• Nem Talált Eredményt

Reactorrunawaycriteriacanbeappliedtodefinetheboundaries ofsafeandunsaferegimesthroughdistinguishingtherunawayand non-runawaystates. Thisfeatureallowstoapplycriteriain off-linetasks(likeprocessdesign,optimization)andinon-linetasks too(likeearlywarning).Therefore,thermalrunawaycriteriaare applicableindesigningandoperationofchemicalreactors(Jiang etal.,2011).Abriefhistoryaboutthereactorrunawaycriteriauntil 2006canbefoundin(Shouman,2006).

Thermalrunaway criteria can be classifiedinto three types, which are geometry-based criteria, stability-based criteria and sensitivity-based analysis can beperformed to define runaway boundaries,whicharepresentedinthefollowingSections5.2–5.4.

Therunawaycriteriaandtheyearoftheirfirstpublicationare pre-sentedinTable3.Section5.1presentsasimplemathematicalmodel ofatubularreactor(orbatchreactor),onwhichthederivationof runawaycriteriacanbepracticedeasily.

5.1. Mathematicalmodel

Afirstorderreactioncarriedoutinabatchreactorispresentedin thissectionwhichwillprovideasabaseforpresentationofthermal runawaycriteria.Thereactorwasconsideredasperfectlymixedso

Table3

Thermalrunawaycriteriadevelopmentsovertime.

Criterion Yearofpublication Reference

Semenov-criterion 1928 Semenoff(1928),

Semenov(1940)

“PracticalDesign”criterion 1938 Berty(1999)

vanHeerdencriterion 1953 vanHeerden(1953)

Gilless-Hoffmanncriterion 1961 Berty(1999),Gillesand Hofmann(1961) ThomasandBowescriterion 1961 Thomas(1961),Varma

etal.(2005) AdlerandEnigcriterion 1964 AdlerandEnig(1964) vanWelsenaereandFroment

criterion

1970 vanWelsenaereand

Froment(1970) Morbidelli-Varmacriterion 1987 MorbidelliandVarma

(1988)

Adiabaticcriterion 1988 Gygax(1988)

Hopf-bifurcationanalysis 1989 Colantonioetal.(1989)

Vajda-Rabitzcriterion 1992 VajdaandRabitz

(1992)

Strozzi-Zaldivarcriterion 2003 Zaldívaretal.(2003)

Lyapunov-stability 2006 Szeifertetal.(2006)

Adiabaticcriterionbasedon Strozzi-Zaldivarcriterion

2016 Guoetal.(2016)

Kähm-Vassiliadiscriterion 2018 KähmandVassiliadis (2018a)

ModifiedSlopeCondition 2019 KummerandVarga

(2019a)

ModifiedDynamicCondition 2019 KummerandVarga (2019a)

thefollowingdifferentialequationscanbewrittentodescribethe dynamicalbehaviour: Fig.5showshowthepresentedmodel(Eqs.6–11)issensitiveto

thewalltemperature,anditpresentsthedevelopmentofthermal runaway.

5.2. Stability-basedcriteria

Thestateofthesystemcanbeconsideredstableifafterasmall disturbancethesystemreturnstoinitialstateandduringthe tran-sientbehaviourthestateofthereactorstaysclosetothatinitial state.Thistheorycanbeusedtoinvestigatereactorrunawaysince incaseofrunawayreactionssimilarsituationoccurs,wherethe positivefeedbackinthetemperatureandreactionraterelationship canresultinthedevelopmentofrunaway.Thatfirststateofthe sys-tem,whenrunawayisoccurredcanbeconsideredasunstablestate, fromwhichthereactorcannotgobacktotheinitialstate. Numer-ousstability-basedrunawaycriteriawereproposedtoindicatethe developmentofthermalrunaway,whicharenowpresentedinthe followingsection.

5.2.1. Semenov-criterion

Firstpioneerworkinthefieldofreactorrunawaywasdoneby Semenov,whichworklaidthegroundworkforfurtherresearches.

Thissectioniswrittenbasedon(Stoessel,2008;Semenoff,1928;

Semenov,1940).Semenovconsideredanexothermalreactionwith zero-orderkinetics.Semenov-diagrampresentstheheat-releasein reactionand theremovedheatbyheattransferasafunctionof temperature.

Fig.7 presents therelationship betweenthe generated and removedheat,wherethegeneratedheatvariesexponentiallywith processtemperature,whiletheremovedheatvarieslinearlywithit.

ThreeessentialpointsdrawattentioninSemenov-diagram,which aremarked asA, Band C, andthe belongingtemperaturesare markedasTw1, Tw2 andTw3.InAwecanrespectastableoperating pointsinceifthecoolingtemperatureislowerthan Tw2,the pro-cesstemperaturewilldecreaseduetothehigherremovedheat untilA,andnoself-ignitionoccurs.Ifthecoolingtemperatureis higherthan Tw2,self-ignitionoccurssince thegenerated heatis continuouslyhigherthantheremovedheat.Cpointrepresentsthe criticalpointincaseofahighercoolingtemperature,wherethe generatedheatcurveistangentatonepointtotheremovedheat line.Thebelongingcoolingtemperatureisconsideredascritical, orasthelowesttemperatureofself-ignition.Inthispointalittle increaseincoolingagenttemperaturethecoolinglinewillhaveno intersectionbetweenthegeneratedheatandremovedheatcurve leadstotherunawayofreaction.

Fortheaimofavoidingthermalrunawayitisnecessaryto oper-atethereactor faraway from critical conditions. Based onthe Semenov-diagramandfurtherinvestigationofthecriticalpointa runawaycriterioncanbederived.Inthecriticalpointthegenerated andremovedheat,andalsotheirderivativeswithrespectto tem-peratureequals,thiscanbewrittenasEqs.12–15presents.Since thereagentconsumptionisneglected,thereactionratevariesonly withtemperature,hencethepartialderivativeofthereactionrate canbeconsidered.

Dividingthe13and15.equationsthefollowingcriticalequation istheresult:

r rT =RTc2

E =(Tc−Tw)=Tc (16)

Eq.16 presents that thereis a minimal temperaturedifference betweentheprocessandcoolingtemperaturetokeepthe reac-tionoperationstable.Semenov-diagramhelpsustoformulatethe runawaycriterion,becausethecriticaltemperaturedifferenceis alwayssatisfiedwhenthetemperatureisbelowthecritical tem-peraturevalue.

(T−Tw)≤ RTc2

E (17)

FromEq.17thecriticaltemperaturecanbecalculatedbysolving thequadraticequation. Ifweconsideronlythefirsttwotermsontherightside,the followingrunawaycriterion(Semenov-criterion)canbederived:

(T−Tw)≤ RTw2

E (19)

WepaytributetotheSemenov-number,whichistheratioof dimensionlessreactionheatparameterand theheattransfer,as follows:

= (−Hr)kcn UA

E

RT2 (20)

Forverylargeactivationenergiesthefollowingcriterioncanbe defined,mentionedintheliteratureasSemenov-criterion(where eisthenaturalnumber):

<1

e= c (21)

Thisequationisdeterminingintheresearchfieldofthermal ignition,becausethefollowingresearchesfocusonhowto deter-mine thecritical Semenov-number in more realistic cases, like withoutneglectingthereactantconsumption.

However,wearegoingtopresenttherunawaycriteria with-outinvestigatingtheconcretevalueofSemenov-numbersinthe followingsections,insteadwearegoingtopresentthebase the-ory.Criticalstates(temperature,concentration,etc.)canbedefined though,andthecriticalSemenov-numberscanbecalculatedfrom thesevariables.

5.2.2. VanHeerdenand“practicaldesign”criterion

BertyclearlypresentedthetheorybehindVanHeerden crite-rion,whichisoftencalledas“SlopeCondition”(Berty,1999;van Heerden, 1953). In a steady-state operationthe generated and removedheatareequal. Itisevidentalsothattheheat genera-tionand heatremovalrateincreaseswithtemperature,butthe generatedheatincreasesexponentially.Ifthereisanydisturbance inthereactortemperaturetheheatremovalrateshouldincrease fasterwithtemperaturethanthegeneratedheat,itwouldprevent temperaturerunaways.Mathematicalformofthecriterionisthe following:

dqgen

dT ≤dqrem

dT (22)

TheareaofsensitivedomainwasdefinedbyVanHeerdenin 1953(vanHeerden,1953).Perkinsassumedzeroorderkineticsto defineasafeboundary.ConsideringEqs.22and12thefollowing criterioncanbedefined:

T−Tw≤RT2

E (23)

Bashiretal.derivedthesamecriterioninvestigatingthe inflec-tionpointinageometricplane(Bashiretal.,1992),statingthatthe calculatedmaximumtemperatureinEq.23isthelimitingvaluefor runawayattheinflectionpoint.

5.2.3. Gilles-Hoffmanncriterion

Gilles and Hoffmannin1961 recognizedthe“Dynamic Con-dition”, whichistheconditionthat setsthelimitstoavoidrate oscillation.Criterionisstatedastheincreaseofheatremovalrate withtheincreaseoftemperaturemustbelargerthanthe differ-encebetweenheatgenerationrateincreaseduetotemperature alone andreaction ratedecrease duetotheconcentrationdrop alone(Berty,1999;GillesandHofmann,1961).

∂qgen

∂T

c

+ ∂m

∂c

T

≤dqrem

dT (24)

wheremisthematerialbalancefunction.

5.2.4. Lyapunov-stabilityingeometric-andphase-plane

Szeifertetal.proposedtouseLyapunov’sindirectmethodto forecastreactorrunaway(Szeifertetal.,2006;Sastry,1999).The

stabilityanalysisofasystemdefinedbyasetofnonlinear differ-entialequationsofthestatevariablesapplyingLyapunov’sindirect methodisreducedtoaneigenvalueanalysisoftheJacobianmatrix.

J= ∂f

∂x (25)

IfrealpartofeacheigenvaluesoftheJacobianmatrixisnegative thenthemodelisstable,butifanyofthesearepositivethensystem isunstableattheinvestigatedoperatingpoint.Lyapunov-stability canbeperformedingeometric-andinphase-planetoo.Thespatial stabilitycriterionisalwaysmoreconservative,becausethe stabil-ityinphasespacealwaysfollowsfromthespatialstabilitywhile inverselydoesnot.

In2008López-Garcíaetal.proposedtoinvestigatethe steady-statesolutionswithaperturbationmodel,becausethedynamic studyisessentialtoguaranteethethermallystableoperation.The methodis basedonthelinearization oftheperturbationmodel whichresultintheanalysisoftheeigenvaluesofJacobianmatrix (López-GarcíaandSchweitzer,2008).VajdaandRabitzsimilarly investigatedtheperturbationmodelearlierin1992,butthey inves-tigatedthesensitivityofmaximumvalues ofeigenvaluesofthe Jacobianmatrix(VajdaandRabitz,1992).

Forinvestigating thedynamicsof asystem,Hopf-bifurcation analysiswassuggested,whichisbasedoninvestigatingthe eigen-values too.Ifthe realpartof a complex-conjugate pairs ofthe Jacobianmatrixbecomespositivethenbifurcationoccurs,andthat meansreactorrunawaymaydevelop(Colantonioetal.,1989;Ball andGray,2013;GómezGarcíaetal.,2016;McAuleyetal.,1995;

Kimetal.,1991;BallandGray,1995;Ball,2011).

5.2.5. Strozzi-Zaldivarcriterion(Divergencecriterion)

StrozziandZaldivarinvestigatedthephase-spacevolume con-tractionsduringthereactoroperationbasedoninvestigatingthe Lyapunov-exponentsand thedivergence ofthe system(Strozzi etal.,1999).Ithasbeenshownthatthedivergencecriterioncan beappliedfordevelopingsafetyboundarydiagramstodistinguish therunawayandnon-runawaystatesforseveraltypesofreactors (BR,SBR,CSTR)andformultiplereactions,alsowithandwithout ofacontrolsystem(Zaldívaretal.,2003).

StrozziandZaldivarprovidedthefollowingderivationoftheir runawaycriterion(Strozzietal.,1999).AccordingtotheLiouville’s theorem,contractionofastatespacevolumeofad-dimensional dynamicalsystemcanbedefinedbasedonitsdivergence(Arnold, 2006).

dV(t) dt =

divF[x(t)]dx1(t)...dxd(t) (26) wherethedivergenceofthesystemcanbecalculatedas

divF[x(t)]=∂F1[x(t)]

∂x1(t) +∂F2[x(t)]

∂x2(t) +···+∂Fd[x(t)]

∂xd(t) (27) Assumingthatthed-dimensionalvolumeissmallenoughthat thedivergenceofthevectorfieldisconstantoverV(t),then dV(t)

dt =V(t)divF[x(t)] (28)

IntegratingEq.28theinitialphase-spacevolumeV(0)changeswith timeas

V(t)=V(0)exp

t 0

divF[x(t)]d

(29) Hencetherateofchangeofthestate-spacevolumeisgivenby thedivergenceofthesystem,whichislocallyequivalenttothetrace oftheJacobianofF.Theexpansionandcontractionofthe state-spacevolume,sothatthedivergenceoftheinvestigatedsystemis inrelationwithrunawayandnon-runawaysituations.Practically

itmeansthatifthestatevariablesdriftoffforasmall perturba-tionthenthesystemisunstable.Incasethedivergenceisnegative therewillbenorunaway,althoughifthedivergenceispositive, runawaywilldevelop.Therefore,theproposedrunawaycriterion isthefollowing:

divF[x(t)]≤0 (30)

Copelli etal. modified theoriginal divergence criterion,and theyproposedtodisregardallcontributionsarisingfrom extent-of-reactions that are not related toheat evolution. Other state variablescangenerateastrongstate-spacevolumecontractionthat isnotrelatedtothedevelopmentofrunawaywhichmayleadsto thefailureofdivergencecriterioninpredictingreactorrunaway.It meansthatforexamplethecomponentswhicharenotreactantare neglectedwhenevaluatingthemodifieddivergenceofthesystem (Copellietal.,2014),(Kahm,2019).

Strozzietal.alsoinvestigatedtheLyapunov-exponentstodefine sensitivity.Lyapunov-exponentcanmonitorthebehaviouroftwo neighbouringpointsofasysteminadirectionofthephasespaceas afunctionoftime:IftheLyapunov-exponentispositive,thenthe pointsdivergefromeachother,iftheexponentbecomesnegative, thenthepointsconverge.Lyapunov-exponentsarerelatedtothe eigenvaluesoftheJacobianmatrix,sinceitaveragestherealparts ofalleigenvaluesalongatrajectory(Strozzietal.,1994;Strozzi andZaldívar,1994).AlthoughtheLyapunov-exponentscan under-estimatetherunaway boundaryfor likeautocatalyticreactions, becauseitusestheintegralovertimewhich isslowtorespond tofastchange.Therefore,Strozzietal.proposedtoapply diver-gencecriterion(Strozzietal.,1999).Kähmetal.laterinvestigated theLyapunov-exponentsnotinsensitivitycontext,but investigat-ingthevaluesofit.IftheLyapunov-exponentbecomespositive,an unstableprocessispresent(KähmandVassiliadis,2018a;Kähm andVassiliadis,2018b;KähmandVassiliadis,2018c).

We cancalculate thedivergenceonline, withoutneeding to knowthedifferentialequationsofthesystembyusingthetheory ofembedding.Statespacereconstructionisapossibletechnique toaddressthis problemusingtimedelayembeddingvectorsof theoriginalmeasurements(i.e.,temperatureorpressure measure-ments)(Boschetal.,2004a;Boschetal.,2004b).Althoughthereis severalmethodsofreconstruction,butthereisnoapriorimethodto decidewhichoneisthebest.In(Zalı ´dvaretal.,2005)Zaldivaretal.

testedseveralmethods:timedelayembeddingvectors;derivative coordinatesandintegralcoordinates,buttheresultsweresimilar andtheyusedderivativecoordinatesbecauseoftheirclearphysical meaning.Therearetworeconstructionparameters:theembedding dimension,andthetimedelay.Theembeddingdimensionisthe dimensionofthestatespacerequiredtounfoldthesystemfrom theobservationofscalarsignals,whereasthetimedelayisthelag betweendatapointsinthestatespacereconstruction(Boschetal., 2004b).

Guoetal.developedanadiabaticcriterionbasedonthe diver-genceofanadiabaticmodelofthereactorsystemwithzerofeed rateresultinamorestrictrunawaycriterion(Guoetal.,2016;Guo etal.,2017a).

WalterKähmdevelopedastabilitycriterionbasedonthe origi-naldivergencecriterion,whichisbasedonthedifferencebetween thedivergenceoftheJacobianmatrixoftheinvestigatedreactor systemvariablesandthecorrectionfunction.Thecorrection func-tionisderivedasafunctionofthedivergenceoftheJacobianatthe previoustimestep;Damköhlernumber;Barkelewnumber; Arrhe-niusnumberandtheStantonnumber.Theyintroducedthisstability criterion,becausedivergencecriterionmayoverpredictthe ther-malrunawaypotentialofthesystem.Thederivationisbasedon a linearapproximationofthedivergence(KähmandVassiliadis, 2018a;Kahm,2019;KähmandVassiliadis,2018d).Theproposed

stabilitycriterionissuccessfullygeneralizedformultiplereactions (KähmandVassiliadis,2019).

5.2.6. Modifieddynamicandslopecondition

KummerandVargainvestigatedthemostfrequentlyapplied criteriaand derived two newcriteria as a result(Kummer and Varga,2019a).Eq.31presentstheModifiedSlopeCondition(MSC) andEq.32presentstheModifiedDynamicCondition(MDC).We investigatedthreedifferentreactionsystems(singlereactionwith areagent,twoparallelreactions,andanautocatalyticreaction sys-tem)tovalidatetheModifiedDynamicandSlopeConditioncriteria, whichinthereliabilityandthetimeofindicationwerecompared.

MDCdidnotmissanythermalrunawaydevelopment,butthe per-formanceofMSCiscompatiblewiththeinvestigatedones.

∂qgen

Several reactor runaway criteria exist based on a geomet-ric characterization of temperature trajectories, which will be presentedinthis section.Advantagesof inflexion-basedcriteria (ThomasandBowes-,AdlerandEnigcriterion)andadiabatic cri-terionisthatitrequiresonlyatemperatureprofileortrajectory toevaluatethereactionstates,althoughwithoutinvestigatingthe states on a prediction horizon the runaway indications proba-blyoccurslately.Inflection-basedcriteriadonotgiveinformation abouttheintensityofthereactorrunaway.VanWelsenaereand Fromentcriterionisquiteconservativethoughandindicates reac-torrunaway quite early,but a model of thereactor system is requiredfortheapplication.

5.3.1. ThomasandBowescriterion

ThomasandBowesproposedtoindicatereactorrunawayasthe situationinwhichaninflexionpointappearsbeforethe tempera-turemaximuminthegeometricplane(inversustimeorlength).It meansthatthereactoroperationstayscontrollableifthefollowing statementsaresatisfied(Thomas,1961;Varmaetal.,2005).

d2T

dt2 <0whiledT

dt >0 (33)

DenteandCollinain1964independentlyproposedthesame criterion(Varmaetal.,2005).

5.3.2. AdlerandEnigcriterion

AdlerandEnigfounditmoreconvenienttoworkina phase-plane(intemperature-conversion)thaninthegeometricplane.To indicatereactorrunaway aninflexionpointmustappearbefore thetemperaturemaximuminthephase-plane.Itmeansthatthe reactoroperationstayscontrollableifthefollowingstatementsare satisfied,wherexistheconversion(AdlerandEnig,1964).

d2T

dx2 <0whiledT

dx >0 (34)

5.3.3. VanWelsenaereandFromentcriterion(orMaxicriterion) vanWelsenaere and Fromentdetermined critical conditions basedonthelocusoftemperaturemaximainthe temperature-conversion plane. This criterion can be eliminated based on obtainingtherelationbetweenmaximumprocesstemperatures

Fig.6. Sensitivityofthereactormodelwithrespecttowalltemperature.

Fig.7.Semenov-diagram.

evolvingatdifferentcoolingagenttemperatures(vanWelsenaere andFroment,1970).

dT

dx >0dcm

dTm

>0 (35)

5.3.4. Adiabaticcriterion

Afrequentlyappliedrunawaycriterion(eveninindustrial appli-cation)isthattheprocesstemperatureevolvingunderadiabatic conditions(sotheMTSR)cannotexceedtheMaximumAllowable Temperature(Abeletal.,2000).

Tp+Tad=MTSR≤MAT (36)

5.4. Sensitivityanalysisofchemicalreactors(Morbidelli-Varma criterion)

A.Varmaetal.wroteanexcellentbookabouttheparametric sensitivitiesinchemicalsystems(Varmaetal.,2005).Theanalysis ofhowasystemrespondstochangesintheparametersiscalled parametricsensitivity(Varmaetal.,2005).Inthecontextof chemi-calreactorsBilousandAmundsonperformedapioneerworkonthe fieldofparametricsensitivity,wheretheresearchersshowedhow themaximumtemperaturealongthereactorlengthvarieswith theambient(cooling)temperature(BilousandAmundson,1955;

BilousandAmundson,1956;Grayetal.,1981;Emigetal.,1980;

Grayetal.,1981).Theresultofasimilaranalysiscanbeseenin Fig.6.Sensitiveregionsofoperationsshouldbeavoidedbecauseits

performancebecomesunreliableandchangessharplywithsmall variationsinparameters.Althoughsomeexperimentalstudiesare availableintheliterature(Emigetal.,1980;LewisandVonElbe, 2014),itisdifficulttoperformwholesomeinvestigationsaboutthe reactionsystems(nottomentiontheindustrialsystems),because thesesystemsinvolvemany parametersaffectingthebehaviour ofthereactor.Therefore, modelbasedinvestigations are neces-sary.For theaimofinvestigationthesensitivity ofreactors we shoulddefinevaluableoutputs(dependentvariables),and valu-ableinputs(independentvariables).Dependentvariablescanbe investigatedingeometric-or/andinphase-plane,whichcanbefor exampleproductivity,processtemperature,processpressureetc.

Inputvariablestypicallyareinitialconditions,operatingconditions andgeometricparametersofthesystem.

MorbidelliandVarmausedthefactthatneartheexplosion (run-away)boundarythesystembehaviourbecomessensitivetosmall changesinsomeoftheinputorinitialparameters,andtheydefined theboundarybetweenrunawayandnon-runawayzonebasedon thissensitivityconcept.Thefirst-orderlocalsensitivityorabsolute

MorbidelliandVarmausedthefactthatneartheexplosion (run-away)boundarythesystembehaviourbecomessensitivetosmall changesinsomeoftheinputorinitialparameters,andtheydefined theboundarybetweenrunawayandnon-runawayzonebasedon thissensitivityconcept.Thefirst-orderlocalsensitivityorabsolute