• Nem Talált Eredményt

Salmon, Pacific 0.005

found in canned fish (Neilands et al., 1947) (see tabulation). On the basis of analysis of canned fish, fish appears to be very poor in folic acid unless canning does not particularly destroy this compound.

The biotin content of fish has been investigated by Ives et al. (1954), Matas and Fellers (1948), and Neilands et al. (1947). They obtained the results shown in the tabulation.

BIOTIN CONTENT OF FISH

" μ&ΛΟΟ g.

Fresh

Species Form weight

Salmon, Atlantic Fresh 5.3-9.8

Swordfish Frozen 1.2

Halibut, Atlantic Fresh 8.0

Herring, Atlantic Canned 4.0

Sardine, Pacific Canned 24-27

Mackerel, Atlantic Canned 3.0

Mackerel, Pacific Canned 18.0

Salmon, Pacific Fresh 15.0

Tuna Canned 3.0

Oyster Fresh 8.7

Considering that on an average beef contains 2.6 μg. and pork 3.8 μg.

biotin per 100 g. fresh weight, fish qualifies as a good source of this vitamin. Certain species (the Pacific sardine and Pacific mackerel) show even remarkably higher values, in the order of 20-30 mg. per 100 g.

6. ORGANIC CONSTITUENTS OF FISH 189 flesh. These figures should, however, be accepted with reserve. They were determined by Lactobacillus arabinosus used as an assay organism.

This bacteria seems to react in a similar way to fatty acids as to biotin.

So it is quite possible that the above-mentioned values are in excess of the true values (Neilands et al., 1947).

K. V I T A M I N Bi 2

Since the discovery of the animal protein factor ( A P F ) , its presence in water extracts from fish has been demonstrated (Jaffe and Elvehjem, 1947; Nichol et al, 1947). On the other hand, long before the indentifi-cation of the cobalamins, Labrie (1940) had anticipated the existence of an antianemic principle in fish liver. Subsequently, in the further pursuit of vitamin Bi 2, this compound turned out to be identical to APF.

Fish, in the broad sense of the term, and its by-products (meal and fish solubles) are the best sources known of active cyanocobalamin, if one takes into account that many of the cobalamines synthesized by the digestive bacteria in feces and manure show no vitamin activity. The first assessment of such activity referring to total APF was done with microbiological methods (Ney and Tarr, 1949).

In fact, several methods are now available for measuring vitamin B12, which is found in fish in the form of hydroxycobalamin. The results ob­

tained are not necessarily identical, and appreciable differences may exist between the values obtained by the rat test and those acquired by the microbiological methods. Except in the case of mere identification, Table XVIII lists only values obtained through the latter method. Red flesh is much richer in B i2 than white meat (Braekkan, 1956).

Body organs such as liver and spleen, and certain mollusks such as clams and oysters, constitute remarkable sources of vitamin Bi 2. Fish flesh in this respect always compares favorably with red meat and ex­

ceeds it in many instances. Fish meal (200-20 μg./100 g. solids) and solubles (15-60 μg.) are, together with the residues from the manufac­

ture of antibiotics, the APF sources most utilized in animal feeding (Peeler et al, 1951; see also Volume II, Chapter 9 by March). Admit­

tedly, the microorganisms of the soil are the source of the cobalamins present in the tissues of terrestrial animals. In the same way, it is pos­

sible that vitamin Bi 2 of the marine species is largely supplied by algae.

It is abundantly provided by Calothrix parietina (0.65 mg. per gram dry weight). Tarr (1951) proved, however, that Bi 2 was formed in the microbial breakdown of fishery wastes.

TABLE X V I I I

VITAMIN B1 2 CONTENT OF FISH FLESH

Dry weight

Species μg./100 g. Reference

Cusk 0.3 Teeri et al (1957)

Cod, Atlantic 0.5 Hoogland (1953)

Cod, Blue 18 Tarr et al (1950)

Halibut, Atlantic 7 Teeri et al (1957)

Haddock 1.3 Hoogland (1953)

Herring, Atlantic 14 Braekkan and Probst (1953)

Fillet 54 Klungs0yr et al (1953)

Mackerel, Atlantic 12 Braekkan and Probst (1953) 5 Teeri et al (1957)

Rockfish 12 Tarr et al (1950)

Salmon, Atlantic 3 Teeri et al (1957)

Salmon, Pacific 3 Teeri et al (1957)

Sardine, Japanese 17 Karrick (1955)

Swordfish 0.6 Teeri et al (1957)

Tuna 1.5 Teeri et al (1957)

Red meat 31 Braekkan et al (1955)

White meat 4-5 Braekkan et al (1955)

Clams, littlenecka 250 Williams and Maslov (1954) 14-62 Teeri et al (1957)

Crab 0.5 Teeri et al (1957)

Lobster 0.5 Teeri et al (1957)

Oyster^ 500 Jukes and Williams (1954)

Scallops 15-46 Teeri et al (1957)

Scallops 1.3 Teeri et al (1957)

Shrimp 0.6-0.9 Teeri et al (1957)

a Rat assay.

L . VITAMIN C

FAO tables ( 1 9 5 4 ) state that fish, Crustacea, mollusks, and aquatic mammals are devoid of ascorbic acid. As a matter of fact, this acid is present in the meat of these species, but the content is mostly so low that it does not have any nutritional significance. As in red meat (beef), the amount of ascorbic acid in fish flesh is 1 - 5 mg. per 1 0 0 g. fresh weight. The muscular tissue of fresh salmon constitutes an exception in this respect. According to Fixsen and Roscoe ( 1 9 3 9 ) , it contains more vitamin C than orange juice. In livers and eggs that large an amount is frequently found. Grangaud ( 1 9 5 0 ) reports a content of 2 7 mg. per 1 0 0 g. of cod liver and 1 2 0 - 1 8 0 mg. per 1 0 0 g. of cod eggs. Random et al ( 1 9 4 7 ) give the following figures for 1 0 0 g. eggs: 4 4 mg. for the sea wolf, 1 0 mg. for the perch, 1 4 mg. for salmon (Atlantic). The

mol-6 . ORGANIC CONSTITUENTS OF FISH 191 lusks vary in content: some are rich (Solea marginatus: 29 mg./100 g.;

Mytilus edulis and Mactra corallina: 17 mg./100 g.; Cardium tubercu-latum: 15 mg./100 g.), some poorer (common oyster: 8 mg./100 g., Pecten maximus: 3 mg./100 g.). The flesh of crustaceans does not differ from the average figures for fish (see tabulation below).

ASCORBIC ACID IN FLESH OF CRUSTACEA

mg./100 g.

Crustacea Flesh

Crayfish 4.5

Cancer pagurus 3.5

Lobster 2.8

Maia squinado 2

Squilh mantis 2

This survey is by no means complete. Experimentation in the field of feeding poultry and domestic animals frequently establishes the likelihood of still unknown growth factors in fish and its by-products (Norris, 1955) (see Volume II, Chapter 9 by Biely). Ritchery et al.

(1956) ascribe this to the presence of adenosine. New methods of proc­

essing fish livers are being evolved to enable a recovery not only of fat-soluble vitamins but also the water-fat-soluble nutritional factors (Gray et al, 1951a).

VII. Water

Innumerable analyses have been published on the water content of fish flesh. The applied methods have constantly been improved, and nowadays rather accurate figures can be obtained. The reliability of water analyses has become increasingly essential as research has estab­

lished definite relationships between the content of water on one hand and the content of fat with relation to protein on the other. Earlier methods of moisture determinations in fish and other marine products were critically reviewed by Voth (1952) and the particular difficulties discussed. On the basis of extensive experimentation, he put forth new recommendations for such analyses. A new rapid method applicable to fish meat was presented by Tsuchiya and Nakano (1954).

For each species, in some cases races, the combined amount of water and fat is a constant value (Brandes and Dietrich, 1953; Mikicinska, 1955). This can also be formulated so that there is a strong, negative correlation between the amount of fat and that of water in the meat.

This seems to hold true not only for the whole fish but also for sections of its body (Brandes, 1954).

As the fat content varies with location in the body, this is a parti­

cularly important observation. Special formulas have been developed for this relationship, which at any rate apply to each of several fatty fishes (Brandes and Dietrich, 1958). These findings carry special im­

portance for the herring trade. Deviations are naturally encountered in heavily salted products, having lost water through dessication and fat through the outflow of body oil.

Using such correlation calculations, regression lines, called F W (fat, water) fines, have been worked out, which can be used for commercial purposes as a kind of nomogram. Consequently, only a reliable water analysis is required and from that value the fat content may be derived, with a high degree of accuracy. So far, these relationships appear to be valid for the following food fishes: herring, ocean perch (redfish), carp, lake herring, white perch, Eastern smelt, lake trout.

Identical regression equations apply to these (Brandes and Dietrich, 1958).

A definite relationship, but of another nature, exists between the amount of protein and that of water. They are positively correlated, and very strongly also. For herring flesh, a correlation coefficient above 0.9 was established (Dietrich, 1954). A similar regression line has in a corresponding way been computed for the relationship between protein and water—a PW (protein-water) line.

Brandes and Dietrich (1958) draw attention to a surprising distinc­

tive feature. In lean and semifatty fishes, the fat content generally in­

creases from the head section to the tail part. In fatty fishes, the inverse rule seems to prevail, the lowest amount of fat being in the tail section.

This also seems to be valid for fatty fresh-water fish when comparing the fatty whitefish and roach with lake perch (Morawa, 1954).

As indicated above, these close interrelationships between water content and the amounts of fat and protein do not show up as distinctly in nonfatty fishes, such as cod, haddock, pollack, and ling (Boguciki and Trzesinski, 1950; Kordyl, 1951). But it is quite likely that in the future, as more data accumulate, useful conversion figures will be computed also for these categories of fish.

REFERENCES

Adrian, J. (1957). Composition et valeur alimentaire de poissons conserves sous differents etats: fichantillons africains sales et seche, farines industrielles et nuoc mam. Ann. nutrition et aliment 11, 27-44.

6. ORGANIC CONSTITUENTS OF FISH 193 Airan, J. W., and Master, R. W. P. (1953). Distribution of sulfur in some marine

fishes from Bombay. J. Univ. Bombay Sect. Β 22(3), Sei. No. 34A, 72; Chem.

Abstr. 48, 10237 (1954).

Airan, J. W., and Thomas A. (1954). Amino acids in prawns from Bombay. /.

Univ. Bombay, Sect. Β 2 2 ( 5 ) , 48-49.

Alquier, J. (1906). Alimentation humaine. Bull. soc. set. hyg. aliment. 3 ( 1 ) . Ambe, Κ. S., and Sohonie, K. (1957a). A comparative study of the proteins of

shark and skate, and casein. II. Enzymatic hydrolysis of the fish proteins and casein. Indian J. Fisheries 4 ( 1 ) , 124-129.

Ambe, Κ. S., and Sohonie, K. (1957b). A comparative study of the proteins of shark and skate, and casein. III. Essential amino-acid content and the nutritive value. Indian J. Fisheries 4 ( 1 ) , 130-133.

Ando, T., Iway, K., Yamasaki, M., Hashimoto, C , Kimura, M., Ishii, S., and Tamura, T. (1953). Protamines. Bull. Chem. Soc. Japan 26, 406-407.

Anonymous (1934). The chemical composition and food value of British Columbia Marine products. Fisheries Research Board Can., Progr. Rept. Pacific Coast Stas. No. 19, 20-23.

Anonymous (1950). Unpublished information from Laboratoire de Tonice sei. tech.

peches maritimes, Paris.

Arai, Y., and Sakai, S. (1952). Set. Repts. Whales Research Institute (Tokyo) No.

7, 51-69.

Archer, J. A. M. (1949a). A preliminary report on the vitamin A content of the liver oil of the stockfish (Merluccius capensis) and the Cape Spring dogfish (Squalus acutipinnis). Dept. Comm. Indust. Fish Marine Biol. Survey Div.

Pretoria, Invest. Rept. No. 9.

Archer, J. A. M. (1949b). Notes on the vitamin A content of the liver oil of the Vaalhaai or Soupfin shark (Galeorhinus zyopterus). Dept. Comm. Indust., Fish Marine Biol. Survey, Div. Pretoria, Invest. Rept. No. 10.

Arevalo, A. (1948). Variaciones en la composicion quimica de saurel (Trachurus trachurus). Bol. inst. espan. oceanogr. No. 8, 13 pp.

Asikari, H., Kim, C. H., and Tai, S. S. (1938). Fish biles—bile of Kawahagi (Mo-nacanthus cirrhifer) and saketo (Theragra chalcogramma, Palhs). (In Japa­

nese). Arb. med. Fak. Okayama 6, 136-140.

Atwater, W. O. (1888). The chemical composition and nutritive value of food fishes. Ann. Rept., U.S. Commission Fish and Fisheries, Washington, D.C. pp.

679-868.

Aure, L., and Klökstad, H. (1951). Vitamin A content of Greenland shark, pro­

duced in 1948. Fiskeridirektorat. Skrifter, Ser. Tekn. Unders0k. 1 ( 8 ) , 3-8.

Baalsrud, K. (1956). Astaxanthin in the muscle of cod. Nature 178, 1182-1183.

Bailey, Β. E . (1931). Composition and vitamin potency of oils from canned salmon.

Fisheries Research Board Can., Progr. Repts. Pacific Coast Stas. No. 13, 22-23.

Bailey, Β. E. (1942). Chart of the nutritive values of British Columbia fishery products. Fisheries Research Board Can., Progr. Repts. Pacific Coast Stas. No.

53, 9-11.

Bailey, Β. E. (1943). Fish oils. IX. Certain fish oils as sources of nutritionally es­

sential fatty acids. /. Biol. Board Can. 6 ( 2 ) , 109-112.

Bailey, Β. E. (1950). "Chalky" halibut. Fisheries Research Board Can., Progr.

Repts. Pacific Coast Stas. No. 88, 61-63.

Bailey, Β. E., Carter, Ν. M., and Swain, L. A. (1952). Marine oils with particular reference to those of Canada. Fisheries Research Board Can., Bull. No. 89, 1-413.

Balasundaram, S., Cama, H. R., Sundarasan, P. R., and Varma, Τ. N. R. (1956a).

Vitamin A2 in Indian freshwater fish liver oils. Biochem. J. 64, 150-154.

Balasundaram, S., Cama, H. R., Sundarasan, P. R., and Varma, Τ. N. R. (1956b).

Spectrophotometric determination of vitamin A in Indian marine fish liver oils.

/. Sei. Ind. Research (India) C15, 23-27.

Bate-Smith, E. C. (1942). The nations food. V. Meat as food. 2. The chemical composition of mammalian and avian meat. /. Soc. Chem. Ind. (London) 61, 373-380. Also in "The Nation's Food—a Survey of Scientific Data" (A. L. Bach­

arach and T. Rundle, ed.), pp. 222-235. Soc. Chem. Ind., London, 1946.

Beveridge, J. M. R. (1946). Sulphur distribution in fish flesh proteins. J. Fisheries Research Can. 7, 51-54.

Beveridge, J. M. R. (1947). The nutritive value of marine products. XVII. Value of B-vitamins in fish flesh for growth of young rats. /. Fisheries Research Board Can. 7, 74-87.

Bills, C. E. (1927). Anti-ricketic substances. VI. The distribution of Vitamin D with some notes on its possible origin. /. Biol. Chem. 72, 751-758.

Black, Μ. M., and Schwartz, Η. M. (1950a). South African fish products. XXX.

Seasonal changes in the composition of the pilchard (Sardina oceUata). J. Set.

Food Agr. 1, 182-185.

Black, Μ. M., and Schwartz, Η. M. (1950b). South African fish products. XXXI.

The composition of pilchard oil and of massbanker oil. /. Sei. Food Agr. 1, 248-251.

Bligh, E. G., and Dyer, W. J. (1959). Orange-red flesh in cod and haddock. /.

Fisheries Research Board Can. 16(4), 449-452.

Block, R. (1950). U.S. Patent No. 2, 497, 858, February 21, 1950.

Block, R. J . , and Boiling, D. (1945). "The Amino Acid Composition of Proteins and Foods," 396 pp. C. C Thomas, Springfield, Illinois.

Block, R. J . , Boiling, D., Gershon, H., and Saber, H. A. (1949). Preparation and amino acid composition of salmine and clupeine. Proc. Soc. Exptl. Biol. Med.

70, 494-496.

Bogugiki, M., and Trzesinski, P. (1950). Fluctuations in the water and fat content of the cod. /. conseil, Conseil permanent intern, exploration mer 16, 208-210.

Boury, M. (1936). Recherches sur Talteration du poisson. Rev. trav. office peches maritimes 9, 401-419.

Boury, M., and Schvinte, J. (1935). L'alteration du poisson. Rev. trav. office peches maritimes 8, 282-333.

Braekkan, O. R. (1956). Function of the red muscle in fish. Nature 178, 747-748.

Braekkan, O. R., and Lambertsen, G. (1952). Bestemmelse av vitamin A i traner og vitaminolje—En sammenliknende unders0kelse av forskjellige metoder. Fis-keridirektoratets Skrifter, Ser. Teknol. Unders0k. 2 ( 9 ) , 1-20.

Braekkan, O. R., and Probst, A. (1953). Vitaminer i norsk fisk. 1. Nikotinsyre-, riboflavin-, pantotensyre-, vitamin B1 2—og vitamin A innholdet i hel fisk og forskjellige organer fra fersk sild (Clupea harengus) og makrell (Scomber scorn-brus). Fiskeridirektoratets Skrifter, Teknol. Unders0k. 11(13), 1-10.

6. ORGANIC CONSTITUENTS OF FISH 195 Braekkan, O. R., Hansen, K., and Skogland, T. (1955). Vitaminer i norsk fisk. 2.

Vitaminer i forskjellige organer fra makrellst0rje (Thunnus thynnus) fanget utefter Norges vestkyst. Fiskeridirektoratets Skrifter, Teknol. Unders0k. 13(3), 1-18.

Bramsnaes, F., Mogensen, Ε., and Birnd, Κ. Ε . (1954). Fedtbestemmelse i sild, brisling og makrel 1949-52. (With English summary.) Medd. Fiskeriministeriets Fors0gslab. 15 pp.

Brandes, C. H. (1954). Über den Fett- und Wassergehalt in Herring. Proc. Sym­

posium on Cured and Frozen Fish Technol, Swed. Inst. Food Preserv. Research (Göteborg), 1953, Puhl. No. 100, Paper No. 12, 11 pp.

Brandes, C. H., and Dietrich, R. (1953a). Die Bestimmung des Fettgehaltes im essbaren Anteil des Herings auf Grund der Korrelation Fett and Wasser. Veröf-fentl. Inst. Meeresforsch. Bremerhaven 2, 122-134.

Brandes, C. H., and Dietrich, R. (1953b). Zusammenfassende Betrachtungen über den Fett- und Wassergehalt im essbaren Anteil des Herings. Fette u. Seifen 55, 533-541.

Brandes, C. H., and Dietrich, R. (1956). Untersuchungen über Fett- und Was­

sergehalt im essbaren Anteil des Rotbarsches. (Sebastes marinus L . ) . Fette u.

Seifen 58, 433-439.

Brandes, C. H., and Dietrich, R. (1958). Betrachtungen über die Beziehungen zwischen dem Fett- und Wassergehalt und die Fettverteilung bei Konsumfischen.

Veröffentl. Inst. Meeresforsch. Bremerhaven 5 ( 3 ) , 299-305.

Briggs, G. M., and Daft, F. S. (1954). In Pantothenic acid. "The Vitamins: Chem­

istry, Physiology, Pathology" (W. H. Sebrell, Jr., and R. S. Harris, eds.), Vol. 2, 634-649. Academic Press, New York, 1954.

Brown, F. (1953). Occurrence of vitamin Ε in cod and other fish-liver oils. Nature 171, 790-791.

Bucher, G. C , Clegg, W., and Sanford, F. B. (1948). Distribution of oil and vitamin A in fish livers. U.S. Fish Wildlife Serv., Fisheries Leaflet No. 290, 3 pp.

Butler, Ch. (1946). Vitamin A and D in fish livers and viscera. Com. Fisheries Re­

view 8 ( 4 ) , 13-19.

Butler, C. (1948). The fish liver oil industry. U.S. Fish Wildlife Serv., Fishery Leaflet No. 233.

Campbell, J. (1935). The non-protein nitrogenous constituents of fish and lobster muscle. J . Biol. Board Can. 1, 179-189.

Carteni, Α., and Aloi, G. (1934). Composizione chimica di animali marini del golfo di Napoli. I. Teleostei. Quaderni nutriz. 1, 49-52.

Carteni, Α., and Aloi, G. (1935). Composizione chimica di animali marini del golfo di Napoli. II. Selacei molluschi e crostacei. Quaderni nutriz. 2, 219-221.

Carvalho Rios, E . de (1950). Analytical study of Tainha roe. Anais assoc. Brazil.

quim. 9, 169-172.

Carvalho Rios, E . de (1954). "Composicäo quimica de pescado de valor comercial do Rio Grande do Sul" 10 pp. Divisäo de Caga e Pesca, Rio de Janeiro, Brazil.

Causeret, J . (1950). Les elements mineraux des poissons. Bull. soc. set. hyg. alt-ment. 38, 1-39; and in Congr. intern, d'etude sur le role du poisson dans Vali-mentation, Inst. Oceanogr., Paris pp. 99-108.

Chevallier, Α., and Burg, C. (1950). Donnees sur la valeur alimentaire des huiles de poisson. In Congr. intern, d'etude sur le role du poisson dans Γ alimentation, Inst. Oceanogr., Paris pp. 59-82.

Chidambaram, K., Krishnamurthy, C. C , Venkataraman, R., and Chari, S. T. (1952).

Studies on mackerel: fat variations and certain biological aspects. Proc. Indian Acad. Sei. B35, 43-68.

Multiplicity of unidentified growth factors required by chicks poults. Poultry Sei. 33, 1050.

Corfield, M. C , and Robson, A. (1953). The amino acid composition of salmine.

Biochem. J. 55, 517-522.

Costabello, D. (1935). Composizione chimica di alcuni pesci di fiume. Quaderni nutriz. 2, 197-200.

CreacTi, P. V. (1955). Les vitamines des huiles du poisson—l'origine, les varia­

tions biologiques, le traitement de foie. Oleagineux 10, 801-811.

Creac'h, P. V. (1955). Les huiles de poisson et de baleine. Science et Peche 29, 3-7.

DaCosta, Α., and Stern, J. Α. (1956). The calcium and phosphorus contents of some foreign and domestic canned sardines. Food Research 21, 242-249.

Damodaran, M., Sivaraman, C , and Dhavlikar, R. S. (1956). Amino acid com­

position of elastoidin. Biochem. J. 62, 621-625.

Deas, C. P., and Tarr, H. L. A. (1949). Amino acid composition of fishery prod­

ucts. /. Fisheries Research Board Can. 7, 513-521.

de Clercq, A. (1932). Chemical composition of fish. (In Dutch). Natuurw. Tijd-schr. Ned. Indie. 14, 63-64.

de Gouveia, A. J. Α., and De Gouveia, A. P. (1951). Mollusks of the Portuguese coast. I. Analytical study of Loligo vulgaris. Rev. fac. cienc, Univ. Coimbra 20, 5-21.

Del Riego, A. F. (1948). Seasonal variation in the nutritive value of the sardine (Sardinia pilchardus). Bol. inst. espan. oceanog. No. 12, 15 pp.

Demenier, G. (1934). Albumin and globulin contents of the serium of various fishes. Compt. rend. soc. biol. 115, 555-557.

Deuel, H. J . , Jr. (1951-1957). "The Lipids," 3 Vol. Interscience Publishers, New York.

Dietrich, R. (1954). Vorschlag zur Einführung eines neuen Stickstofffaktors zur Berechnung des Proteingehalts vom essbaren Anteil des Herings. Proc. Sym­

posium on Cured and Frozen Fish Technol., Swed. Inst. Food Preserv. Research, Göteborg, 1953, Puhl. No. 100, Paper No. XI, 5 pp.

Dontcheff, L., and Legendre, R. (1948). In "Les aliments d'origine animale des­

tines ä l'homme" (M. Jean-Blain ed.), p. 435. Vigot, Paris.

Drilhon, A. (1955). Euglobulins of fish. Compt. rend. soc. biol. 149, 2124-2126.

Drummond, J. C , and Gunther, E. R. (1930). Vitamin content of marine plankton.

Nature 126, 398.

6. ORGANIC CONSTITUENTS OF FISH 197 Drummond, J. C , and Gunther, Ε . R. (1934). Observations on the fatty consti­

tuents of marine plankton. III. The vitamin A and D content of oils derived from plankton. /. Exptl. Biol. 11, 203-209.

Dubouloz, P., and Hedde, M. F . (1942). La presence des substances anti-oxyge-niques dans les tissus des animaux. Trav. membres soc. chim. biol 24, 1137-1144.

Duchesnay, G. (1941a). Les huiles de poisson. Biol med. (Paris) 31, 200-221.

Duchesnay, G. (1941b). Vitamines des huiles de foie de poisson. Biol med. (Paris) 31, 229-232.

Dunn, M. S., Camien, M. N., Eiduson, S., and Malin, R. B. (1949). The nutritive value of canned foods. I. Amino acid content of fish and meat products. /. Nu­

trition 39, 177-185.

Dyer, W. J . , French, Η. V., and Snow, J. M. (1950). Proteins in fish muscle. I.

Extraction of protein fractions in fresh fish. /. Fisheries Research Board Can. 7, 585-593.

Eastor, J. E . (1957). The amino acid composition of fish collagen and gelatin.

Biochem. J. 65, 363-368.

Eggleton, P., and Eggleton, G. P. (1928). Further observations on phosphagen.

/. Physiol. 65, 15-24.

El Saby, Μ. K. (1934). Dietetic value of certain Egyptian food fishes. Rapports Comm. intern, explor. mer Mediterranee. [N.S.] 8, 77-85.

Endo, Κ., Fujita, Μ., and Simidu, W. (1954). Studies on muscle of aquatic animals. XXII. On distribution of extractive nitrogens and free glycine content in squids. (In Japanese with English summary.) Bull. Japan. Soc. Sei. Fisheries 20, 723-725.

Euler, Η. V., Hellström, Η., and Malmberg, Μ. (1933). Salmensaüre, ein Caro­

tinoid des Lachses. Svensk. Kern. Tidskr. 45, 151-152.

F.A.O. (1949). Tables de composition des aliments pour l'usage international, p. 38, 39. F.A.O., Washington, D.C.

F.A.O. (1954). Food Composition Tables, Minerals and Vitamins for International use, pp. 43-45. F.A.O., Rome.

Felix, Κ., and Krekels, Α. (1953). Die Endaminosäuren einiger Protamine.

Z. physiol. Chem. (Hoppe-Seylers) 295, 107-109.

Felix, K., Fischer, H., and Rauen, M. (1950). Über Clupein. IX. Mitteilung.

Z. physiol. Chem. (Hoppe-Seylers) 286, 67-78.

Fieger, Ε . A. (1956). Vitamin content of fresh, frozen oysters. Quick Frozen Foods 19(4), 152-155.

Fixsen, Μ. A. B., and Roscoe, Μ. H. (1940). Tables of the vitamin content of human and animal foods. Nutr. Abstr. Revs. 9 ( 4 ) , 795-861.

Fontaine, M. (1945). Les oceans et les mers, sources de vitamines. Bull. soc. set.

hyg. aliment. 33, 67-75.

Fontaine, M., and Busnel, R. G. (1937). De la localisation et de la nature de la flavine contenue dans la peau de Tanguille. Compt. rend. 204, 1591-1593.

Fontaine, M., and Busnel, R. G. (1938a). Repartition de la flavine et des sub­

stances a. fluorescence bleue dans la peau et les ecailles de quelques poissons d'eau douce. Compt. rend. 206, 1679-1680.

Fontaine, M., and Busnel, R. G. (1938b). Sur la localisation et le röle de la

Fontaine, M., and Busnel, R. G. (1938b). Sur la localisation et le röle de la