• Nem Talált Eredményt

For the purpose of the present discussion, "recombination events" are defined broadly to include all events that are promoted by the confronta­

tion of two different chromosomes or D N A molecules or different parts of a single chromosome. For some "recombination events," homology and presumably homologous pairing between the participants may be an essential prerequisite. For others, little or no homology may be needed.

Potentially, both kinds of events may generate deletions. In cases where homology is essential, the crucial deletion-promoting event would be a mispairing reaction which would then be followed by an unequal cross­

over (Fig. 7c). Lerman (143) has hypothesized that the intercalation of acridines between adjacent base pairs promotes unequal crossovers through mistakes in homologous pairing. In some organisms, a correlation has been observed between acridine-induced frame-shift mutations and general recombination potential (144, 14&)- In other organisms, such a correlation has not been found (48, 146). If a certain kind of deletion is promoted by unequal crossovers, one expects these deletions to occur preferentially in those regions of a chromosome where there is sequence similarity. It is clear that some regions of a bacterial chromosome are more prone to deletions than others (e.g., region in the vicinity of cys in Salmonella or trp in E. coli). Within experimental limits, there has been nothing to suggest that these regions have repeating or similar nucleotide sequences. On the contrary, there is now sufficient evidence (reviewed in 72a, 75b, 147) that two chromosomes that share little or no detectable homology may participate in recombination-type breaks and restitutions. Examples are the prophage integration and deintegra-tion events promoted by the int funcdeintegra-tion of phage λ and the transideintegra-tion of the F factor from the integrated to the autonomous state. It is also known that such events can sometimes involve the deletion from the chromosome of genes adjacent to the chromosomal attachment site of the episome. The adjacent genes may be on one or both sides of the

inserted episome and, in the latter case, the breaks and restitutions need involve only chromosomal material. As a working hypothesis, it is attractive to postulate that events of this type may be promoted by episomic elements that are otherwise genetically "silent," that is, elements that have the capacity for chromosomal integration-deintegra-tion but are not otherwise easily recognizable or, at any rate, have not as yet been recognized. This would explain why the frequency of deletion mutants is independent of generalized recombination functions such as those determined by the rec and red genes (H8, 149). In the vicinity of a region that is prone to deletions such as cys in the Sal­

monella chromosome, there then ought to be one or more sequences that either directly or indirectly serve to recognize these hypothetical episomes.

VIII. CONCLUSIONS

Genetic deletions are very rare events (about 10~7 or less per cell generation) but a variety of selective techniques can be and has been devised for the isolation of deletion mutants. The unambiguous way in which deletion mutants can be exploited in topological fine-structure mapping fully justifies attention to their isolation and use. Available evidence suggests that such mutants will occur in virtually all regions of a chromosome. The frequency with which they occur will vary with the genetic region as well as the strain involved.

The mechanisms by which deletions are produced are not understood.

The rarity of the events that promote them have made indirect ap­

proaches to the question of the mechanisms of their origin necessary.

Some of these indirect approaches suggest that the generation of deletions can be associated with events promoting the deintegration of episomic elements from a chromosome.

It seems reasonable to believe that enzymes identical or similar to the ones that are already described and are known to cut or repair D N A have a role in generating deletions. Mutations in genes controlling some of these enzymes (e.g., D N A polymerases and ligases) may affect deletions, but there is as yet no evidence to suggest that the functions mediated by these known enzymes or any other function are essential for generating deletions.

Note added in proof: Since this chapter was written, pertinent informa­

tion has become available and references to this literature are indicated

here, (a) There is now every indication that the technique of physically mapping D N A molecules (Section IIIC) can be extended to genetic elements besides viral D N A {150-152). (b) New enzymes or enzymatic activities involving D N A as the substrate have been discovered in E. coli.

In some cases, the genes determining them have been identified (153-160). (c) Novel and rare types of interactions between plasmids or a plasmid and chromosome are being observed (161-163). There is a recent and interesting volume on bacteriophage lambda (164); in particular, the article by N. Franklin relates to some of the questions raised here.

ACKNOWLEDGMENTS

Research has been supported by Grant A4429 from the National Research Council of Canada. During the preparation of this chapter, I have received thoughtful criticism from colleagues in this department and from J. Drake, P. Howard-Flanders, R. Iyer, and W. Szybalski.

REFERENCES

1. R. C. King, "A Dictionary of Genetics." Oxford Univ. Press, London and New York, 1968.

2. S. Benzer, Proc. Nat. Acad. Sci. U.S. 45, 1607 (1959).

3. J. R. Beckwith and D . Zipser, "The Lactose Operon." Cold Spring Harbor Lab., Cold Spring Harbor, New York, 1970.

4. C. Yanofsky, B. C. Carlton, J. R. Guest, D. R. Helinski, and U. Henning, Proc. Nat. Acad. Sci. U.S. 51, 266 (1964).

5. H. Ris and D. F. Kubai, Annu. Rev. Genet. 4, 263 (1970).

6. R. Holliday, Symp. Soc. Gen. Microbiol. 20, 359 (1970).

7. C. E. Folsome, Genetics 47, 611 (1962).

8. I. Tessman, / . Mol. Biol. 5, 442 (1962).

9. M. Demerec, Proc. Nat. Acad. Sci. U.S. 46, 1075 (1960).

10. F. Jacob and E. L. Wollman, "Sexuality and the Genetics of Bacteria." Academic Press, New York, 1961.

11. A. Cook and J. Lederberg, Genetics 47, 1335 (1962).

12. Ε. H. Anderson, Proc. Nat. Acad. Sci. U.S. 32, 120 (1946).

12a. M. Demerec, D. H. Gillespie, and K. Mizobouchi, Genetics 48, 997 (1963).

12b. J. S. Gots, W. Y. Koh, and G. R. Hunt, Jr., J. Gen. Microbiol. 11, 7 (1954).

12c. M. Enomoto, Genetics 54, 715 (1966).

13. N. C. Franklin, W. F. Dove, and C. Yanofsky, Biochem. Biophys. Res. Com­

mun. 18, 910 (1965).

14. J. R. Beckwith, E< Signer, and W. Epstein, Cold Spring Harbor Symp. Quant.

Biol. 23, 393 (1966).

15. S. Gottesman and J. R. Beckwith, J. Mol. Biol. 44, 117 (1969).

16. K. Ippen, J. H. Miller, J. Scaife, and J. Beckwith, Nature (London) 217, 825 (1968).

17. J. H. Miller, K. Ippen, J. G. Scaife, and J. R. Beckwith, Λ Mol. Biol. 38, 413 (1968).

18. J. Shapiro, L. Machattie, L. Eron, G. Ihler, K. Ippen, J. Beckwith, R. Arditti, W. Reznikoff, and R. MacGillivray, Nature (London) 224, 768 (1969).

19. S. Adhya, P. Cleary, and A. Campbell, Proc. Nat. Acad. Sci. U.S. 61, 956 (1968).

19a. Β. N. Ames, in "Chemical Mutagens" (A. Hollender, ed.), Chapter IX, p.

267. Plenum, New York, 1971.

20. J. A. Shapiro and S. K. Adhya, Genetics 62, 249 (1969).

21. D. 0 . Schwartz and J. R. Beckwith, Genetics 61, 371 (1969).

22. J. S. Parkinson and R. W. Davis, Proc. Nat. Acad. Sci. U.S. 61, 1152 (1968).

23. J. S. Parkinson and R. J. Huskey, / . Mol. Biol. 56, 369 (1971).

24. M. G. Burdon, Mol. Gen. Genet. 108, 288 (1970).

25. R. Hertel, L. Marchi, and K. Muller, Virology 18, 576 (1962).

26. I. Rubenstein, Virology 36, 356 (1968).

27. A. B. Pardee, J. Bacteriol. 73, 376 (1957).

28. J. Davies and F. Jacob, J. Mol. Biol. 36, 413 (1968).

29. G. Kellenberger, M. L. Zichichi, and J. Weigle, J. Mol. Biol. 3, 399 (1961).

30. C. A. Thomas, Jr., Progr. Nucl. Acid Res. Mol. Biol. 5, 315 (1966).

31. G. Kellenberger, M. L. Zichichi, and J. Weigle, Proc. Nat. Acad. Sci. U.S.

47, 869 (1961).

32. R. W. Davis and N. Davidson, Proc. Nat. Acad. Sci. U.S. 51, 883 (1964).

33. G. Mosig, Genetics 59, 137 (1968).

34. R. G. Cutler and J. R. Evans, J. Mol. Biol. 26, 81 (1967).

35. W. Colli and M. Oishi, J. Mol. Biol. 51, 657 (1970).

36. B. C. Westmoreland, W. Szybalski, and H. Ris, Science 163, 1343 (1969).

37. M. Nomura and S. Benzer, J. Mol. Biol. 3, 684 (1961).

38. W. Szybalski, H. Kubinski, Z. Hradecna, and W. C. Summers, in "Methods in Enzymology" (L. Grossman and K. Moldave, eds.), Vol. 21, Part C. p.

383. Academic Press, New York, 1970.

39. R. W. Davies and J. S. Parkinson, J. Mol. Biol. 56, 403 (1971).

40. Z. Hradecna and W. Szybalski, Virology 38, 473 (1969).

41. F. A. Bautz and Ε. K. F. Bautz, J. Mol. Biol. 28, 345 (1967).

42. K. Bovre and W. Szybalski, Virology 38, 614 (1969).

42a. L. Fishbein, H. L. Falk, and W. G. Flamm, "Chemical Mutagens," p. 34.

Academic Press, New York, 1970.

43. J. Scaife and A. P. Pekhov, Genet. Res. 5, 495 (1964).

44. D. Freifelder, Cold Spring Harbor Symp. Quant. Biol. 33, 425 (1968).

45. D. H. Parma, Genetics 63, 247 (1969).

46. E. Jordon, / . Mol. Biol. 10, 341 (1964).

47. J. W. Drake, Nature (London) 221, 1128 (1969).

48. J. W. Drake, "The Molecular Basis of Mutation." Holden-Day, San Francisco, California, 1970.

49. H. P. Treffers, V. Spinelli, and N. O. Besler, Proc. Nat. Acad. Sci. U.S. 40, 1064 (1954).

50. C. Yanofsky, E. C. Cox, and V. Horn, Proc. Nat. Acad. Sci. U.S. 55, 274 (1966).

51. C. Yanofsky and E. S. Lennox, Virology 8, 425 (1959).

52. J. Beckwith, / . Mol. Biol. 8, 427 (1964).

53. F. Jacob, A. Ullman, and J. Monod, J. Mol. Biol. 13, 704 (1965).

54. J. H. Miller, W. S. Reznikoff, A. E. Silverstone, K. Ippen, E. R. Signer, and J. Beckwith, / . Bacteriol. 104, 1273 (1970).

55. J. P. Gratia, Biken's J. 9, 77 (1966).

56. J. A. Spudich, V. Horn, and C. Yanofsky, J. Mol. Biol. 53, 49 (1970).

57. I. P. Crawford and L. M. Johnson, Genetics 49, 2670 (1964).

58. S. R. Kupor and D. G. Fraenkel, J. Bacteriol. 100, 1296 (1969).

59. S. L. Adhya and M. Schwartz, quoted in 59a.

59a. D. Hatfield, M. Hofnung, and M. Schwartz, J. Bacteriol. 98, 5592 (1969).

60. D. P. Kessler and E. Englesberg, J. Bacteriol. 98, 1159 (1969).

61. E. Englesberg, J. Irr, J. Power, and N. Lee, J. Bacteriol. 90, 946 (1965).

62. L. Garrick-Silversmith and P. E. Hartman, Genetics 66, 231 (1970).

62a. E. P. Goldschmidt, M. S. Cater, T. S. Matney, M. A. Butler, and A. Greene, Genetics 66, 219 (1970).

62b. R. Cunin, D. Elseviers, G. Sand, G. Freundlich, and N. Glansdorff, Mol.

Gen. Genet. 106, 32 (1969).

63. Β. N. Ames and P. E. Hartman, Cold Spring Harbor Symp. Quant. Biol.

28, 349 (1963).

64. J. R. Roth, D. N. Anton, and P. E. Hartman, / . Mol. Biol. 22, 305 (1966).

65. H. Nikaido, M. Levinthal, K. Nikaido, and K. Nakane, Proc. Nat. Acad.

Sci. U.S. 57, 1825 (1967).

66. K. Mizobuchi, M. Demerec, and D. H. Gillespie, Genetics 47, 1617 (1962).

67. H. Itikawa and M. Demerec, Genetics 55, 63 (1967).

68. T. Miyake and M. Demerec, Genetics 45, 755 (1960).

69. P. Margolin, Genetics 48, 411 (1963).

70. Y. Nishioka, M. Demerec, and A. Eisenstark, Genetics 56, 341 (1967).

71. A. J. Blume and E. Balbinder, Genetics 53, 577 (1966).

72. P. E. Hartman, Z. Hartman, R. C. Stahl, and Β. N. Ames, Advan. Genet.

16, 1 (1971).

73. R. E. Koch and J. W. Drake, Genetics 65, 379 (1970).

74. W. F. Dove, Genet. Res. 11, 215 (1968).

75. J. S. Parkinson, J. Mol. Biol. 56, 385 (1971).

75a. A. M. Campbell, "Episomes," pp. 95-113. Harper, New York, 1969.

75b. E. R. Signer, Annu. Rev. Microbiol. 12, 451 (1969).

75c. A. Campbell, Advan. Genet. 11, 101 (1962).

76. J. Scaife, Annu. Rev. Microbiol. 21, 601 (1967).

77. I. R. Lehman, Progr. Nucl. Acid Res. 2, 83 (1963).

78. I. R. Lehman, Annu. Rev. Biochem. 36, 645 (1967).

79. C. C. Richardson, Annu. Rev. Biochem. 38, 795 (1969).

80. F. W. Studier, J. Mol. Biol. 11, 373 (1965).

81. G. Bernardi and C. Cordonnier, / . Mol. Biol. 11, 141 (1965).

82. E. C. Friedberg and D. A. Goldthwait, Cold Spring Harbor Symp. Quant.

Biol. 33, 271 (1968).

83. M. Meselson and R. Yuan, Nature (London) 217, 1110 (1968).

84. S. Linn and W. Arber, Proc. Nat. Acad. Sci. U.S. 59, 1300 (1968).

85. T. Takano, T. Watanabe, and T. Fukasawa, Virology 34, 290 (1968).

86. P. J. Goldmark and S. Linn, Proc. Nat. Acad. Sci. U.S. 67, 434 (1970).

87. I. R. Lehman, J. Biol. Chem. 235, 1479 (1960).

88. I. R. Lehman and A. L. Nussbaum, J. Biol. Chem. 239, 2628 (1964).

89. C. C. Richardson, C. L. Schildkraut, Η. V. Aposhian, and A. Kornberg, J.

Biol. Chem. 239, 222 (1964).

90. I. R. Lehman and C. C. Richardson, J. Biol. Chem. 239, 233 (1964).

91. Q. P. Klett, A. Cerami, and E. Reich, Proc. Nat. Acad. Sci. U.S. 60, 943 (1968).

92. Τ. M. Joivin, P. T. England, and L. L. Bertsch, J. Biol. Chem. 244, 2996 (1969).

93. M. P. Deutscher and A. Kornberg, J. Biol. Chem. 244, 3029 (1969).

94. R. B. Kelly, M. R. Atkinson, J. A. Huberman, and A. Kornberg, Nature (London) 224, 495 (1969).

95. C. C. Richardson and A. Kornberg, / . Biol. Chem. 239, 242 (1964).

96. C. C. Richardson, I. R. Lehman, and A. Kornberg, J. Biol. Chem. 239, 251 (1964).

97. G. Buttin and M. Wright, Cold Spring Harbor Symp. Quant. Biol. 33, 259 (1968).

98. M. Oishi, Proc. Nat. Acad. Sci. U.S. 64, 1292 (1969).

99. S. Barbour and A. J. Clark, Proc. Nat. Acad. Sci. U.S. 65, 955 (1970).

100. S. Barbour, H. Nagaishi, A. Templin, and A. J. Clark, Proc. Nat. Acad. Sci.

U.S. 67, 128 (1970).

101. S. E. Jorgensen and J. F. Koerner, / . Biol. Chem. 241, 3090 (1966).

102. C. C. Richardson, R. B. Inman, and A. Kornberg, / . Mol. Biol. 9, 46 (1964).

103. M. Gellert, Proc. Nat. Acad. Sci. U.S. 57, 148 (1967).

104. Β. M. Olivera and I. R. Lehman, Proc. Nat. Acad. Sci. U.S. 57, 1426 (1967).

105. M. L. Gefter, A. Becker, and J. Hurwitz, Proc. Nat. Acad. Sci. U.S. 58, 240 (1967).

106. C. M. Radding, Annu. Rev. Genet. 3, 363 (1968).

107. J. F. Koerner, Annu. Rev. Biochem. 39, 291 (1970).

108. B. Strauss, Proc. Nat. Acad. Sci. U.S. 48, 1670 (1962).

109. H. Reiter and B. Strauss, J. Mol. Biol. 14, 179 (1965).

110. H. Reiter, B. Strauss, M. Robbins, and R. Marone, J. Bacteriol. 93, 1056 (1967).

111. Y. Takagi, M. Sekiguchi, S. Okubo, H. Nakayama, K. Shimada, S. Yasuda, T. Mishimoto, and H. Yoshihara, Cold Spring Harbor Symp. Quant. Biol.

33, 219 (1968).

112. L. Grossman, J. Kaplan, S. Kushner, and I. Mahler, Cold Spring Harbor Symp. Quant. Biol 33, 229 (1968).

113. A. Rorsch, C. van der Kamp, and J. Adema, Biochim. Biophys. Acta 80, 346 (1964).

114. R. Elder and R. F. Beers, Jr., J. Bacteriol. 90, 681 (1956).

114a. Τ. H. Corbett, C. Heidelberger, and W. F. Dove, Mol. Pharmacol. 6, 667 (1970).

115. E. P. Geiduschek, Proc. Nat. Acad. Sci. U.S. 47, 950 (1961).

116. C. J. Ross, "Biological Alkylating Agents." Butterworth, London, 1962.

117. A. Loveless, "Genetic and Allied Effects of Alkylating Agents." Butterworth, London, 1966.

118. P. D. Lawley and P. Brookes, Biochem. J. 109, 433 (1968).

119. D. R. Kreig, Genetics 48, 561 (1963).

120. P. D. Lawley, Prog. Nucl. Acid Res. Mol. Biol. 5, 89 (1966).

121. D. B. Brown and A. R. Todd, in "The Nucleic Acids" (E. Chargaff and J. N. Davidson, eds.), Vol. 1, p. 44. Academic Press, New York, 1955.

122. K. W. Kohn, Ν. H. Steigbigel, and C. L. Spears, Proc. Nat. Acad. Sci. U.S.

53, 1154 (1965).

123. Ζ. Sormova, Collect. Czech. Chem. Commun. 26, 1482 (1961); also quoted in Μ. E. Balis, "Antagonists and Nucleic Acids." North-Holland Publ., Amsterdam, 1968.

124. V. N. Iyer and W. Szybalski, Proc. Nat. Acad. Sci. U.S. 50, 355 (1963).

125. V. N. Iyer and W. Szybalski, Science 55, (1964).

126. J. Doskocil, Collect. Czech. Chem. Commun. 30, 2434 (1965); also quoted in Μ. E. Balis, "Antagonists and Nucleic Acids." North-Holland Publ., Amsterdam, 1968.

127. P. Brookes, P. D. Lawley, and S. Venitt, Mutat. Cell. Process, Ciba Found.

Symp. p. 138 (1969).

128. R. B. Setlow and W. L. Carrier, Proc. Nat. Acad. Sci. U.S. 51, 226 (1964).

129. J. Marmur and L. Grossman, Proc. Nat. Acad. Sci. U£. 47, 778 (1961).

130. S. Brenner, L. Barnett, F. H. C. Crick, and A. Orgel, J. Mol. Biol. 3, 121 (1961).

131. J. F. Speyer, J. D. Karam, and A. B. Lenny, Cold Spring Harbor Symp.

Quant. Biol. 31, 693 (1966).

132. J. W. Drake and E. F. Allen, Cold Spring Harbor Symp. Quant. Biol. 33, 339 (1968).

133. J. D. Gross, D. Karamata, and P. G. Hempstead, Cold Spring Harbor Symp.

Quant. Biol. 33, 307 (1968).

134. G. Streissinger, J. Emrich, and Μ. M. Stahl, Proc. Nat. Acad. Sci. U.S. 57, 292 (1967).

135. J. R. Fresco and Β. M. Alberts, Proc. Nat. Acad. Sci. U.S. 46, 311 (1960).

136. Ε. M. Witkin, Annu. Rev. Genet. 3, 525 (1969).

137. P. De Lucia and J. Cairns, Nature (London) 224, 1164 (1969).

138. J. Gross and M. Gross, Nature (London) 224, 1166 (1969).

139. J. M. Boyle, M. C. Paterson, and R. B. Setlow, Nature (London) 226, 708 (1970).

140. L. Kanner and P. Hanawalt, Biochem. Biophys. Res. Commun. 39, 149 (1970).

141. Μ. B. Coukell and C. Yanofsky, Nature (London) 228, 633 (1970).

142. C. M. Berg, Bacteriol. Proc. p. 26, (1971).

143. L. S. Lerman, J. Cell. Comp. Physiol. 64, Suppl. 1, 1 (1964).

144. G. E. Magni, R. C. von Borstel, and S. Sora, Mutat. Res. 1, 227 (1964).

145. S. Sesnowitz-Horn and E. A. Adelberg, Cold Spring Harbor Symp. Quant.

Biol. 33, 393 (1968).

146. C. R. Stewart, Genetics 59, 23 (1968).

147. W. F. Dove, Annu. Rev. Genet. 2, 305 (1968).

148. N. C. Franklin, Genetics 55, 699 (1967).

149. J. Inselburg, / . Bacteriol. 94, 1266 (1967).

150. S. N. Cohen, R. P. Silver, R. A. Sharp, and A. E. McCoubrey, Ann. N.Y.

Acad. Sci. 182, 172 (1971).

151. P. A. Sharp, M.-T. Hsu, E. Ohtsubo, and N. Davidson, / . Mol. Biol. (1972) (in press).

152. S. R. Palchaudhuri, A. J. Mazaitis, W. K. Maas, and A. K. Kleinschmidt, Proc. Nat. Acad. Sci. U.S. (1972) (in press).

153. J. M. Boyle, M. C. Patterson, and R. B. Setlow, Nature (London) 226, 708 (1970).

154. W. Goebel and D. R. Helinski, Biochemistry 9, 4793 (1970).

155. M. Wright and G. Buttin, / . Biol. Chem. 240, 6543 (1971).

156. F. G. Nobrega, F. H. Rola, M. Pasetto-Nobrega, and M. Oishi, Proc. Nat.

Acad. Sci U.S. 69, 15 (1972).

157. S.-M. Hadi and D. A. Goldthwait, Biochemistry 10, 4986 (1971).

158. R. Knippers, Nature (London) 228, 1050 (1970).

159. V. Nusslein, B. Otto, F. Bonhoeffer, and H. Schaller, Nature (London) New Biol. 234, 285 (1971).

160. W. S. Kelley and H. J. Whitfield, Nature (London) 230, 33 (1971).

161. R. Thomas and S. Moussetc, J. Mol. Biol. 47, 179 (1970).

162. G. Lindahl, Y. Hirota, and F. Jacob, Proc. Nat. Acad. Sci. U.S. 68, 2407 (1971).

163. Y. Nishimura, L. Caro, C. M. Berg, and Y. Hirota, J. Mol. Biol. 55, 441 (1971).

164. N. Franklin, in "The Bactenophage Lambda" (A. D. Hershey, ed.), p. 175.

Cold Spring Harbor Laboratory, New York, 1971.

KAPCSOLÓDÓ DOKUMENTUMOK