• Nem Talált Eredményt

know What already do we about reactor runaway? – A review Process Safety and Environmental Protection

N/A
N/A
Protected

Academic year: 2022

Ossza meg "know What already do we about reactor runaway? – A review Process Safety and Environmental Protection"

Copied!
17
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Process Safety and Environmental Protection

jo u r n al ho m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / p s e p

What do we know already about reactor runaway? – A review

Alex Kummer

, Tamás Varga

InstituteofChemicalandProcessEngineering,UniversityofPannonia,H-8200Veszprém,Hungary

a rt i c l e i nf o

Articlehistory:

Received6July2020

Receivedinrevisedform28August2020 Accepted25September2020

Availableonline1October2020

Keywords:

Runawayprevention Thermalsafety Earlywarningsystem Processsafety Thermalrisk

Safetyboundarydiagram

a b s t ra c t

Nowadays,reactorrunawayisstillacrucialphenomenfromthesafetyviewpoint.About120scientific journalarticlesarepublishedeveryyearinthelastdecadeinwhichthermalrunawayisakeyword.The possiblecauseandconsequencesofreactorrunawayareadressedwheretheworstcaseistheexplosion ofthereactor.Preventionstepstoavoidthedevelopmentofthermalrunawayincludetheappropriate designofthereactor,theoperationstrategyandanearlywarningdetectionsystem.Theavailableassess- mentmethodsforthermalriskanalysisareaddressedindetail.Reactorrunawaycriteriacanindicate earlythethermalrunaway,whichcriteriaareaddressedinthisreviewindetailunderthreeclasses:

geometry-,sensitivity-,andstability-basedrunawaycriteria.Operationstrategyofsemi-batchreactors canbedesignedbycalculatingWesterterp-diagramwhoseevolutionisclearypresented.Significant worksonthefieldofthereactordesign,operationandreactorsafetyarecollectedandevaluated.Finally possiblefurtherresearchareasaresuggestedtoimproveourknowledgeaboutthermalsafety,suchas investigatingparameteruncertaintyinrunawayindicationoroptimizethesafetyactionstomoderate theconsequencesofrunaway.

©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/

4.0/).

Contents

1. Introduction...461

2. Causeandconsequenceofthermalrunaway...463

3. Preventionofreactorrunaway...463

4. Methodstoevaluatethermalrisks...464

5. Reactorrunawaycriteria...465

5.1. Mathematicalmodel...465

5.2. Stability-basedcriteria...466

5.2.1. Semenov-criterion...466

5.2.2. VanHeerdenand“practicaldesign”criterion...467

5.2.3. Gilles-Hoffmanncriterion ... 467

5.2.4. Lyapunov-stabilityingeometric-andphase-plane...467

5.2.5. Strozzi-Zaldivarcriterion(Divergencecriterion)...467

5.2.6. Modifieddynamicandslopecondition...468

5.3. Geometry-basedcriteria...468

5.3.1. ThomasandBowescriterion...468

5.3.2. AdlerandEnigcriterion...468

5.3.3. VanWelsenaereandFromentcriterion(orMaxicriterion)...468

5.3.4. Adiabaticcriterion...469

5.4. Sensitivityanalysisofchemicalreactors(Morbidelli-Varmacriterion)...469

5.5. Data-basedpredictionofthermalrunaway...469

Correspondingauthor.

E-mailaddress:kummera@fmt.uni-pannon.hu(A.Kummer).

https://doi.org/10.1016/j.psep.2020.09.059

0957-5820/©2020TheAuthor(s).PublishedbyElsevierB.V.onbehalfofInstitutionofChemicalEngineers.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

6. Safetyboundarydiagrams...470

7. Safetyequipment/actionstomoderateseriousconsequences...471

8. Applicationexamplesofrunawaycriteria...472

8.1. Comparisonofreactorrunawaycriteria ... 472

8.2. Reactoroperationdesign...472

8.3. Processcontrol...472

8.4. Runawaypredictionandinhibition ... 473

9. Futuredirections...473

Acknowledgement...473

References...473

Nomenclature

A heattransferarea C concentration cp heatcapacity Da Damköhlernumber E activationenergy Ex exothermicitynumber I penaltyindices

ITHI inherentthermalrunawayhazardindex MF materialfactor

MTSR MaximumTemperatureofSynthesisReaction qgen generatedheat

qrem removedheat

P pressure

Pr probability r reactionrate R gasconstant RI riskindex Ry reactivitynumber

S severity

tdos dosingtime

TMRad TimetoMaximumRateunderadiabaticconditions Tc criticalorcoolingtemperature

Tp;T processtemperature Tta targettemperature Tw walltemperature

U overallheattransfercoefficient

V volume

Wt Westerterpnumber Xac accumulatedreagent Tad adiabatictemperaturerise Hr reactionheat

␣ UA/(V␳cp)

␤ Hr/(␳cp)

␥ ineticparameter

␦ E/R

␺ Semenovnumber

␧ relativevolumeincrease

␳ density

J Jacobianmatrix I identitymatrix

1. Introduction

Safetyassessmentisalwaysacrucialpointinchemicalplant design and operationdue to thecomplexity of modern, highly integrated plants,anditrequiresdeepknowledgeofallprocess unitsandalltheinteractionsbetweenthem.Itisnecessarytohave informationabouteveryimportantphysicalandphysic-chemical propertiesofeverycomponentwhichoccursorcanoccurinthe

system(Vernières-Hassimietal.,2017).Alsoprocesssafetyreg- ulationshave been gettingstricter in recent decades,and they covereveryprocessunitandsteponeverylevelinmodernchemi- caltechnology.Theseincreasingrequirementsfromprocesssafety systemtriggeredsignificantprogressin processsafety manage- mentthatmakespossibletoavoidunnecessaryeventsinnowadays fullyintegrated technologieswhichoperateina hecticbusiness environment,whichrequiremoreflexibletechnologiesthanever.

However,duetoevolutionarychangesintheindustry,newhaz- ardouseventsoccur,whicharemorerelatedtoorganization,safety culture,and lackof knowledge and awareness(Knegtering and Pasman,2009).

Itiswell-knownthatcertainoperatingconditions,socertain valuesoftheparameterscancausethesystembecomereallysen- sitivetovaluesoftheinitialoroperationparameters.Insensitive regionofthesystem,verysmallchangeininitialconditionleads fullydifferenttrajectorieswithrespecttopressure,temperature, concentrations,etc.Itismoreinterestingifanexothermicreaction iscarriedout,whererunawaycanoccurasaresultofsmallchanges.

Thermalreactorrunawaysarecharacterizedbyarapidincreasein thetemperatureandpressureduetocontinuouslyincreasingrate ofheatgeneration.Therateofheatgenerationincreasesexponen- tiallywiththetemperature,contrarilytheremovedheatincreases onlylinearlywithit.Theriskofthermalrunawayoccursisactu- allytheriskoflosingthecontrolofchemicalreactionswhichtake placeinthesystem(e.g.triggeringarunawayreaction).Areaction runawaymayhavemultipleconsequenceswheretheworstcaseis theexplosionofreactor(Stoessel,2008).

Duringthermalrunawayssomeofthecomponentscanvaporize ordecompositioncanoccurduetotheelevatedtemperature,which increasesthepressureintheprocessunit(Pasmanetal.,1992).In worstcaseitleadstoaBoilingLiquidExpandingVaporExplosion (BLEVE).Ifthepressureincreasingrateishigherthanthedischarge rate,thereactorwillexplodeduetothehighpressure(Liuetal., 2018a).In lesscatastrophic casespreventionofdevelopmentof thermalrunawayshouldbeavoidedbecauseso-calledhot-spots causeearlydeactivationofcatalystand/orqualitydrop.Hence,the determinationofstableoperatingregimesofareactorisacrucial stepinprocessdesignandoperation(Varga,2009).From1995to 200412%ofBLEVEtypeaccidentsoccurredduetorunawayreac- tions,alsofrom1926to20046BLEVEtypeaccidentoccurredled to19deathand171injuredpeople(AbbasiandAbbasi,2007).

Knowledge aboutthe phenomenon of thermal runaway has improvedalotlately,butregretfullythatknowledgeisnotfully integratedintothepractice,anditcausessomeseriousfailuresand processmalfunctionsnowadays.Thermalrunawayisresponsible for26.5%ofthepetrochemicalaccidents(Balasubramanianand Louvar,2002),andreactorrunawaywasresponsiblefor25%ofthe accidentsinFrenchindustry(Dakkouneetal.,2018).Therewere manylethalornon-lethalaccidentsduetothermalrunawayinthe recentpast.TheSeveso-disasterin1976istheprimeexampleof theimportanceofknowingparticularlythephenomenonofther- malrunaway.Inthisdisasteratoxiccloudwasreleasedintothe 461

(3)

Fig.1.ExplosionofFu-Kaochemicalplantandthedamagednearbybuildings.Theshockwavedestroyedmanywindowswithinhalf-a-kilometer(KaoandHu,2002).

atmospherethrougharupturediskpoisoningalmost37,000peo- ple(CardilloandGirelli,1981;Fabianoetal.,2017;Jainetal.,2017).

In1990,inStanlowa15m3batchreactoratShellplantproducing 2,4-difluoro-anilinehadarunawayreactionleadingtoanexplo- sion,wheretheentireplantwasdestroyed(Cates,1992),(Mannan, 2014).In1996arunawayreactionoccurredinabatchreactorcre- atinghighpressurethatledtoruptureofthevessel(Partington and Waldram, 2002).In 1997,Ohio,anexplosionoccurredina resinsproductionunit,whereoneworkerdiedandfouremploy- eesinjured(UnitedStates,1999).In1998,inNewJerseyaviolent explosionandfireoccurredduetoareactorrunawayinjuringnine employees(GyenesandCarson,2017).In2001adestructiveexplo- sionoccurredinanacrylicresin manufacturingplantinTaiwan at the Fu-Kao Chemical Plant as a result of runaway reaction.

A batchreactorcarrying outpolymerizationreactionsexploded wheremorethan100peoplewereinjuredandonepersondied.

Thecatastrophicexplosiondestroyedthenearbyplantsanddam- agedthenearbybuildings,whichisshowninFig.1(KaoandHu, 2002).

InJanuary2006anacrylicpolymerbatchreactorexplodeddue tothisphenomenon(GyenesandCarson,2017).In2007areactor explodedanddestroyedinT2LaboratoriesinFloridabecauseofa thermalrunawayreactionleadtothedeathoffouremployees(Hall, 2010).In2008,USA,atBayerCropsciencepesticidemanufacturing unitathermalrunawaycausedanexplosionwhichdemolishedthe processunitleadingtotwolethaldamageandeightpeopleinhaled toxicchemicals(Abbasietal.,2010).Hydrogenperoxideisawidely usedchemical,buttheexothermicdecompositionofthischemical causedsomefireandexplosionaccidentsintherecentpast(Wuand Qian,2018).In2012,anexplosionoccurredinachemicalplantin Japaninjuring36personandkillingonepersonduetotherunaway polymerizationofacrylicacid(Fujitaetal.,2019).

Now it is clearthat wehave todeal withthermal runaway toavoidmoreorlesscatastrophicincidents,andwemust“learn from historyor you’redoomedtorepeatit”(the quoteis from

JesseVentura).Thefirstaspectisalwaysthesafety,whichcanbe realizedthroughstudyingthephenomenonofthermal runaway in detail. Our goalwith this review is toemphasize that engi- neersshouldneverforgetaboutthatthesafetyhasmuchhigher prioritythanincomedespitethefrequencyofaccidentsinchem- icalprocessesare decreasing.Especially onthefield of thermal safety,wheretheignoranceandtheirresponsibilitycanresultin seriousand unfortunately,sometimeslethalconsequences.This articleprovidesthemaincontributionswhichshouldbeknown byeveryprocessengineer.Besidethewell-designedreactor,an appropriate,reliableandearlywarningdetectionsystemshould bedevelopedforsafereactoroperation.Ifitisdone,wehaveto preparethesystemandoperatorsforemergencycases,sowemust designappropriatesafetyactionstomoderatetheconsequences ofthermalrunaway.Basedontheliteraturereviewwehighlight fourfutureresearchdirectionswhichisabouttoinvestigatethe impactofparameteruncertaintyonrunawayindication,handling parameteruncertaintyindetectionofrunawayduringoperation, presentingindetailthedesignphaseswithlaboratoryandpilot- plantexperiments,andperformingcomputationalfluiddynamics (CFD)simulationsforbetterunderstandingofthecausesandcon- sequences.

Thereviewwasmadetogiveacomprehensivepictureaboutthe phenomenonofthermalrunaway,whatthemaincausesandconse- quencesofrunawayare,andhowitcanbeprevented.Theemphasis isclearlyonthedevelopmentandapplicationofthermalrunaway criteriaincludinggeometry-,stability-andsensitivitybasedcrite- ria,andwealsodiscussthetopicofsafetyboundarydiagramsfrom Westerterp.

Theroadmapisasfollows:Section2providestherootcauses andconsequencesofthermalrunaway.Section3informsthereader aboutthebasicrequirementsforthepreventionofreactorrunaway.

InSection4thereadercangetinformationabouthowtoevaluate thethermal risks of a system.Section 5presents thestability- ,geometricandsensitivitybasedrunaway criteria,anda simple

(4)

modeltoinvestigaterunawaycriteriaispresented.Section6gives informationabouttheSafetyBoundaryDiagramsandsomeinsight abouthowtoapplythese.Section7providesinformationabout possiblesafetyactionstomoderatetheconsequencesofreactor runaway. InSection8someapplicationexamplesishighlighted fromtheliteraturewithrunawayrelatedresearchesinvestigating themainproblems(reactorandoperationdesign,reactorcontrol, mitigationsystems).Section9providesinsightintothepossible futuredirectionsofreactorrunawayrelatedresearch.

2. Causeandconsequenceofthermalrunaway

Thesafeoperabilityofchemicalreactorsishighlydependenton theappropriatedesignofsafetyaswellascontrolsystemsoftech- nologies.BartonandNolaninvestigatedcasehistories(169cases) from1962to1987.Basedontheirreviewthermalrunawayacci- dentsoccurduetothefollowingcauses(BartonandNolan,1991;

NolanandBarton,1987).

-a basic lack of understanding of the process chemistry and thermochemistry(e.g.noappreciationoftheheat ofreaction, unintendedreactionsandautocatalysisoccurred,productmix- turedecomposed,lowmaterialquality,etc.);

-inadequateengineeringdesignforheattransfer;

-inadequatecontrolsystemsandsafetyback-upsystems(e.g.loss ofcoolingwaterwhichwasnotmonitored,wronglypositioned probeoftemperaturemeasurement,thermocouplescoatedresult inslowresponse,etc.);

-inadequate operationalprocedures and operator training (e.g.

starting the reactorat low process temperature, mischarging ofreactants,inadequatemixing,poorcommunicationbetween operators,etc.).

RimSaadaetal.studiedthirtycasesfrom1988till2013,andthey alsoclassifiedthepossiblecausesthatleadtoarunawaysituation.

Theclassificationconsistsof“TechnicalandPhysicalCauses”and

“HumanandOrganisationalCauses”.Undertechnicalandphysical causesfivecaseswereduetomischargingthereactor.Thisincludes chargingchemicalsorcatalystsininappropriateorderandaddi- tionofincorrectamountofchemicals.Fourcaseshavebeencaused duetoagitatorfailures.Insomecasestracequantitiesofimpuri- tiescausedrunawayphenomena.Fourincidentsoccurreddueto poorplantdesign,andfiveothercaseswerecausedasaresultof wrong processcontrol.Under humanandorganisationalcauses thirteenincidentswereduetooperatorerrors.Operatorsdonot understandthebasicsofchemistryandthermodynamics,andin somecasestheoperatorsdecideontheirownwithoutdiscussing itwiththetechnicaladvisor.Inonecasethereactorwasoperated outsidethesafetylimits.Inadequatetraining,absenceofsupervi- sion,anincreaseinworkload,failuretofollowstandardoperating proceduresandincorrectopening/closingofthevalvesresultedin incidentstoo.Poormanagementinprocessoperationalsoresulted in11incidentsintheinvestigatedtime.Basedontheirsystematic evaluation,twenty-onepeoplediedand393peopleinjureddirectly duetothermalrunaway.Theirresearchindicatedthatlessonshave notbeenlearntfromtheconsequencesofthermalrunaways(Saada etal.,2015).Differentcasestudiesaboutreactorrunawayaccidents withcausesandconsequences isshownin(Gyenesand Carson, 2017;Etchells,1997;Pasquet,2017;Hoetal.,1998).

In a betterscenario theconsequenceofa runawayis onlya lowqualityproduct;inaworsecasethereactorphysicallyexplode resultinareleaseoflargequantitiesofflammable,toxicandhaz- ardousmaterials.Liuetal.showedaflowchartofrunawayaccident sequencesshowninFig.2(Liuetal.,2018b).

Fig.2.Flowchartofrunawayaccidentsequences(Liuetal.,2018b).

Ifthegasphasewithhighconcentrationisignitedimmediately afireballoccurs,otherwise,itspreadsaroundthereactor.Thegas phasewilldiffuseanddilutemayresultinavapourcloudexplo- sionorformingapotentialtoxiccloud.Iftheliquidphaseisignited immediatelyapoolfireoccurs,otherwise,thereactantsmaycon- tinuethereaction.Theresidualliquidphasemayignitesandresult inapoolfireoritformsaspirationhazard(Liuetal.,2018b).The sizeofendangeredareacanbeeasilyestimatedbasedonCFDsim- ulations(Liuetal.,2018a),(Tauseefetal.,2011;Chenetal.,2019).

3. Preventionofreactorrunaway

Preventionofreactorrunawaybeginsinthedesignphase.As itisshowninSection2adetailedknowledgeaboutthechemicals anditsthermophysicalpropertiesisnecessaryforsafeoperation.

Detailedkineticinformationaboutthepossiblereactionsisneces- saryfortheappropriatedesignofthereactor.However,wemust calculatewithplant-modelmismatch,wenevercanbeconfident withthatthedevelopedmodelisadequateinnon-runawayand especiallyinrunawaysituations.Firstphaseofpreventionisthe appropriatedesignofthereactorsystemandoperatingconditions.

Engineersmustperforminherentlysaferdesign(ISD),whichis abouttopreventhumanerrorandinvalidationoffacilitytoreduce theriskofaprocessbywaysofminimizing,substituting,moderat- ingandsimplifying.Fourclassesismentionedasstrategestoward ISD(Feietal.,2018):

-Inherent:Eliminatingthehazardbyusingmaterialsandprocess conditionswhicharenon-hazardous.

-Passive:Eliminatingorminimizingthehazardbyprocess and equipmentdesignfeatureswhichreduceeitherthefrequencyor consequenceofthehazardwithouttheactivefunctioningofany device.

-Active:Usingcontrols, safetyinterlocks,emergencyshutdown systems,mitigationdevicestodetectpotentiallyhazardouspro- cessdeviationsandtotakecorrectiveactions.

-Procedural:Usingoperatingprocedures,administrativechecks, emergencyresponse,andothermanagementapproachestopre- ventincidents,ortominimizetheeffectsofanaccident.

Apartfrom theofflineinvestigations, alsoonline prevention measuresarenecessarytodetectanyunexpectedsituationlead- ingtoarunawayscenario.Anearlywarningdetectionsystemis indispensabletodetectunexpecteddangeroussituations.Online applicable thermal runaway criteria are excellent soft-sensors, whichcanpredictthedevelopmentofthermalrunawayandthecri- teriaareabletodistinguishbetweendangerousandnon-dangerous reactorstates.Therefore,arobustsafetycriterionisanessential

(5)

elementofanyEarlyWarningDetectionSystem(EWDS).EWDSis necessarytodetectandevaluateunexpecteddangeroussituations.

Wemustprovidesufficienttimeforaprotectionsystemortheplant operatortoperformthenecessarystepstostoportomoderatethe undesiredeffectsofruanwaydevelopment.Thereareseveraltime indiceswhichcanbeappliedtomeasurehowfarthesystemfrom arunawaystateis.Agoodreviewaboutthesetimeindicescanbe foundin(Varga,2009).Theseindicesare:

-Timeofoccurrence:thetimewhenfaultoccurs.

-Reactiontime:theminimumtimerequiredtoexecutearesponse step

-Executiontime:measuredexecutiontimeofthesystem -Responsetime:thetimebetweenthedetectionofinitiatingevent

andtheresponseofthesystem.

-Safetyreactiontime:thetimeneededtosenseaproblemand initiateasafetyshutdowntothecontrolelement.

-Time-in-alarm: the time between timestamps of alarm and return-to-normalevents.

-Irreducible minimum: the minimal time of response, usually approximately100ms.

-ProcessSafetyTime(PST):PSTistheperiodoftimeinwhichthe processcanbeoperatedwithoutprotectionandwithoutunde- siredeventoccurs.VargaandAbonyiintroducedhowPSTcanbe determinedincaseofhighleexothermicreactionsin(Vargaand Abonyi,2010)

-Timeof noReturn: afterthistime itisimpossibletocoolthe reactor(Stoessel,2008).

Thesafetystepstomoderatetheconsequencesofrunawaycan beanopeninga pressurereliefvalve,fullcoolingorquenching (i.e.,additionofinhibitororcoldinertliquidaswellasdumpingof thereactorcontentintoacoldcatchtank)(WesterterpandMolga, 2006).

4. Methodstoevaluatethermalrisks

Thegoalisalwaystoreducethermalrisks,forwhichwehave toanswersomequestions.Ifwearepreparedfortheworst-case scenario thenheavyconsequences canbeprevented.Therefore, a systematicassessment procedureisbased onthecoolingfail- urescenarioassumingadiabaticconditions.Inadiabaticcasethe processtemperaturecanrisetothehighest.Basedonthecharacter- istictemperaturelevelsarisingfromthescenario,criticalityclasses weredefinedby(Stoessel(2008).Therepresentationofworst-case scenarioasacoolingfailurewereintroducedbyGygax(1988),and hemadeascenarioforthermalassessment,whichcanbeseenin Fig.3.

In (Nanchenet al.,2009)a gooddescriptionofFig.3canbe found.The processis attemperature Tp when a coolingfailure occurs. Since the reaction is exothermic, in adiabatic case, the presence ofunreactedreagentswillreactincreasingthereactor temperaturewiththeadiabatictemperaturerise(Tad).Themost crucialtimeforacoolingfailureiswhentheaccumulationofunre- actedreagentisatmaximum.MaximumTemperatureofSynthesis Reaction(MTSR)isintroducedfordescribingthepossiblereactor temperaturesduringtheoperation.AtMTSRsecondaryreactions mightbetriggered,andthesecondaryreactionwillincreasefurther toafinaltemperature(Tf).Thedurationofreactionrunawaycan beestimatedbycalculatingtheTimetoMaximumRateadiabatic parameter(TMRad).

MTSRcanbecalculatedbasedonthedegreeofaccumulation ofunconvertedreagentsandtheadiabatictemperatureriseatthe giveninstant.

MTSR=Tp+XacTad,rx (1)

Fig.3. Runawayscenario,wherenumbersrepresentthesixkeyquestions(Stoessel, 2009).

Table1

Assessmentcriteriafortheseverityofarunawayreaction(Stoessel,2009).

Severity Tad P Extension

Catastrophic >400 >Ptest >Site

Critical 200–400 Pmax<P<Ptest Site

Low 50–200 Pset<P<Pmax Plant

Negligible <50 P<Pset Equipment

TMRadcanbecalculatedbasedonthefollowingformulausing theinitialheatreleaserateofthereaction.

TMRad=cpRT2

qgenE (2)

Gygaxformulatedsixkeyquestionswhichhelpsfortheassess- mentofthermalrisk,whichwererefinedforeasierunderstanding (Nanchenetal.,2009).Thekeyquestionsarethefollowing:

1Whatistheheatevolutionrateasafunctionoftimeoftheoper- atingprocesstobecopedwithbytheoperationalequipment?So cantheprocesstemperaturebecontrolledbythecoolingsystem?

2Whattemperaturecanbereachedwhenthedesiredprocessruns away,assumingadiabaticconditionsforacoolingfailure?

3Whattemperature canbeattained after runaway of thesec- ondaryreaction?

4Whichisthemostcriticalinstantforacoolingfailure?Soatwhich timedoesthecoolingfailurehavetheworstconsequences?

5Howfastistherunawayofthedesiredreaction?

6HowfastistherunawayofthedecompositionstartingatMTSR?

ForthermalriskassessmentStoesselproposedaquantitative methodfordescribingtheseverityandprobabilityoftherunaway, whicharedescribedinTable1andinTable2.Fordefiningtheprob- abilityofrunawayanextended Tablecanbefoundin(Stoessel, 2009).

InadditionStoesselformulated5criticalityclassesbasedonthe relativeorderoffourspecifictemperaturelevels,rangingfromthe leastcritical(1–2)tothemostcritical(3–5)presentedin

Fig.4(Stoesseletal.,1997).Thefourspecifictemperaturelevels arethefollowing:

-Theprocesstemperature(Tp):theinitialtemperatureinthecool- ingfailure;

(6)

Table2

Assessmentcriteriafortheprobabilityoflossofcontrolofarunawayreaction (Stoessel,2009).

Probability Controllability TMRad[hr]

Frequent Unlikely <1

Probable Difficult 1–8

Occasional Marginal 8–24

Seldom Feasible 24–50

Remote Easy 50–100

Almostimpossible Notaproblem >100

Fig.4. Criticalityclassesofscenario(Stoessel,2009).

-Maximumtemperatureofsynthesisreaction(MTSR):itdepends onthedefreeofaccumulationofunconvertedreactants;

-TemperatureatwhichTMRadis24h(TD24):itisthehighesttem- peratureatwhichthethermalstabilityofthereactionmassis unproblematic;

-Maximumtemperaturefortechnicalreasons(MTT):itcanbea boilingpointinanopensystem,oritcanbeatemperatureatthe maximumpermissiblepressureinaclosedsystem.

Thecriticalityclassificationisausefultoolfortheriskassess- ment and also for the choice and definition of adequate risk reducing measures.InClass1and Class2 thelossofcontrol of themainreactiondoesnottriggersecondary reactionsandalso thetechnicallimitisnotreached.InClass3thetechnicallimitis reachedandmayserveasasafetybarrier,butthesecondaryreac- tionsarenottriggered.InClass4thesecondaryreactionscouldbe triggered,butthetechnicallimitmayserveasabarrier.InClass 5thesecondaryreactionsaretriggeredandthetechnicallimitis reachedastherunawayistoofastforasafetybarriertobeefficient (Stoessel,2009).

Junchengetal.improvedandappliedtheearliermentionedclas- sifications,andtheydevelopedinherentthermalrunawayhazard index(ITHI),whichiscalculatedbymultiplyingthematerialfactor (MF)andriskindex(RI)(Junchengetal.,2020).

ITHI=MF·RI (3)

Riskindexiscalculatedbasedontheseverityofrunawayreac- tionandtheprobabilityoftherunawayreaction.

RI=S·Pr (4)

Materialfactor(MF)iscalculatedbasedontheinitialreaction temperature(Tonset),andMaxpowerdensity(MPD),whereMFis limitedin(Vernières-Hassimietal.,2017;KnegteringandPasman, 2009).MPDisthefunctionofheatofdecompositionandthemax- imumreactionrate.

MF=1+ITonset·IMPD

16 (5)

whereITonset,IMPDarepenaltyindexes.Severityandprobabilityof runawayreactionsaredeterminedbasedonquantitativeintervals basedondifferentpenaltyparameters,whichparameterscanbe foundin(Junchengetal.,2020).

Fig.5. ModifiedStoesselcriticalitydiagram(Jiangetal.,2019).

Jiangetal.developedamodifiedStoesselcriticalitydiagramto considerthefinaltemperature(Tf)oftheprocess.Theirthoughtis basedonthatifthefinaltemperaturedoesnotexceedthetechni- callimit(MTT)thenthetechnicalsafeguardcanreducetheaccident risk.Basedonittheyextendedthecriticalityclasses1and3,crit- icalityclasses2,4and5remainedthesameasStoesselpresented (Jiangetal.,2019).Fig.5presentsthemodifiedStoesselcriticality diagram.

Inthefirstcaseofcriticalityclass1thereactiontemperature willnotreachthetechnicallimitanditwillnotcauseasecondary reaction.MTTcanbereachedonlyifthereactionmixtureisleft intheheataccumulationforalongtime.Inthesecondcaseifthe reactionmixturestaysintheheataccumulationforalongtime,it mayinduceasecondaryreaction,butthefinaltemperaturecannot exceedthetechnicallimit.

Inthefirstcaseofcriticalityclass3thetechnicallimitisreached butasecondaryreactionisnottriggered.Inthesecondcasethe secondaryreactionistriggered,butthefinaltemperaturedoesnot exceedthetechnicallimit.

Nomenetal.developed anopeativetool fortherisk assess- ment(Checkcardsforrunaway(CCR)),whichfollowsafactor-based strategy. Five factors are defined toassess a thermal runaway, whichare:mischargingchemicals,autocatalyticreactions,segre- gation,accumulation,andtemperaturehazard(Nomenetal.,2004).

5. Reactorrunawaycriteria

Reactorrunawaycriteriacanbeappliedtodefinetheboundaries ofsafeandunsaferegimesthroughdistinguishingtherunawayand non-runawaystates. Thisfeatureallowstoapplycriteriain off- linetasks(likeprocessdesign,optimization)andinon-linetasks too(likeearlywarning).Therefore,thermalrunawaycriteriaare applicableindesigningandoperationofchemicalreactors(Jiang etal.,2011).Abriefhistoryaboutthereactorrunawaycriteriauntil 2006canbefoundin(Shouman,2006).

Thermalrunaway criteria can be classifiedinto three types, which are geometry-based criteria, stability-based criteria and sensitivity-based analysis can beperformed to define runaway boundaries,whicharepresentedinthefollowingSections5.2–5.4.

Therunawaycriteriaandtheyearoftheirfirstpublicationarepre- sentedinTable3.Section5.1presentsasimplemathematicalmodel ofatubularreactor(orbatchreactor),onwhichthederivationof runawaycriteriacanbepracticedeasily.

5.1. Mathematicalmodel

Afirstorderreactioncarriedoutinabatchreactorispresentedin thissectionwhichwillprovideasabaseforpresentationofthermal runawaycriteria.Thereactorwasconsideredasperfectlymixedso

(7)

Table3

Thermalrunawaycriteriadevelopmentsovertime.

Criterion Yearofpublication Reference

Semenov-criterion 1928 Semenoff(1928),

Semenov(1940)

“PracticalDesign”criterion 1938 Berty(1999)

vanHeerdencriterion 1953 vanHeerden(1953)

Gilless-Hoffmanncriterion 1961 Berty(1999),Gillesand Hofmann(1961) ThomasandBowescriterion 1961 Thomas(1961),Varma

etal.(2005) AdlerandEnigcriterion 1964 AdlerandEnig(1964) vanWelsenaereandFroment

criterion

1970 vanWelsenaereand

Froment(1970) Morbidelli-Varmacriterion 1987 MorbidelliandVarma

(1988)

Adiabaticcriterion 1988 Gygax(1988)

Hopf-bifurcationanalysis 1989 Colantonioetal.(1989)

Vajda-Rabitzcriterion 1992 VajdaandRabitz

(1992)

Strozzi-Zaldivarcriterion 2003 Zaldívaretal.(2003)

Lyapunov-stability 2006 Szeifertetal.(2006)

Adiabaticcriterionbasedon Strozzi-Zaldivarcriterion

2016 Guoetal.(2016)

Kähm-Vassiliadiscriterion 2018 KähmandVassiliadis (2018a)

ModifiedSlopeCondition 2019 KummerandVarga

(2019a)

ModifiedDynamicCondition 2019 KummerandVarga (2019a)

thefollowingdifferentialequationscanbewrittentodescribethe dynamicalbehaviour:

dc

d =−r (6)

dT

d =qgen−qrem (7)

qgen=ˇr (8)

qrem=˛(T−Tw) (9)

Where r=exp

− E RT

c (10)

˛=5l

h,ˇ=180m3K

kmol,=20,E

R =6600K,c0=1kmol

m3 , T0=300K(11) Fig.5showshowthepresentedmodel(Eqs.6–11)issensitiveto

thewalltemperature,anditpresentsthedevelopmentofthermal runaway.

5.2. Stability-basedcriteria

Thestateofthesystemcanbeconsideredstableifafterasmall disturbancethesystemreturnstoinitialstateandduringthetran- sientbehaviourthestateofthereactorstaysclosetothatinitial state.Thistheorycanbeusedtoinvestigatereactorrunawaysince incaseofrunawayreactionssimilarsituationoccurs,wherethe positivefeedbackinthetemperatureandreactionraterelationship canresultinthedevelopmentofrunaway.Thatfirststateofthesys- tem,whenrunawayisoccurredcanbeconsideredasunstablestate, fromwhichthereactorcannotgobacktotheinitialstate.Numer- ousstability-basedrunawaycriteriawereproposedtoindicatethe developmentofthermalrunaway,whicharenowpresentedinthe followingsection.

5.2.1. Semenov-criterion

Firstpioneerworkinthefieldofreactorrunawaywasdoneby Semenov,whichworklaidthegroundworkforfurtherresearches.

Thissectioniswrittenbasedon(Stoessel,2008;Semenoff,1928;

Semenov,1940).Semenovconsideredanexothermalreactionwith zero-orderkinetics.Semenov-diagrampresentstheheat-releasein reactionand theremovedheatbyheattransferasafunctionof temperature.

Fig.7 presents therelationship betweenthe generated and removedheat,wherethegeneratedheatvariesexponentiallywith processtemperature,whiletheremovedheatvarieslinearlywithit.

ThreeessentialpointsdrawattentioninSemenov-diagram,which aremarked asA, Band C, andthe belongingtemperaturesare markedasTw1, Tw2 andTw3.InAwecanrespectastableoperating pointsinceifthecoolingtemperatureislowerthan Tw2,thepro- cesstemperaturewilldecreaseduetothehigherremovedheat untilA,andnoself-ignitionoccurs.Ifthecoolingtemperatureis higherthan Tw2,self-ignitionoccurssince thegenerated heatis continuouslyhigherthantheremovedheat.Cpointrepresentsthe criticalpointincaseofahighercoolingtemperature,wherethe generatedheatcurveistangentatonepointtotheremovedheat line.Thebelongingcoolingtemperatureisconsideredascritical, orasthelowesttemperatureofself-ignition.Inthispointalittle increaseincoolingagenttemperaturethecoolinglinewillhaveno intersectionbetweenthegeneratedheatandremovedheatcurve leadstotherunawayofreaction.

Fortheaimofavoidingthermalrunawayitisnecessarytooper- atethereactor faraway from critical conditions. Based onthe Semenov-diagramandfurtherinvestigationofthecriticalpointa runawaycriterioncanbederived.Inthecriticalpointthegenerated andremovedheat,andalsotheirderivativeswithrespecttotem- peratureequals,thiscanbewrittenasEqs.12–15presents.Since thereagentconsumptionisneglected,thereactionratevariesonly withtemperature,hencethepartialderivativeofthereactionrate canbeconsidered.

qgen=qrem (12)

ˇr=˛(Tc−Tw) (13)

dqgen

dT = dqrem

dT (14)

ˇrT=˛ (15)

Dividingthe13and15.equationsthefollowingcriticalequation istheresult:

r rT =RTc2

E =(Tc−Tw)=Tc (16)

Eq.16 presents that thereis a minimal temperaturedifference betweentheprocessandcoolingtemperaturetokeepthereac- tionoperationstable.Semenov-diagramhelpsustoformulatethe runawaycriterion,becausethecriticaltemperaturedifferenceis alwayssatisfiedwhenthetemperatureisbelowthecriticaltem- peraturevalue.

(T−Tw)≤ RTc2

E (17)

FromEq.17thecriticaltemperaturecanbecalculatedbysolving thequadraticequation.

Tc=1−

1−4RTEw 2R

E

∼= 2

RTw

E

+2

RTw

E

2

+4

RTw

E

3

...

2R E

(18) Ifweconsideronlythefirsttwotermsontherightside,the followingrunawaycriterion(Semenov-criterion)canbederived:

(T−Tw)≤ RTw2

E (19)

(8)

WepaytributetotheSemenov-number,whichistheratioof dimensionlessreactionheatparameterand theheattransfer,as follows:

= (−Hr)kcn UA

E

RT2 (20)

Forverylargeactivationenergiesthefollowingcriterioncanbe defined,mentionedintheliteratureasSemenov-criterion(where eisthenaturalnumber):

<1

e= c (21)

Thisequationisdeterminingintheresearchfieldofthermal ignition,becausethefollowingresearchesfocusonhowtodeter- mine thecritical Semenov-number in more realistic cases, like withoutneglectingthereactantconsumption.

However,wearegoingtopresenttherunawaycriteriawith- outinvestigatingtheconcretevalueofSemenov-numbersinthe followingsections,insteadwearegoingtopresentthebasethe- ory.Criticalstates(temperature,concentration,etc.)canbedefined though,andthecriticalSemenov-numberscanbecalculatedfrom thesevariables.

5.2.2. VanHeerdenand“practicaldesign”criterion

BertyclearlypresentedthetheorybehindVanHeerdencrite- rion,whichisoftencalledas“SlopeCondition”(Berty,1999;van Heerden, 1953). In a steady-state operationthe generated and removedheatareequal. Itisevidentalsothattheheatgenera- tionand heatremovalrateincreaseswithtemperature,butthe generatedheatincreasesexponentially.Ifthereisanydisturbance inthereactortemperaturetheheatremovalrateshouldincrease fasterwithtemperaturethanthegeneratedheat,itwouldprevent temperaturerunaways.Mathematicalformofthecriterionisthe following:

dqgen

dT ≤dqrem

dT (22)

TheareaofsensitivedomainwasdefinedbyVanHeerdenin 1953(vanHeerden,1953).Perkinsassumedzeroorderkineticsto defineasafeboundary.ConsideringEqs.22and12thefollowing criterioncanbedefined:

T−Tw≤RT2

E (23)

Bashiretal.derivedthesamecriterioninvestigatingtheinflec- tionpointinageometricplane(Bashiretal.,1992),statingthatthe calculatedmaximumtemperatureinEq.23isthelimitingvaluefor runawayattheinflectionpoint.

5.2.3. Gilles-Hoffmanncriterion

Gilles and Hoffmannin1961 recognizedthe“Dynamic Con- dition”, whichistheconditionthat setsthelimitstoavoidrate oscillation.Criterionisstatedastheincreaseofheatremovalrate withtheincreaseoftemperaturemustbelargerthanthediffer- encebetweenheatgenerationrateincreaseduetotemperature alone andreaction ratedecrease duetotheconcentrationdrop alone(Berty,1999;GillesandHofmann,1961).

∂qgen

∂T

c

+ ∂m

∂c

T

≤dqrem

dT (24)

wheremisthematerialbalancefunction.

5.2.4. Lyapunov-stabilityingeometric-andphase-plane

Szeifertetal.proposedtouseLyapunov’sindirectmethodto forecastreactorrunaway(Szeifertetal.,2006;Sastry,1999).The

stabilityanalysisofasystemdefinedbyasetofnonlineardiffer- entialequationsofthestatevariablesapplyingLyapunov’sindirect methodisreducedtoaneigenvalueanalysisoftheJacobianmatrix.

J= ∂f

∂x (25)

IfrealpartofeacheigenvaluesoftheJacobianmatrixisnegative thenthemodelisstable,butifanyofthesearepositivethensystem isunstableattheinvestigatedoperatingpoint.Lyapunov-stability canbeperformedingeometric-andinphase-planetoo.Thespatial stabilitycriterionisalwaysmoreconservative,becausethestabil- ityinphasespacealwaysfollowsfromthespatialstabilitywhile inverselydoesnot.

In2008López-Garcíaetal.proposedtoinvestigatethesteady- statesolutionswithaperturbationmodel,becausethedynamic studyisessentialtoguaranteethethermallystableoperation.The methodis basedonthelinearization oftheperturbationmodel whichresultintheanalysisoftheeigenvaluesofJacobianmatrix (López-GarcíaandSchweitzer,2008).VajdaandRabitzsimilarly investigatedtheperturbationmodelearlierin1992,buttheyinves- tigatedthesensitivityofmaximumvalues ofeigenvaluesofthe Jacobianmatrix(VajdaandRabitz,1992).

Forinvestigating thedynamicsof asystem,Hopf-bifurcation analysiswassuggested,whichisbasedoninvestigatingtheeigen- values too.Ifthe realpartof a complex-conjugate pairs ofthe Jacobianmatrixbecomespositivethenbifurcationoccurs,andthat meansreactorrunawaymaydevelop(Colantonioetal.,1989;Ball andGray,2013;GómezGarcíaetal.,2016;McAuleyetal.,1995;

Kimetal.,1991;BallandGray,1995;Ball,2011).

5.2.5. Strozzi-Zaldivarcriterion(Divergencecriterion)

StrozziandZaldivarinvestigatedthephase-spacevolumecon- tractionsduringthereactoroperationbasedoninvestigatingthe Lyapunov-exponentsand thedivergence ofthe system(Strozzi etal.,1999).Ithasbeenshownthatthedivergencecriterioncan beappliedfordevelopingsafetyboundarydiagramstodistinguish therunawayandnon-runawaystatesforseveraltypesofreactors (BR,SBR,CSTR)andformultiplereactions,alsowithandwithout ofacontrolsystem(Zaldívaretal.,2003).

StrozziandZaldivarprovidedthefollowingderivationoftheir runawaycriterion(Strozzietal.,1999).AccordingtotheLiouville’s theorem,contractionofastatespacevolumeofad-dimensional dynamicalsystemcanbedefinedbasedonitsdivergence(Arnold, 2006).

dV(t) dt =

divF[x(t)]dx1(t)...dxd(t) (26) wherethedivergenceofthesystemcanbecalculatedas

divF[x(t)]=∂F1[x(t)]

∂x1(t) +∂F2[x(t)]

∂x2(t) +···+∂Fd[x(t)]

∂xd(t) (27) Assumingthatthed-dimensionalvolumeissmallenoughthat thedivergenceofthevectorfieldisconstantoverV(t),then dV(t)

dt =V(t)divF[x(t)] (28)

IntegratingEq.28theinitialphase-spacevolumeV(0)changeswith timeas

V(t)=V(0)exp

t 0

divF[x(t)]d

(29) Hencetherateofchangeofthestate-spacevolumeisgivenby thedivergenceofthesystem,whichislocallyequivalenttothetrace oftheJacobianofF.Theexpansionandcontractionofthestate- spacevolume,sothatthedivergenceoftheinvestigatedsystemis inrelationwithrunawayandnon-runawaysituations.Practically

(9)

itmeansthatifthestatevariablesdriftoffforasmallperturba- tionthenthesystemisunstable.Incasethedivergenceisnegative therewillbenorunaway,althoughifthedivergenceispositive, runawaywilldevelop.Therefore,theproposedrunawaycriterion isthefollowing:

divF[x(t)]≤0 (30)

Copelli etal. modified theoriginal divergence criterion,and theyproposedtodisregardallcontributionsarisingfromextent- of-reactions that are not related toheat evolution. Other state variablescangenerateastrongstate-spacevolumecontractionthat isnotrelatedtothedevelopmentofrunawaywhichmayleadsto thefailureofdivergencecriterioninpredictingreactorrunaway.It meansthatforexamplethecomponentswhicharenotreactantare neglectedwhenevaluatingthemodifieddivergenceofthesystem (Copellietal.,2014),(Kahm,2019).

Strozzietal.alsoinvestigatedtheLyapunov-exponentstodefine sensitivity.Lyapunov-exponentcanmonitorthebehaviouroftwo neighbouringpointsofasysteminadirectionofthephasespaceas afunctionoftime:IftheLyapunov-exponentispositive,thenthe pointsdivergefromeachother,iftheexponentbecomesnegative, thenthepointsconverge.Lyapunov-exponentsarerelatedtothe eigenvaluesoftheJacobianmatrix,sinceitaveragestherealparts ofalleigenvaluesalongatrajectory(Strozzietal.,1994;Strozzi andZaldívar,1994).AlthoughtheLyapunov-exponentscanunder- estimatetherunaway boundaryfor likeautocatalyticreactions, becauseitusestheintegralovertimewhich isslowtorespond tofastchange.Therefore,Strozzietal.proposedtoapplydiver- gencecriterion(Strozzietal.,1999).Kähmetal.laterinvestigated theLyapunov-exponentsnotinsensitivitycontext,butinvestigat- ingthevaluesofit.IftheLyapunov-exponentbecomespositive,an unstableprocessispresent(KähmandVassiliadis,2018a;Kähm andVassiliadis,2018b;KähmandVassiliadis,2018c).

We cancalculate thedivergenceonline, withoutneeding to knowthedifferentialequationsofthesystembyusingthetheory ofembedding.Statespacereconstructionisapossibletechnique toaddressthis problemusingtimedelayembeddingvectorsof theoriginalmeasurements(i.e.,temperatureorpressuremeasure- ments)(Boschetal.,2004a;Boschetal.,2004b).Althoughthereis severalmethodsofreconstruction,butthereisnoapriorimethodto decidewhichoneisthebest.In(Zalı ´dvaretal.,2005)Zaldivaretal.

testedseveralmethods:timedelayembeddingvectors;derivative coordinatesandintegralcoordinates,buttheresultsweresimilar andtheyusedderivativecoordinatesbecauseoftheirclearphysical meaning.Therearetworeconstructionparameters:theembedding dimension,andthetimedelay.Theembeddingdimensionisthe dimensionofthestatespacerequiredtounfoldthesystemfrom theobservationofscalarsignals,whereasthetimedelayisthelag betweendatapointsinthestatespacereconstruction(Boschetal., 2004b).

Guoetal.developedanadiabaticcriterionbasedonthediver- genceofanadiabaticmodelofthereactorsystemwithzerofeed rateresultinamorestrictrunawaycriterion(Guoetal.,2016;Guo etal.,2017a).

WalterKähmdevelopedastabilitycriterionbasedontheorigi- naldivergencecriterion,whichisbasedonthedifferencebetween thedivergenceoftheJacobianmatrixoftheinvestigatedreactor systemvariablesandthecorrectionfunction.Thecorrectionfunc- tionisderivedasafunctionofthedivergenceoftheJacobianatthe previoustimestep;Damköhlernumber;Barkelewnumber;Arrhe- niusnumberandtheStantonnumber.Theyintroducedthisstability criterion,becausedivergencecriterionmayoverpredictthether- malrunawaypotentialofthesystem.Thederivationisbasedon a linearapproximationofthedivergence(KähmandVassiliadis, 2018a;Kahm,2019;KähmandVassiliadis,2018d).Theproposed

stabilitycriterionissuccessfullygeneralizedformultiplereactions (KähmandVassiliadis,2019).

5.2.6. Modifieddynamicandslopecondition

KummerandVargainvestigatedthemostfrequentlyapplied criteriaand derived two newcriteria as a result(Kummer and Varga,2019a).Eq.31presentstheModifiedSlopeCondition(MSC) andEq.32presentstheModifiedDynamicCondition(MDC).We investigatedthreedifferentreactionsystems(singlereactionwith areagent,twoparallelreactions,andanautocatalyticreactionsys- tem)tovalidatetheModifiedDynamicandSlopeConditioncriteria, whichinthereliabilityandthetimeofindicationwerecompared.

MDCdidnotmissanythermalrunawaydevelopment,buttheper- formanceofMSCiscompatiblewiththeinvestigatedones.

∂qgen

∂T

c

≤dqrem

dT

1+qgen

qrem

(31)

∂qgen

∂T

c

+ ∂m

∂c

T

≤ qgen

qrem

dqrem

dT (32)

5.3. Geometry-basedcriteria

Several reactor runaway criteria exist based on a geomet- ric characterization of temperature trajectories, which will be presentedinthis section.Advantagesof inflexion-basedcriteria (ThomasandBowes-,AdlerandEnigcriterion)andadiabaticcri- terionisthatitrequiresonlyatemperatureprofileortrajectory toevaluatethereactionstates,althoughwithoutinvestigatingthe states on a prediction horizon the runaway indications proba- blyoccurslately.Inflection-basedcriteriadonotgiveinformation abouttheintensityofthereactorrunaway.VanWelsenaereand Fromentcriterionisquiteconservativethoughandindicatesreac- torrunaway quite early,but a model of thereactor system is requiredfortheapplication.

5.3.1. ThomasandBowescriterion

ThomasandBowesproposedtoindicatereactorrunawayasthe situationinwhichaninflexionpointappearsbeforethetempera- turemaximuminthegeometricplane(inversustimeorlength).It meansthatthereactoroperationstayscontrollableifthefollowing statementsaresatisfied(Thomas,1961;Varmaetal.,2005).

d2T

dt2 <0whiledT

dt >0 (33)

DenteandCollinain1964independentlyproposedthesame criterion(Varmaetal.,2005).

5.3.2. AdlerandEnigcriterion

AdlerandEnigfounditmoreconvenienttoworkinaphase- plane(intemperature-conversion)thaninthegeometricplane.To indicatereactorrunaway aninflexionpointmustappearbefore thetemperaturemaximuminthephase-plane.Itmeansthatthe reactoroperationstayscontrollableifthefollowingstatementsare satisfied,wherexistheconversion(AdlerandEnig,1964).

d2T

dx2 <0whiledT

dx >0 (34)

5.3.3. VanWelsenaereandFromentcriterion(orMaxicriterion) vanWelsenaere and Fromentdetermined critical conditions basedonthelocusoftemperaturemaximainthetemperature- conversion plane. This criterion can be eliminated based on obtainingtherelationbetweenmaximumprocesstemperatures

(10)

Fig.6. Sensitivityofthereactormodelwithrespecttowalltemperature.

Fig.7.Semenov-diagram.

evolvingatdifferentcoolingagenttemperatures(vanWelsenaere andFroment,1970).

dT

dx >0dcm

dTm

>0 (35)

5.3.4. Adiabaticcriterion

Afrequentlyappliedrunawaycriterion(eveninindustrialappli- cation)isthattheprocesstemperatureevolvingunderadiabatic conditions(sotheMTSR)cannotexceedtheMaximumAllowable Temperature(Abeletal.,2000).

Tp+Tad=MTSR≤MAT (36)

5.4. Sensitivityanalysisofchemicalreactors(Morbidelli-Varma criterion)

A.Varmaetal.wroteanexcellentbookabouttheparametric sensitivitiesinchemicalsystems(Varmaetal.,2005).Theanalysis ofhowasystemrespondstochangesintheparametersiscalled parametricsensitivity(Varmaetal.,2005).Inthecontextofchemi- calreactorsBilousandAmundsonperformedapioneerworkonthe fieldofparametricsensitivity,wheretheresearchersshowedhow themaximumtemperaturealongthereactorlengthvarieswith theambient(cooling)temperature(BilousandAmundson,1955;

BilousandAmundson,1956;Grayetal.,1981;Emigetal.,1980;

Grayetal.,1981).Theresultofasimilaranalysiscanbeseenin Fig.6.Sensitiveregionsofoperationsshouldbeavoidedbecauseits

performancebecomesunreliableandchangessharplywithsmall variationsinparameters.Althoughsomeexperimentalstudiesare availableintheliterature(Emigetal.,1980;LewisandVonElbe, 2014),itisdifficulttoperformwholesomeinvestigationsaboutthe reactionsystems(nottomentiontheindustrialsystems),because thesesystemsinvolvemany parametersaffectingthebehaviour ofthereactor.Therefore, modelbasedinvestigations areneces- sary.For theaimofinvestigationthesensitivity ofreactors we shoulddefinevaluableoutputs(dependentvariables),andvalu- ableinputs(independentvariables).Dependentvariablescanbe investigatedingeometric-or/andinphase-plane,whichcanbefor exampleproductivity,processtemperature,processpressureetc.

Inputvariablestypicallyareinitialconditions,operatingconditions andgeometricparametersofthesystem.

MorbidelliandVarmausedthefactthatneartheexplosion(run- away)boundarythesystembehaviourbecomessensitivetosmall changesinsomeoftheinputorinitialparameters,andtheydefined theboundarybetweenrunawayandnon-runawayzonebasedon thissensitivityconcept.Thefirst-orderlocalsensitivityorabsolute sensitivityofthedependentvariable(y)withrespecttotheinput parameters()canbecalculatedbasedonthefollowingform:

sy= ∂y

(37)

Anotherquantityrelatedtolocalsensitivityisthenormalized sensitivity,whichcanbedefinedas:

Sy= y

y

= ∂lny

∂ln=

ysy (38) Theadvantageofnormalizedsensitivityisthatitnormalizesthe magnitudesoftheinputparameterandthevariabley.

In Morbidelli-Varma criterion the parametrically sensitive regionofthesystemorcriticalityforthermalrunawaytooccuris definedasthatwheretheabsolutevalueofthenormalizedsensitiv- ityofthetemperaturemaximumreachesitsmaximum(Morbidelli andVarma,1988),(MorbidelliandVarma,1989;Chemburkaretal., 1986).Lacey(1983)andBoddingtonetal.(1983)independently proposedtousethesensitivitymaximumofthetemperaturemax- imum with respect to Semenov number, to define the critical conditionsforthermalexplosion,butMorbidelliandVarmagener- alizedthiscriterionconsideringotherphysicochemicalparameters ofthereactingsysteminthedefinitionofthesensitivity.

Jianget al.proposedtoapplytheabsolutesensitivity inthe followingform:Safeoperatingconditionscanbedefinedbythe temperaturesensitivityvaluewhichislessthanoneinthewhole intervalexceptintheinitialpoint.Theboundarybetweenrunaway andstableconditionisestablishedbythemaximumvalueofthe sensitivityfunctionwhichequalsone,soas:

max

sy

=1(exceptt=0) (39)

Theyexplaineditthrough analysingthemaximumvalues of absolutesensitivities,andnotingthatlowersensitivityvaluesmean lesssensitivesystems.Practicallytheyjustmadeathresholdto makethesystemsaferandthecriterionstricter(Jiangetal.,2011).

5.5. Data-basedpredictionofthermalrunaway

Runaway criteria were developed using data-mining tools, where datawere generated based onthemodel of thereactor system.In(Vargaetal.,2009)adecision-treebasedapproachis developedtodistinguishbetweenrunawayandnon-runawaysit- uation,where thecasestudy isan industrialreactor producing phosgene.A similarapproach is presented in (Dakkouneet al., 2020),wherebinarydecisiondiagramsandlinearclassifierswere appliedtodiagnosethefault.Theydetectedrunawaycriteriabased

(11)

on dynamic thresholdsevaluated by investigating temperature characteristics(Amineetal.,2018).Themajordrawbackofthese criteria,thatahugeamountofprocesssimulationsshouldbeper- formed to obtain the necessary amount of data. However, the resulteddecision-treecanbeeasilyunderstoodbyaprocessoper- ator,andthemostappropriatesafetyactionscanbedetermined foranyoftherunawaystates.Kummeretal.developedagenetic programming-basedmethodforconstructingtailoredrunawaycri- teriatoreachamorespecificcriticalequation,thistechniquecanbe usedforanykindofcombinationofreactorandreactionsystems, andtheresultedcriterionismuchmoresuitableforthatsystem thananygeneralcriteriafromtheliterature(Kummeretal.,2019).

6. Safetyboundarydiagrams

Incaseofoperationofbatchandsemi-batchreactorscarrying out exothermicreactionssafetyboundarydiagramscangivean efficientsupportforsafeoperation.Westerterpetal.hadalotof pioneerworkonthisfield,alsoadimensionlessnumberiscalled asWesterterp-number(Wt,earlierCoolingnumber,Co,(Pohorecki and Molga,2010))andthesafetyboundarydiagramoftenmen- tionedasWesterterp-diagram.HugoandSteinbachhaveobserved thatanaccumulationofthenon-convertedcomponentinSBRmay causerunawayevents,andalsoinvestigatedhowthemaximum processtemperaturevariesincaseofabreakdownofcooling(Hugo andSteinbach,1986;Hugoetal.,1988).Westerterpetal.general- izedtheconceptofavoidingreagentaccumulationthroughsafety boundarydiagrams.Theyinvestigatedheterogeneousliquid-liquid andhomogeneousreactionstoo(SteensmaandWesterterp,1988;

SteensmaandWesterterp,1991;SteensmaandWesterterp,1990).

Theproposedsafetyboundarydiagramcanbeappliedgenerally, hencemostoftherecentarticlesusethesamegeneralreactorand homogenousreactionsystemforfurtherinvestigations(Molgaand Lewak,2009).Of course,laboratoryexperimentswerealsoper- formed toinvestigatethe safetyboundary diagrams,a detailed work aboutthethermallysafeoperationofa nitricacidoxida- tioninSBRcanbefoundin(vanWoezik,2000;vanWoezikand Westerterp,2002),

Inidealcasesthereactionrateequalsthefeedrate,meansthat thedosedreagentreactsawayimmediatelyavoidingthereagent accumulation.Inthatcasethereactortemperaturefollowsatra- jectorycalledthetargettemperature,whichcanbeestimatedwith thefollowingequation.Derivationofthisequationcanbeseenin (Westerterpetal.,2014).

Tta=Tc+ 1.05Tad,0 ε

Wt

1+ε

+RH

(40)

whereTcisthecoolingtemperature,Tad,0isaninitialadiabatic temperaturerise,εistherelativevolumeincrease,WtisWesterterp number, isdimensionlesstime,RHistheratioofheatcapacities ofthedispersedandthecontinuousphase.

If thedosingiscompleted Eq.40. canbeusedtodefinethe targettemperaturebeside␪=1.Atthetargettemperaturethereac- tionrateishighenoughforavoidingreagentaccumulation,sothe reactorisoperatedsafely.Therefore,reactorrunawayoccursifthe processtemperatureexceedsthetargettemperature.

Three zonescan bedistinguishedbased ontheevolution of temperature and concentration trajectoriesin SBRs, which are:

marginalignition(MI,ornoignition),thermalrunaway(TR)and QFS (quick onset, fair conversion, smooth temperature profile) zones,asitcanbeseeninFig.8.Inthemarginalignitionthereactor temperatureisalwaysmuchlowerthanthetargettemperature,the reactiondoesnotignite;hencetheaccumulationistoohighforsafe operation.Inthethermalrunawayzonetheprocesstemperature exceedsthetargettemperature,alsoreachesmuchhighervalues

Fig.8.Safetyboundarydiagram(Westerterpetal.,2014).

thanthetargettemperaturebecauseoftheaccumulatedreagent abruptignitesthereactionbehavingcloselytoabatchoperation.In QFSzonetheprocesstemperaturetrajectoryisveryclosetothetar- gettemperaturetrajectory,becausethefedreagentreactsalmost immediately,whichisthegoalintheoperation.

Thethreezonesarecharacterizedbytwodimensionlessnum- ber,exothermicity(Ex)andreactivity(Ry),whicharedefinedas follows:

Ex= Tad,0(E/R)

Tc2ε(RH+Wt)= ad,0

ˇ2cε(RH+Wt) (41)

Ry=

Da(TR)exp

1−ˇ1c

ε(RH+Wt) (42)

whereTcisthecoolingtemperature,Tad,0isaninitialadiabatic temperaturerise,Eisactivationenergy,Risthegasconstant,εis therelativevolumeincrease,WtisWesterterpnumber, isdimen- sionlesstime,RHistheratioofheatcapacitiesofthedispersedand thecontinuousphase,ad,0isdimensionlessadiabatictempera- turerise,istheArrheniusnumber,ˇcisthedimensionlesscooling temperature,DaistheDamköhlernumber.

Theexothermicitynumberspresentstheratioofthemaximal powergeneratedduetothereactionandthecoolingabilities.The reactivitynumberpresentstheratioofthereactionrateandthe coolingrate.Theboundarylineindicatesthecasewheretheprocess temperaturedoesnotexceedthetargettemperature,onlytouches it(Molgaetal.,2007).Theboundarydiagramsandtheboundary linesdependonthevalueoftheWesterterp-number(Wt)andthe ratioofheatcapacitiesof(RH).

Westerterp-numberpresentsthecoolingabilityrelatedtothe heatcapacityofthereactorcontentatthebeginningoftheprocess.

Dosingtimeisalsoappearsinthisdimensionlessnumberconsider- ingtherateofheatevolution.Westerterp-numbercanbecalculated asfollows:

Wt= (UA)0tdos ε

Vcp

0

(43) whereU0istheinitialheattransfercoefficient,A0istheinitialheat exchangesurface,tdosisthedosingtime,εistherelativevolume increase.

TheWesterterp-numberisthekeyparametertodeterminethe differencebetweenthebehaviourofthelargescale,industrialreac- torandthelaboratoryreactor(WesterterpandMolga,2004).There isaninherentlysaferegion,asitcanbeseeninFig.8.Theydeter- minethemaximumoftheexothermicityvaluesbelowwhichthe heatevolutionisalwaystoolow,hencereactorrunawaydoesnot

(12)

Fig.9. SafetyboundarydiagramconsideringMAT(Nietal.,2016).

develop. Thereisalsoa minimumreactivityvalueabovewhich reagentaccumulationdoesnotoccurbecauseofthehighreaction rate,hencereactorrunawaydoesnotdevelopeither(Westerterp and Molga, 2006). These specific values determine unambigu- ouslytheinherentlysaferegion.Boundarydiagramsafetycriterion (BDSC) isbased oncomparingthereactivity and exothermicity numbers to themaximal exothermicityand minimal reactivity numbers,forfurtherinformationsee(Westerterpetal.,2014).The safetyboundarydiagramscanbeeasilyusedforanexistingreactor toidentifythermallysafeoperatingconditionswithoutsolvingthe mathematicalmodelofthereactor.AlsotheWesterterp-diagram canbeeasilyusedtoscalingupreactors(MaestriandRota,2005a;

MaestriandRota,2005b),andalsoakinetics-freeapproachcanbe foundin(Guoetal.,2019).Flowchartfordesigningthermallysafe operatingconditionsbasedonsafetyboundarydiagramscanbe foundin(Molgaetal.,2007;Guoetal.,2017b).

AlthoughtheWesterterp-diagramisunderstandableandeasy touse, thereis nodirectinformation aboutthemaximumpro- cess temperaturesevolvingduring thereactoroperationin the QFS zone, which always should bechecked, because the reac- torsystemmaycannotstandit(maximumprocesstemperature exceeds MAT),or thecoolingcapacity maybenothighenough totransferthedevelopingreactionheat.MaestriandRotaintro- ducedTemperatureDiagrams(TD),whichcanbeappliednextto theWesterterp-diagram. TDs allowfor boundingthemaximum process temperatureas a function of exothermicityor reactiv- itynumbers(MaestriandRota,2006a;MaestriandRota,2006b;

Copellietal.,2010).

Nietal.consideredsecondreactionregiontoothroughinclud- ingtheMATvalueinthedevelopmentofsafetyboundarydiagram, asitcanbeseeninFig.9.EGcurverepresentsthemarginalignition, runawayregionislocatedbetweenEGandEF.QFSregionislocated betweenABCDandEGcurves,andthesecondreactionregionis aboveABCDcurve(Nietal.,2016).Theyalsosuccessfullyapplied thismethodforanautocatalyticreactionsystem,wheretheauto- catalyticbehaviourwasdefinedasparallelreactions,andforthis theyproposedamodifiedExothermicityandreactivitynumber(Ni etal.,2017).

Maximum temperature of synthesis reaction (MTSR) is an importantcriterionforreactordesignandprocesshazardassess- ment, becausein case of a coolingfailure this parametergives information abouttheevolvingprocesstemperatures. Forsafety reasonsitshouldbelowerthantheMAT.Guoetal.investigated thisphenomenonindetail(Guoetal.,2015).Baietal.appliedMTSR valuesinsteadofprocesstemperaturesforcomparingitwiththe

Fig.10.ExtendedBoundaryDiagram(Guoetal.,2018).

targettemperaturevaluestobuildsafetyboundarydiagramsresult inasaferreactoroperation.TheircriterionisdenotedasMaximum temperatureofasynthesisreactioncriterion(MTSRC)(Baietal., 2017a).Flowchartsfordesigningthermallysafeoperationsconsid- eringMTSRvaluescanbefoundin(Baietal.,2017a;Baietal.,2017b;

Zhangetal.,2019).Amoregeneralizedmethodforincludingand investigatingthemaximumprocesstemperaturesdeveloping at givenoperatingparametersareproposedin(Guoetal.,2018).Guo etal.proposedanartificiallydefinedconstanttemperature,which canbecalculatedasfollows:

Tn=Tc+ nTad,0

ε[Wt+RH]n≥1.05 (44)

TngivesinformationabouttheMTSRvaluesevolvingataspecific operationconditions,forexampleatn=2thegivenT2 pointsin SBDcanbeseeninFig.10,whereMTSRvaluesequalsT2(Guoetal., 2018).

Recentlyamulti-featurerecognition(MFR)criterionbasedon patternrecognitionwasproposedtodevelopsafetyboundarydia- grams(Zhangetal.,2020).

Thepresentedmethodsaregreatandeasytouse,butitrequires constantfeedrateofreagents.However,ifwewouldliketomax- imizetheproductivityorotherefficiencymetricsthefeedingrate shouldbevariedintime.Inourhumbleopinionsafetyboundary diagramsshouldbeusedtodefinethesuitableinitialconditions,so todefineinitialprocesstemperature,flowrateofcoolingagentand reagents.ThewholeconceptofSBDsistoavoidtheaccumulation ofreagents,butasthereactortemperatureincreasesthefeedrate ofreagentscanbeincreasedwhereaccumulationwillnothappen.

7. Safetyequipment/actionstomoderateserious consequences

In case we have the most reliable criterion which can be achievedtoforecastrunaway,thenextstepistoprepareoursys- temtodecreasetheeffectofrunawaydevelopment.Whenrunaway occursanditcannotbehandledinnormaloperationsitisneces- sarytostopthereaction,sowecanavoidundesiredscenarios.In suchasituation,shutdownofthereactorisperformedbysome safetyinterlockoremergencyshutdownsystem.Whenpressure increasestoohighacommonlyappliedmitigationsystemisusing apressurereliefvalvewhichdirectstheflowtoaknownlocation,in thiswaythepressurecanbedecreased.However,someconsider- ationalwaysmustbegiventothedirectionandlocationoftheend oftheventline.Duringventing,thedischargemaybepassedto:a

Ábra

Fig. 1. Explosion of Fu-Kao chemical plant and the damaged nearby buildings. The shock wave destroyed many windows within half-a-kilometer (Kao and Hu, 2002).
Fig. 2. Flowchart of runaway accident sequences (Liu et al., 2018b).
Fig. 3. Runaway scenario, where numbers represent the six key questions (Stoessel, 2009).
Fig. 4. Criticality classes of scenario (Stoessel, 2009).
+5

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

It was shown, that the indirect boundary element method and the coupled FE/BE method can be applied for the calculation of the steady sound field of an organ pipe resonator.

We do not know; but we know that more empirical work may be helpful and it has to be focussed on the links which exist in combined travel and telecommunication activity patterns

For a proof that a situation like the one in William's history about Aldhclm would not have been totally incredible, we can return to Cxdmon and trace what

Before the Presidency we wanted to know what people have waited for the Presidency, after the Presidency we asked the population about their opinion and

The aim of the present review is to provide an up-to-date picture of what we know about the connection between odontogenic foci and non-oral diseases. After a brief historical

Reactor runaway develops every investigated operating regions and the time of the first detected operating point based on Ljapunov’s indirect stability analysis can be found next

It has been shown (see Reference 6) however, that for certain difference approximations to initial value problems with a wide variety of boundary conditions, the stability

Also, it was shown that human performance has a basic impact on the safety levels and reliability of complex technical systems in building and