075 (1961); (b) J. M . A n d e r s o n a n d J. D . Baldeschwieler, ibid. 3 7 , 39 (1962).

17. (a) J. A. Elvidge a n d L . M . J a c k m a n , / . Chem. Soc. 1 9 6 1 , 859; (b) D . W . T u r n e r , /. Chem. Soc. 1 9 6 2 , 847.

18. R. F r e e m a n a n d D . H . Whiffen, Proc. Phys. Soc. (London) 7 9 , 794 (1962).

19. W . A. A n d e r s o n a n d R. F r e e m a n , / . Chem. Phys. 3 7 , 85 (1962).

20. J. D . Baldeschwieler a n d E. W . Randall, Chem. Rev. 6 3 , 81 (1963).

2 1 . A. A b r a g a m , " T h e Principles of N u c l e a r M a g n e t i s m , " C h a p . X I I . Oxford U n i v . Press, L o n d o n a n d N e w York, 1961.

22. R. F r e e m a n a n d W . A. A n d e r s o n , / . Chem. Phys. 3 7 , 2053 (1962).

23. E. L . H a h n a n d D . E. M a x w e l l , Phys. Rev. 8 8 , 1070 (1952).

24. T . P . D a s , A. K. Saha, a n d D . K. Roy, Proc. Roy. Soc. (London) A 2 7 7 407 (1954).

25. H . Y. C a r r a n d Ε. M . Purcell, Phys. Rev. 8 8 , 4 1 5 (1952).

26. J. G . Powles a n d A. H a r t l a n d , Proc. Phys. Soc. (London) 7 7 , 273 (1961).

27. Reference 2 1 , C h a p . X I .

28. J. N . Shoolery, Discussions Faraday Soc. 3 4 , 104 (1962).

29. B . D . N . R a o a n d J. D . Baldeschwieler, / . Mol. Spectry. 1 1 , 440 (1963).

30. R. A. Hoffman, B. G e s t b l o m , a n d S. G o n o w i t z , J. Mol. Spectry. 1 1 , 440 (1963).

3 1 . M . S h i m i z u a n d H . S h i m i z u , / . Chem. Phys. 4 1 , 2329 (1964).

KAPCSOLÓDÓ DOKUMENTUMOK