• Nem Talált Eredményt

Employing density functional theory (DFT) calculations, the atomic arrangements and energetics of an extensive set of Au–Rh structures in a confined (2×1) surface cell on a Rh(111) substrate were investigated. The energetic preference order of the structures was evaluated with a total energy transformation method accounting for the different chemical compositions of the atoms in the supercell.

Among the studied surface structures an ordered 2x1 surface alloy layer composed of 50% Au and 50%

Rh was identified as the energetically favored structure, which corresponds to an experimentally proposed configuration based on scanning tunneling microscopy (STM) imaging31. The topmost layer of this structure consists of alternating Au and Rh rows, approximately in the same atomic plane, although

Au atoms are slightly protruded. We compared this surface alloy with another candidate structure from STM experiment, an added-Au-row configuration. We characterized the optimized geometries of these two surfaces, and found a slightly lower electron work function for the close-packed alloy surface compared to that of the added-Au-row structure. Bader charge analysis did not reveal significant differences in the atomic charges of surface atoms in the two structures, and in both cases a partial electron transfer from Rh toward Au atoms is observed. By studying Rh and Au adsorption properties, it is found that the preferred adsorption site for the Rh is on-top-Rh on the 2x1 surface alloy, and hollow-Rh on the added-Au-row configuration. For the adsorption of Au the hollow-hollow-Rh site is also favored on the added-Au-row structure, and the bridge-Rh site is preferred on the 2x1 surface alloy. Based on the analysis of the adsorption properties the bonding order preference among Rh and Au species is identified as Rh–Rh > Rh–Au > Au–Au. We arrived at the same conclusion by taking transformed total energies of the set of Au–Rh structures in different ways, and concomitantly analyzing the geometrical arrangements and bonding of the atoms.

Among the structures corresponding to a gold dose of Au=1 ML, the most stable structure is a pseudomorphic single Au layer on top of Rh(111), which is not corrugated. At a gold amount of Au=1.5 ML, the most stable structure is essentially the same found for Au=0.5 ML (alternating Au and Rh rows), but covered with a somewhat corrugated atomic layer of Au.

DFT-based simulated STM images revealed bias-voltage-dependent contrast differences among selected corrugated surface layer structures at various Au coverages, which, however, are difficult to resolve in STM experiments due to the theoretically predicted low apparent corrugations. Experimental results obtained by STM and low energy ion scattering (LEIS) on the thermally induced formation of the ordered Au–Rh surface alloy complement our theoretical study. The presented methods and results are expected

to contribute to the understanding of the formation of metallic surface alloys in various chemical compositions.

Acknowledgments

Financial support of the Slovak Academy of Sciences via the SASPRO fellowship (project No. 1239/02/01), the National Research Development and Innovation Office of Hungary under projects No. K120115, FK124100, GINOP-2.3.2-15-2016-00013, and the BME-Nanotechnology FIKP grant of EMMI (BME FIKP-NAT) are gratefully acknowledged. This work was also supported by the Collegium Talentum 2017 Programme of Hungary.

References

(1) Gubó, R.; Vári, G.; Kiss, J.; Farkas, A. P.; Palotás, K; Óvári, L.; Berkó, A.; Kónya, Z. Tailoring the Hexagonal Boron Nitride Nanomesh on Rh(111) with Gold. Phys. Chem. Chem. Phys. 2018, 20, 15473–15485.

(2) Jacobsen, J.; Pleth Nielsen, L.; Besenbacher, F.; Stensgaard, I.; Lægsgaard, E.; Rasmussen, T.;

Jacobsen, K. W.; Nørskov, J. K. Atomic-Scale Determination of Misfit Dislocation Loops at Metal-Metal Interfaces. Phys. Rev. Lett. 1995, 75, 489–492.

(3) Besenbacher, F.; Chorkendorff, I.; Clausen, B. S.; Hammer, B.; Molenbroek, A. M.; Nørskov, J. K.;

Stensgaard, I. Design of a Surface Alloy Catalyst for Steam Reforming. Science 1998, 279, 1913–

1915.

(4) Pleth Nielsen, L.; Besenbacher, F.; Stensgaard, I.; Lægsgaard, E.; Engdahl, C.; Stoltze, P.; Jacobsen, K. W.; Nørskov, J. K. Initial Growth of Au on Ni(110): Surface Alloying of Immiscible Metals. Phys.

Rev. Lett. 1993, 71, 754–757.

(5) Pleth Nielsen, L.; Besenbacher, F.; Stensgaard, I.; Lægsgaard, E.; Engdahl, C.; Stoltze, P.; Nørskov, J. K. “Dealloying” Phase Separation during Growth of Au on Ni (110). Phys. Rev. Lett. 1995, 74, 1159–1162.

(6) Hugenschmidt, M. B.; Hitzke, A.; Behm, R. J. Island Assisted Surface Alloying Observed after Ni Deposition on Au(110)-(1x2). Phys. Rev. Lett. 1996, 76, 2535–2538.

(7) Sprunger, P. T.; Lægsgaard, E.; Besenbacher, F. Growth of Ag on Cu(100) Studied by STM: From Surface Alloying to Ag Superstructures. Phys. Rev. B 1996, 54, 8163–8171.

(8) Umezawa, K.; Nakanishi, S.; Yoshimura, M.; Ojima, K.; Ueda, K.; Gibson, W. M. Ag/Cu(111) Surface Structure and Metal Epitaxy by Impact-Collision Ion-Scattering Spectroscopy and Scanning Tunneling Microscopy. Phys. Rev. B 2000, 63, 035402.

(9) Kizilkaya, O.; Hite, D. A.; Zhao, W.; Sprunger, P. T.; Lægsgaard, E.; Besenbacher, F. Dimensionality in the Alloy–de-Alloy Phase Transition of Ag/Cu(110). Surf. Sci. 2005, 596, 242–252.

(10) Bischoff, M. M. J.; Yamada, T.; Quinn, A. J.; van der Kraan, R. G. P.; van Kempen, H. Direct Observation of Surface Alloying and Interface Roughening: Growth of Au on Fe(001). Phys. Rev.

Lett. 2001, 87, 246102.

(11) Bischoff, M. M. J.; Yamada, T. K.; Kempen, H. van. Analysis of the Short-Range Order of the Au/Fe(001) Surface Alloy. Phys. Rev. B 2003, 67, 165403.

(12) Okamoto, H.; Massalski, T. B. The Au-Rh (Gold-Rhodium) System. Bull. Alloy Phase Diagrams 1984,

5, 384–387.

(13) Toshima, N. Core/Shell-Structured Bimetallic Nanocluster Catalysts for Visible-Light-Induced Electron Transfer. Pure Appl. Chem. 2000, 72, 317–325.

(14) Toshima, N.; Hirakawa, K. Polymer-Protected Bimetallic Nanocluster Catalysts Having Core/Shell Structure for Accelerated Electron Transfer in Visible-Light-Induced Hydrogen Generation. Polym.

J. 1999, 31, 1127–1132.

(15) Casella, I. G.; Contursi, M. Rhodium-Modified Gold Polycrystalline Surface as Anode Material in Alkaline Medium: An Electrochemical and XPS Investigation. J. Electroanal. Chem. 2007, 606, 24–

32.

(16) Lin, X.; Yang, B.; Benia, H.-M.; Myrach, P.; Yulikov, M.; Aumer, A.; Brown, M. A.; Sterrer, M.;

Bondarchuk, O.; Kieseritzky, E.; et al. Charge-Mediated Adsorption Behavior of CO on MgO-Supported Au Clusters. J. Am. Chem. Soc. 2010, 132, 7745–7749.

(17) Konuspayeva, Z.; Berhault, G.; Afanasiev, P.; Nguyen, T.-S.; Auyezov, A.; Burkitbayev, M.; Piccolo, L. Au-Rh and Au-Pd Nanoalloys Supported on Well-Defined Rutile Titania Nanorods for Aromatics Hydrogenation Applications. In MRS Proceedings - Symposium AA – Catalytic Nanomaterials for Energy and Environment; MRS Online Proceedings Library; 2014; Vol. 1641.

(18) Óvári, L.; Bugyi, L.; Majzik, Z.; Berkó, A.; Kiss, J. Surface Structure and Composition of Au−Rh Bimetallic Nanoclusters on TiO2(110): A LEIS and STM Study. J. Phys. Chem. C 2008, 112, 18011–

18016.

(19) Óvári, L.; Berkó, A.; Balázs, N.; Majzik, Z.; Kiss, J. Formation of Rh-Au Core-Shell Nanoparticles on TiO2(110) Surface Studied by STM and LEIS. Langmuir 2010, 26, 2167–2175.

(20) Kiss, J.; Óvári, L.; Oszkó, A.; Pótári, G.; Tóth, M.; Baán, K.; Erdőhelyi, A. Structure and Reactivity of Au-Rh Bimetallic Clusters on Titanate Nanowires, Nanotubes and TiO2(110). Catal. Today 2012, 181, 163–170.

(21) Gubó, R.; Óvári, L.; Kónya, Z.; Berkó, A. Growth of Gold on a Pinwheel TiO~1.2 Encapsulation Film Prepared on Rhodium Nanocrystallites. Langmuir 2014, 30, 14545–14554.

(22) Óvári, L.; Berkó, A.; Gubó, R.; Rácz, Á.; Kónya, Z. Effect of a Gold Cover Layer on the Encapsulation of Rhodium by Titanium Oxides on Titanium Dioxide (110). J. Phys. Chem. C 2014, 118, 12340–

12352.

(23) Chantry, R. L.; Siriwatcharapiboon, W.; Horswell, S. L.; Logsdail, A. J.; Johnston, R. L.; Li, Z. Y.

Overgrowth of Rhodium on Gold Nanorods. J. Phys. Chem. C 2012, 116, 10312–10317.

(24) Chantry, R. L.; Atanasov, I.; Siriwatcharapiboon, W.; Khanal, B. P.; Zubarev, E. R.; Horswell, S. L.;

Johnston, R. L.; Li, Z. Y. An Atomistic View of the Interfacial Structures of AuRh and AuPd Nanorods. Nanoscale 2013, 5, 7452–7457.

(25) Konuspayeva, Z.; Afanasiev, P.; Nguyen, T.-S.; Di Felice, L.; Morfin, F.; Nguyen, N.-T.; Nelayah, J.;

Ricolleau, C.; Li, Z. Y.; Yuan, J.; et al. Au–Rh and Au–Pd Nanocatalysts Supported on Rutile Titania Nanorods: Structure and Chemical Stability. Phys. Chem. Chem. Phys. 2015, 17, 28112–28120.

(26) Piccolo, L.; Li, Z. Y.; Demiroglu, I.; Moyon, F.; Konuspayeva, Z.; Berhault, G.; Afanasiev, P.;

Lefebvre, W.; Yuan, J.; Johnston, R. L. Understanding and Controlling the Structure and Segregation Behaviour of AuRh Nanocatalysts. Sci. Rep. 2016, 6, 35226.

(27) Demiroglu, I.; Li, Z. Y.; Piccolo, L.; Johnston, R. L. A DFT Study of Molecular Adsorption on Titania-Supported AuRh Nanoalloys. Comput. Theor. Chem. 2017, 1107, 142–151.

(28) Hsu, P.-W.; Liao, Z.-H.; Hung, T.-C.; Lee, H.; Wu, Y.-C.; Lai, Y.-L.; Hsu, Y.-J.; Lin, Y.; Wang, J.-H.; Luo, M.-F. Formation and Structures of Au–Rh Bimetallic Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). Phys. Chem. Chem. Phys. 2017, 19, 14566–14579.

(29) Lee, H.; Liao, Z.-H.; Hsu, P.-W.; Hung, T.-C.; Wu, Y.-C.; Lin, Y.; Wang, J.-H.; Luo, M.-F. The Interaction of CO Molecules on Au–Rh Bimetallic Nanoclusters Supported on a Thin Film of Al2O3/NiAl(100). RSC Adv. 2017, 7, 13362–13371.

(30) Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The Surface Energy of Metals. Surf. Sci. 1998, 411, 186–202.

(31) Óvári, L.; Berkó, A.; Vári, G.; Gubó, R.; Farkas, A. P.; Kónya, Z. The Growth and Thermal Properties of Au Deposited on Rh(111): Formation of an Ordered Surface Alloy. Phys. Chem. Chem. Phys.

2016, 18, 25230–25240.

(32) Altman, E. I.; Colton, R. J. Growth of Rh on Au(111): Surface Intermixing of Immiscible Metals.

Surf. Sci. 1994, 304, L400–L406.

(33) Chado, I.; Scheurer, F.; Bucher, J. P. Absence of Ferromagnetic Order in Ultrathin Rh Deposits Grown under Various Conditions on Gold. Phys. Rev. B 2001, 64, 094410.

(34) Chantry, R. L.; Atanasov, I.; Horswell, S. L.; Li, Z. Y.; Johnston, R. L. Interfacial Structures and Bonding in Metal-Coated Gold Nanorods. In Gold Clusters, Colloids and Nanoparticles II. Structure and Bonding; Mingos, D., Ed.; Springer: Cham, 2014; Vol. 162, pp. 67–90.

(35) Christensen, A.; Ruban, A. V; Stoltze, P.; Jacobsen, K. W.; Skriver, H. L.; Nørskov, J. K.;

Besenbacher, F. Phase Diagrams for Surface Alloys. Phys. Rev. B 1997, 56, 5822–5834.

(36) Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.

Alloy Formation in the Co/Pd(111) System – A Study with Medium Energy Ion Scattering and Scanning Tunneling Microscopy. Surf. Sci. 2013, 608, 212–219.

(37) Roelofs, L. D.; Chipkin, D. A.; Rockwell, C. J.; Behm, R. J. Mechanisms of Hole Formation in Metal-on-Metal Epitaxial Systems: Rh/Ag(001). Surf. Sci. 2003, 524, L89–L95.

(38) Kresse, G.; Furthmüller, J. Efficiency of Ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50.

(39) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186.

(40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys.

Rev. Lett. 1996, 77, 3865–3868.

(41) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented Wave Method. Phys. Rev. B 1999, 59, 1758–1775.

(42) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192.

(43) Henkelman, G.; Arnaldsson, A.; Jónsson, H. A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Comput. Mater. Sci. 2006, 36, 354–360.

(44) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved Grid-Based Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28, 899–908.

(45) Tang, W.; Sanville, E.; Henkelman, G. A Grid-Based Bader Analysis Algorithm without Lattice Bias.

J. Phys. Condens. Matter 2009, 21, 084204.

(46) Hofer, W. A. Challenges and Errors: Interpreting High-Resolution Images in Scanning Tunneling Microscopy. Prog. Surf. Sci. 2003, 71, 147–183.

(47) Palotás, K.; Hofer, W. A. Multiple Scattering in a Vacuum Barrier Obtained from Real-Space Wave Functions. J. Phys. Condens. Matter 2005, 17, 2705–2713.

(48) Mándi, G.; Palotás, K. Chen's Derivative Rule Revisited: Role of Tip-Orbital Interference in STM.

Phys. Rev. B 2015, 91, 165406.

(49) Tersoff, J.; Hamann, D. R. Theory and Application for the Scanning Tunneling Microscope. Phys.

Rev. Lett. 1983, 50, 1998–2001.

(50) Tersoff, J.; Hamann, D. R. Theory of the Scanning Tunneling Microscope. Phys. Rev. B 1985, 31, 805–813.

(51) Kittel, C. Introduction to Solid State Physics, 8th Edition, John Wiley and Sons, 2005, p. 50.

(52) Nita, P.; Jałochowski, M.; Krawiec, M.; Stępniak, A. One-Dimensional Diffusion of Pb Atoms on the Si(553)-Au Surface. Phys. Rev. Lett. 2011, 107, 026101.

(53) Krawiec, M.; Jałochowski, M. Anisotropic Atom Diffusion on Si(553)-Au Surface. Phys. Rev. B 2013, 87, 075445.

(54) Nita, P.; Palotás, K.; Jałochowski, M.; Krawiec, M. Surface Diffusion of Pb Atoms on the Si(553)-Au Surface in Narrow Quasi-One-Dimensional Channels. Phys. Rev. B 2014, 89, 165426.

(55) Podsiadły-Paszkowska, A.; Krawiec, M. Adsorption and Diffusion of Atoms on the Si(335)-Au Surface. Surf. Sci. 2014, 622, 9–15.

(56) Palotás, K.; Mándi, G.; Szunyogh, L. Orbital-Dependent Electron Tunneling within the Atom

Superposition Approach: Theory and Application to W(110). Phys. Rev. B 2012, 86, 235415.

(57) Palotás, K. Prediction of the Bias Voltage Dependent Magnetic Contrast in Spin-Polarized Scanning Tunneling Microscopy. Phys. Rev. B 2013, 87, 024417.

(58) Mándi, G.; Nagy, N.; Palotás, K. Arbitrary Tip Orientation in STM Simulations: 3D WKB Theory and Application to W(110). J. Phys. Condens. Matter 2013, 25, 445009.

(59) Mándi, G.; Palotás, K. STM Contrast Inversion of the Fe(110) Surface. Appl. Surf. Sci. 2014, 304, 65–72.

(60) Mándi, G.; Teobaldi, G.; Palotás, K. Contrast Stability and 'Stripe' Formation in Scanning Tunnelling Microscopy Imaging of Highly Oriented Pyrolytic Graphite: The Role of STM-Tip Orientations. J.

Phys. Condens. Matter 2014, 26, 485007.

(61) Palotás, K.; Mándi, G.; Hofer, W. A. Three-Dimensional Wentzel-Kramers-Brillouin Approach for the Simulation of Scanning Tunneling Microscopy and Spectroscopy. Front. Phys. 2014, 9, 711–

747.

(62) Mándi, G.; Teobaldi, G.; Palotás, K. What Is the Orientation of the Tip in a Scanning Tunneling Microscope? Prog. Surf. Sci. 2015, 90, 223–238.